

CEPC TDAQ and Online

Fei Li, Jingzhou Zhao and Xiaolu Ji On behalf of CEPC TDAQ Group

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 8th, 2024, CEPC Detector Ref-TDR Review

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- Previous experience on large facilities
- R&D efforts and results
- Detailed design
- Research team and working plan
- Summary

Introduction

- This talk is about the design and development of the TDAQ and online
- This talk relates to the Ref-TDR Ch 12.
- Questions to physics and simulation
 - What kind of events need to be saved?
 - How to identify these events?
 - What level of background?

Questions to each detectors and electronics

- How many raw data need to readout?
- Whether a hardware trigger is required?
- If hardware trigger, how fast a latency is acceptable?
- What trigger primitive information can be provided
- What level of noise? Signal vs noise occupancy
- What slow control and monitoring requirements?

TDR Outline

- Introduction
- Requirements and design considerations
 - Requirements
 - Event rate estimation & background rate estimation
 - Technology survey
 - TDAQ policy consideration
 - TDAQ Interface with electronics

Trigger primitives generation and trigger algorithms

- Physics Signatures and primitives with sub-detectors
- Sub-detectors trigger algorithms
- Global trigger algorithms

Hardware Trigger

- Previous experience on large facilities
- System architecture
- Common Trigger Board
- Trigger Control and Distribution
- Resource cost estimation

Software and high level trigger

- Previous experience on large facilities
- Event Filter Hardware
- Selection software
- Study of GPU usage in the Event Filter
- Model for CPU estimation

- DAQ
 - Previous experience on large facilities
 - Overview of System Functionality
 - Detector Readout
 - Dataflow
 - Network
 - Online Software

Detector Control System

- Previous experience on large facilities
- Requirements on sub-detectors
- On-detector monitoring consideration
- On-detector slow control consideration
- Electronics monitoring and control consideration
- Experiment Control System
 - Previous experience on large facilities
 - Online Data Center
 - IT Infrastructure and Systems
 - Control Network
 - Operating Systems
 - Sub-detector Hardware Support Infrastructure
 - Core Computing Services
- Summary
 - Summary on data volume
 - Summary on cost

Requirements

possibly

tī

Number of for 5ab⁻¹

 5×10^{3}

Z W⁺W⁻ ZH

W+W-

√s [GeV]

CEPC four operation modes

	Higgs		Z	W	tť
SR power per beam (MW)	30	30	10	30	30
Bunch number	268	11934 3978		1297	35
Bunch spacing (ns)	576.9 (×25)	23.1(×1)	69.2(×3)	253.8(×11)	4523.1(×196)
Train gap (%)	54	17	17	1	53
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	38	16	0.5

Higgs 240GeV(30/50MW)

- BX rate: 0.797/1.33(2.887)MHz
- Physics event rate
 - 5Hz/8Hz (Higgs: ~0.02Hz)

Z pole 91GeV(10/30/50MW)

- BX rate:11.97/35.9/39.4(43.3)MHz
- Physics event rate
 - 50kHz/82kHz
- Requirements for rough selection of the relevant objects (jet, e, muon, tau,v, ...) and combinations.
- Keep all physical event and compress background.

	Higgs	Z	W	tť
SR power per beam (MW)		50)	
Bunch number	446	13104	2162	58
Demale and since (un)	346.2	23.1	138.5	2700.0
Bunch spacing (ns)	(×15)	(×1)	(×6)	(×117)
Train gap (%)	54	9	10	53
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	8.3	192	26.7	0.8

Ref: CEPC Physics at a glance, Lomonosov Conference 2021, by Manqi Ruan

Requirements

- 7 Sub detectors
- Raw data rate before trigger
 - 4.42Tbps, 553GB/s
 - @ low Lumi Z
 - 22.1Tbps, 2.76TB/s
 - @ high Lumi Z
 - 5 times increase
 - Key issue: FEE readout bandwidth per chip
- Trigger and Online processing
 - Hardware & software
 - Event filter
 - Data compression
 - Trigger efficiency
 - Event purity

	Vertex	Pix (ITKB)	Strip (ITKE)	ТОҒ (ОТК)	ТРС	ECAL	HCAL
Channels per chip	512*1024 Pixelized	512*128 (2cm*2cm@3 4um*150um)	512	128	128	8~16	8~16
Ref. Signal processing	XY addr + BX ID	XY addr + timing	Hit + TOT + timing	ADC+TDC/TOT+TO A	ADC + BX ID	TOT + TOA/ ADC + TDC	TOT + TOA/ ADC + TDC
Data Width /hit	32bit	48bit	32bit	40~48bit	48bit	48bit	48bit
Data rate / chip	1Gbps/chip @Triggerless @Low LumiZ Innermost	640Mbps/chip Innermost	Avg. 1.01MHz/chip Max. 100MHz/chip	Avg: 26kHz/chip@z pole Max: 210kHz/chip @z pole	~70Mbps/ modul Inmost	<4.8Gbps/modul e	<4.8Gbps/modu le
Data aggregatio n	10~20:1, @1Gbps	1. 1-2:1 @Gbps; 2. 10:1@O(10Gb ps)	1. 10:1 @Gbps 2. 10:1 @O(10Gbps)	1. 10:1 @1Mbps 2. 10:1 @O(10Mbps)	1. 279:1 FEE-0 2. 4:1 Module	1. 4~5:1 side brd 2. 7*4 / 14*4 back brd @ O(10Mbps)	< 10:1 (40cm*40cm PCB – 4cm*4cm tile – 16chn ASIC)
Detector Channel/ module	2218 chips @long barrel	30,856 chips 2204 modules	22720 chips 1696 modules	41580 chips 1890 modules	258 Module	1.1M chn	6.7M chn
Data Volume before Trg	2.2Tbps	2 Tbps	22.4 Gbps	1 Gbps	18Gbps	164.8Gbps	14.4Gbps

Belle II TDAQ

- 30 kHz level 1 trigger
- 4.5us L1 latency
- PCIe card readout (except for PXD)
- Buffer PXD data at ONSEN
 - Read out by HLT Rol
 - Gen. Rol by SVD track

Ref: Belle II DAQ system talk by Qidong Zhou

Conventional hardware trigger + software HLT Rol for PXD readout

Atlas TDAQ(Phase II)

- Data rate 4.6 TB/s
- Collect trigger primitive from BEE (Back-End Electronics)
- Fast L0(3us) + L1(10us) + HLT
- HW trigger sent to FEE (Front-End Electronics)
- Common PCI card BEE
- Global HTT(Hardware Track Trigger)
 - FPGA based

Ref: ATLAS Trigger and Data Acquisition Upgrades for the High Luminosity LHC, LeptonPhoton2019

Fast LO trigger for inner tracker readout, full PCIe bus readout

Readout

۱

Event Filter

Processor

Farm

Dataflow

HTT

Inner Tracker

CMS TDAQ(Phase II)

- Data rate 5.5TB/s
- L1(12.5us) + HLT
- Part FEE full data readout 9
- Common ATCA BEE
 - Serenity
- ATCA readout board with Ethernet
 - DTH-400Gb/s
 - DAQ-800Gb/s

Ref: The Phase-2 Upgrade of the CMS DAQ Interim Technical Design Report

Collect trigger primitive from BEE, full network readout

LHCb run3

- Run 1–2 trigger: hardware L0 (40→1 MHz)
- Read full event at bunch-crossing rate(4TB/s)
 - Cope with higher occupancy.
 - Faster/higher precision tracking
- Design characteristic:
 - Use disk as a buffer between HLT1 and HLT2.
 - Compute at HLT1 level using GPUs.
 - Event Building using Smart NICs.

Ref: <u>GPU-based software trigger for LHCb experiment</u> talk by <u>Anton Poluektov.</u>

Full software trigger, PCIe bus readout, GPU acceleration

- 800Gbps network is commercially available
- Huang's law: computational power of GPU increase 1000 times in past 10 years
- NVIDIA GH200 server: Arm CPU + GPU, IO > 500GByte/s

Ref: https://www.hangyan.co/charts/3351671202081932642

Ref:DUNE Cold Electronics R&D at ICEBERG, ICHEP-2024, Prague

Our choices

Trigger solutions

- 1.FEE full data readout + L1 + HLT
 - Baseline option
 - Simplified FEE design, extract trigger primitive from BEE
 - No high demand for low L1 latency
- 2.Full software trigger
 - Preferred option
 - Simplified BEE and trigger design
 - When L1 compression ratio is low
- 3.Fast L0 + L1 + HLT
 - Backup option
 - When not enough readout bandwidth for part FEE
 - Fast L0 means low trigger latency requirement for part FEE
 - Extract L0 trigger primitive from part FEE

Main Technical Challenges

I. Full FEE data readout + L1 + HLT

- FPGA algorithm: high data compression ratio

2. Full software trigger

- Resource requirement
- High data throughput and online processing efficiency

3. Fast L0 + L1 + HLT

- Low L0 latency
- Trigger efficiency
- Synchronize control
- Compression ratio

Previous experience of TDAQ Hardware

- Designed BESIII trigger system
 - Trigger simulation/hardware design/core trigger firmware development
 - Common trigger board design for upgrade
 - Share link for data readout, data, fast/slow control and clock transmission

GSI PANDA TDAQ R&D

- Proposed concept of triggerless readout in TDAQ
- Designed HPCN board for TDAQ/EMC trigger algorithm development
- Designed Belle2Link and HPCN V3 as ONSEN for Belle II
- Designed CPPF system for CMS Phase-I

Design MTCA board, Cluster finding and fanout to EMTF/OMTF

- Designing iRPC/RPC Backend/Trigger for CMS Phase-II
 - Proposed iRPC Backend system scheme, cluster finding firmware
 - ATCA common Backend and trigger board

Extensive experience in TDAQ system design, algorithm and hardware development 14

FAIR — Facility for Antiproton and Ion Research in Europe

Previous experience of DAQ&DCS

BESIII DAQ & DCS

- Running since 2008
- Dayabay experiment DAQ&DCS
 - Running from 2011 to 2020
- LHAASO DĂQ
 - Running since 2019,
 - 7k channels, TCP readout
 - Full software trigger
- JUNO DAQ&DCS under developing
 - 40GB/s, 45k channels, TCP
 - Two type data stream
 - HW trigger for waveform
 - Software trigger for TQ hits
 - Online event classification
 - Integrated offline algorithms, compress waveform data to 60MB/s.

Previous experience of Advance algorithm

Some experience in L1 NN application and HLT acceleration on FPGA

R&D efforts and results

Start to design ATCA TDAQ board for CEPC

- Based on xTCA standard, designed series of xTCA boards
- Already used in PANDA, Belle II and CMS experiment

Streaming Readout Framework – RADAR

heteRogeneous Architecture of Data Acquisition and pRocessing

- V1: deployed in LHAASO (3.5 GB/s data rate), software trigger mode
- V2: upgraded for JUNO (40 GB/s data rate), mix trigger mode
 - Containerized running
 - High availability support
- V3: CEPC-oriented (~ TB/s data rate) , under development

- Motivation:
 - High-throughput data acquisition and processing
- Current Status:
 - Over a decade of work led to significant progress, tested through experiments
- Recent Focus:
 - Heterogeneous online processing platforms with GPU
 - Real-time data processing acceleration solutions
- **Expansion:**
 - Application across various domains (DAQ, triggering, control, etc.)
 - Integration of AI technologies (ML, NLP, expert systems, etc.)

- General-purpose distributed framework
- Lightweight structure
- Plug-in modules design
- Microservices architecture

WEB/CLI	D	ata Flow Softwa	re	
Su	ipervisor		Onlin	e Services
API Gateway < <java app="">></java>	Run Control INF < <c++ library="">></c++>	Configuration INF < <c++ library="">></c++>	Message INF < <c++ library="">></c++>	Interface layer
Zool	eeper	ĸ	afka	Message Brokers
Run Control < <java app="">></java>	Configuration < <java app="">></java>	Process Management < <java app="">></java>	Message < <java app="">></java>	Online Services

R&D efforts and results

Preliminary Simulation: ECal Barrel Energy Dist.

- Left : nnYY ; Middle : nnbb ; Right : beam background
- Physical events
 - Larger energy deposition
 - Concentrated
- Trigger primitive
 - Two clusters
 with the
 highest energy

Preliminary Simulation: Muon Hit Distribution

Left : 2000 back ground events(10BX) ; Right : 1000 ZH→nnµµ events

@MuonBarrelCollection.size() (@MuonBarrelCollection.size()>10&&@MuonBarrelCollection.size()<400</p>

Up : Barrel htemp htemp Entries 387 Entries 951 Mean 169.3 Mean 258.7 Std Dev 464.3 120 Std Dev 315.6 - N(Barrel) > 10Beam nnµµ – nnµµ efficinecy 95% background – Background: 19% Down: Endcap @MuonEndcapCollection.size(@MuonEndcapCollection.size() {@MuonEndcapCollection.size()<4000</p> htemp – High number of Entries 2000 Entries 990 4569 103.7 Mean Mean 186.8 Std De Std Dev background hits Beam background nnµµ

@MuonBarrelCollection.size() (@MuonBarrelCollection.size()=10&&@MuonBarrelCollection.size()=4000

Preliminary design of hardware trigger

- HW Trigger structure
 - Baseline option
 - HW trigger sent to BEE
 - L1 at back-end
 - Backend of each detector generate Trigger
 Primitive(TP)
 - Sub trigger of generate local detector trigger information(energy, track...)
 - Global trigger generate L1A according to physical requirement.
 - TCDS distribute clock and fast control signals to BEE.

Preliminary design of hardware trigger

Trigger structure

- Backup option
 - HW trigger sent to FEE
 - Fast L0 + L1
- Backend of each detector generate Trigger Primitive(TP)
- Sub trigger of generate local detector trigger information(energy, track...)
- Fast trigger generate local low latency L0A for Vertex to reduce data. Which detectors join this trigger need to be discussed.
- Global trigger generate L1A according to physical requirement.
- TCDS distribute clock and fast control signals to BEE.

Preliminary design of TCDS/TTC and readout

TCDS/TTC

- Clock, BC0, Trigger, orbit start signal distribution
- Full, ERR signal feed back to TCDS/TTC and mask or stop L1A

DAQ readout

- Option1 : BEE Data collected and packaged by DCTD board, and sent to Online via network switch.
- Option2 : BEE Data sent to Online via network switch.
- TCDS-Tigger Clock Distribution System
- TTC- Trigger, Timing and Control
- DCTD-Data Concentrator and Timing Distribution
- BEE-Backend board Electronic

Preliminary design of the common Trigger Board

Common Trigger board function list

- ATCA standard
- Virtex-7 FPGA
- Optical channel: 10-25 Gbps/ch
- Channel number:36-80 channels
- Optical Ethernet port: 40-100GbE
- DDR4 for mass data buffering
- SoC module for board management
- IPMC module for Power management

Preliminary design of DAQ

- Same with or without hardware trigger
- Readout interface and protocol
 - Ethernet X*100Gbps/ TCP or RDMA
 - PCIe optional
- GPU acceleration at HLT1 & HLT2
 - FPGA optional
- Memory vs disk buffer for HLT2
- Better IO performance but smaller volume size
 RADAR software framework
 - Heterogeneous computing cluster

Preliminary design of DCS

Preliminary design of ECS

Main components of the ECS

Existed Solutions:

- 3D Visualization Monitoring
- AI shift assistant research based on LLM+RAG (TAOChat)
- Fault root analysis method based on directed acyclic graph
- A ROOT-based Online Data Visualization System (ROBOT)
- Unified control and monitoring for TDAQ, DCS and others
- Al operation and maintenance

Round 4

IUNO

749 CD GCU

Research Team

3

Born in

1960s

1970s

1980s 1990s

15 staff of IHEP TDAQ group

– Kejun Zhu (team director)

DAQ (4 of 6)

- Hongyu Zhang (readout)
- Fei Li (DAQ, team manager)
- Xiaolu Ji (online processing)
- Minhao Gu (software architecture)

Trigger (4 of 5)

- Zhenan Liu (trigger director)
- Jingzhou Zhao (hardware trigger)
- Boping Chen (simulation/algorithm)
- Sheng Dong (firmware/DCS)

DCS/ECS(1 of 4)

- **Collaborators** number
 - Qidong Zhou (HLT, SDU)
 - Yi Liu (HLT, ZZU)

Junhao Yin(HLT, NKU)

Born in number

1

1980s

1990s

- IHEP Students(20 totally)
 - 2 Phd and 3 master
- New member need
 - 1 staff next year
 - 2 postdoc
- Looking for more collaborators

– Si Ma

Beginning to gather manpower for R&D, most involved only small part of the time

Working plan

TDR related

- Basic Trigger simulation and algorithm study
 - Background event study and basic algorithm scheme for each detector
- Hardware trigger and interface design
- Finalize TDAQ design scheme

R&D

- Trigger simulation and algorithm
- Hardware trigger, fast control and clock distribution
- ROCE/RDMA readout protocol and smart NIC
- TB/s level high throughput software framework(RADAR)
 - FPGA/GPU acceleration and heterogeneous computing
 - Memory based distributed buffer
- ML/AI algorithm application
 - Trigger/data compression/ AI operation and maintenance

Completed preliminary design of TDAQ and online

- Mix hardware and software trigger could be adapted solution currently
- Full software trigger will be best one if no IO and computational power constraints

Following background simulation and sub detector design

- Preliminary simulation results @Higgs
- Not yet @Z
- No show-stopper found for hardware and software trigger scheme
 - But fast L0 trigger algorithm and handling TB/s data at manageable hardware scale remain challenges.
- Much R&D effort still needed from design to implementation

Thank you for your attention!

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

Backup

Event Rate

Higgs 240GeV(30MW/50MW)

- BX rate:0.797/1.33(2.887)MHz

Process	Luminosity[ab ⁻¹]	Final states	X-sections(fb)	Events generate	Scale factor	Events expected
$e^+e^- \to e^+e^-$	5.6	e^+e^-	24770.90	4000000	346.79%	138717040
$e^+e^- \to \mu^+\mu^-$	5.6	$\mu^+\mu^-$	5332.71	4000000	746.60%	29863176
$e^+e^- \to \tau^+\tau^-$	5.6	$\tau^+\tau^-$	4752.89	4000000	665.40%	26616184
$e^+e^- \to \nu\bar{\nu}$	5.6	$\overline{v}\overline{v}$	54099.51	3999999	757.39%	302957256
$e^+e^- \to q\bar{q}$	5.6	$q\bar{q}$	54106.86	9999023	303.03%	302998416

- Physical event rate: 5Hz/8Hz (Higgs: 0.02Hz) Higgs, Sample generation for CEPC, August 24, 2020
- Z pole 91GeV(30MW/50MW)
 - BX rate:35.9/39.4(43.3)MHz
 - Physical event rate: 50kHz/82kHz

	Higgs	:	Z	W	tť		
SR power per beam (MW)	30	30	10	30	30		
Bunch number	268	11934	3978	1297	35		
Bunch spacing (ns)	576.9 (×25)	23.1(×1)	69.2(×3)	253.8(×11)	4523.1(×196)		
Train gap (%)	54	17	17	1	53		
Luminosity per IP (10^{34} cm ⁻² s ⁻¹)	5.0	115	38	16	0.5		
-							
	Higgs			W	tt		
SR power per beam (MW)	50						
Bunch number	446	1310)4	2162	58		
	346.2	23.1		138.5	2700.0		
Bunch spacing (ns)	(×15)	(×1)		(×6)	(×117)		
Train gap (%)	54	9		10	53		
Luminosity per IP (10^{34} cm ⁻² s ⁻¹)	8.3	192	2	26.7	0.8		

					-	14/	-14/-	711	possibly	y
过程	xsection(nb)	百分比	事例率kHz	Ē	2			20		
Bhabha	0.0586	0.001371951	0.068597543	107	9	q				uts
muon	1.5361	0.035963374	1.798168703	10'						[eve
tau	1.5249	0.035701158	1.78505791	106						
qq	30. 6522	0.717633315	35.88166573	105						
电子中微子	2.9607	0.069316296	3.465814777		\mathcal{A}		\mathbf{W}^{+}	w		
muon中微子	2.9896	0.069992906	3.499645306	10 ⁴						5×10
tau中微子	2. 9909	0.070023342	3.501167095	ъ 10 ³	Sing	de Z	27	5		
中微子总	8. 9411	0.209330202	10.46651012	10 ²	Single	w		ZH	tī	5×10^6
总共	42.7129	1	50					W fusio	1	_
				10 ¹				7 fueio		
30 m		1.15E+36	4.91E+01	1						
50 MW		1.92E+36	8.20E+01							
		I		50	100	150	200 √s	250 30 - [GeV]	0 350	400

Z pole, ref: MC /cefs/data/stdhep/CEPC91/ 2fermions/wi_ISR_20220618_50M/2fermions/

ECal barrel 能量分布

- 左: nnyy; 中: nnbb; 右: 束流本底
- 对物理过程,在量能器上能量沉积比较大且集中
 - 可以挑选能量最高的两个cluster来做判别

HCal barrel 能量分布

• 左: nn ¥¥; 中: nnbb; 右: 束流本底

Muon Barrel hit

- 大部分本底过程的hit的个数非常小
- 左: 2000个束流本底; 右: 1000个ZH→nn µ µ;
- Nhit>10效率; nn µ µ: 95%; higgs 束流本底本底24%

Muon Barrel hit number

Vertex

- 左: 单个ZH→nn μ μ 事例
- 中: 单个束流本底事例
- 右: 束流本底Vertex hit数量分布

ITK

- 左: 单个ZH→nn μ μ 事例
- 中: 单个束流本底事例
- 右: 束流本底Vertex hit数量分布

ITK Hit Distribution

Left : bhabha ; Middle : nnbb ; Right : beam background (10BX)

TPC

- 左: 单个ZH→nn μ μ 事例
 - 中: 单个束流本底事例
- 右: 束流本底Vertex hit数量分布

OTK

- 左: 单个ZH→nn μ μ 事例
 - 中: 单个束流本底事例
- 右: 束流本底Vertex hit数量分布

