

Physics Benchmarks & Global Performance

Mingshui Chen for the Physics & Performance group

中国科学院高能物出研究所 Chinese Academy of Sciences

Oct. 21-23, 2024, CEPC Detector Ref-TDR Review

- **Introduction: CEPC Physics**
- **Physics Benchmarks & Global Performance**
	- **Key detector requirements**
	- **Algorithm development: Jet Origin ID & its application**
- **Physics Benchmarks Reach with CDR detector for reference**
- **Global Performance of Ref-TDR detector**
- **Physics Benchmarks Prospect at Ref-TDR**
- **Challenges, Plan, and Team**
- **Summary**

Operation Plan from Acc. TDR

CEPC accelerator TDR (Xiv:2312.14363)

While aiming to meet the needs of the whole energy range, emphasizes more on the Higgs operation mode.

CEPC physics

α_s ,...

CEPC physics

CEPC physics

CEPC Detector Requirements

Physics Benchmarks & Requirements

PFA is required by most of the benchmarks, emphasizing **global reconstruction performance**

- **BMR < 4%** required, to pursue 3%
- **n** Object identification: need to efficient reconstruct and identify final state particles (1-1 correspondence)

n **Kaon ID with eff and purity > 95%**

Capable to find composited objects in jets

Sub-Det level performance

- n **Tracking: ~0.1% momentum resolution**
- **EM resolution: ~1% level**
- **VTX: position resolution** \sim **5** μ **m**

Rely on not only sub detector performance, but also excellent global reconstruction algorithms

- **CyberPFA** being developed to cope with Xstal bar ECal, and rely on full simulation of the detector
- **New concepts (Jet origin ID** & color singlet ID) emerge, need to establish their relevance to algorithm & sub-detector configuration & performance

Jet Origin ID

PRL 132, 221802 (2024)

Jet flavor tagging efficiencies and charge flip rates with perfect identifications

Concept demonstrated with CEPC CDR baseline detector & Arbor PFA, and perfect PID : di-jet events (vvH(qq) & Z→qq) simulated

Physics Benchmarks: H→ss

Physics Benchmarks: H→cc & Vcb

PRL 132, 221802 (2024)

■ From Jet Flavor Tagging to Jet Origin ID:

- \leftrightarrow vvH, H \rightarrow cc: 3% \rightarrow 1.7% (preliminary)
- \blacktriangleright Vcb: 0.75% \rightarrow 0.45% (mvqq channel, evqq: 0.6%, combined 0.4%)

Physics Benchmarks using CDR det. + TDR lumi

- 1. H. Liang, et al, PHYSICAL REVIEW LETTERS 132, 221802 (2024)
- 2. CEPC Phy-Det Snowmass White Paper, arXiv:2205.08553v1
- 3. H. Liang, Ph.D thesis
- 4. Z. Zhao, et al., Chinese Physics C Vol. 47, No. 12 (2023) 123002
- 5. Z. Yang, et al., Chinese Physics C Vol. 41, No. 2 (2017) 023003
- 6. P. Shen, et al., Eur. Phys. J. C (2020) 80:66
- 7. Z. Li, et al., arXiv:2207.12177
- 8. Y. Wang, et al., PHYSICAL REVIEW D 105, 114036 (2022)
- 9. T. Zheng, et al., Chinese Physics C Vol. 45, No. 2 (2021) 023001
- 10. Y. Wang, et al., JHEP12(2022)135

Detector Concepts: CDR to refTDR

Tracking @ full simulation

n To be updated with full tracking system Vertex + ITK + TPC + OTK, and also versus costheta

 \blacksquare ~0.1% for bulk of tracking resolution reachable

VTX and Jet Flavor/Charge I

Eur. Phys. J. C. (2024) 84:152 https://doi.org/10.1140/epjc/s10052-024-12475-5

THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

ParticleNet and its application on CEPC jet flavor tagging

Yongfeng Zhu^{1,a} (b, Hao Liang^{2,3}, Yuexin Wang^{2,3}, Huilin Qu⁴, Chen Zhou^{1,b}, Manqi Ruan^{2,3,c} ¹ State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China ² Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
² Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
³ University of Chinese Academy of Science 2.8 $2,8$ resolution \bullet material budget 2.7 2.7 inner radius 2.6 2.6 $F_{\overline{E}}^{2,5}$
 $+$ 2.4 - $F_{\text{mig}}^{2.5}$ 2.3 $2,3$ resolution \bullet 2.2 material budget 2.2 inner radius \bullet 2.1 $\frac{1}{-1.00}$ -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 2.1 $-1.00 - 0.75 - 0.50 - 0.25$ 0.00 0.25 0.50 0.75 1.00 $log2(\frac{new}{baseline})$ $1.0 \frac{\times 10^{-1}}{}$ $\times 10^{-2}$ 2.5 $_{0.8}$ vvH(H→cc) Accuracy 2.0 **LCFIPlus** $2.30, 0.57 \times 10^{-1}$ $6|V_{cb}|/|V_{cb}|$
1.5
1.0 **LCFIPlus** 0.6 **ParticleNet** $(2.30, 1.33 \times 10^{-2})$ $(2.64, 0.42 \times 10^{-1}$ $0,4$ ParticleNet $(2.64, 0.76 \times 10^{-2}$ 0.2 $0,5$ 0.0 $0,0$ 2.2 2.4 2.6 2.8 3.0 $2,2$ $2,4$ $2,6$ $2,8$ $3,0$ $\mathsf{Tr}_{\mathsf{mig}}$ Tr_{mig}

Compared to CDR, VT

- \bullet Inner radius redu
- \bullet Material reduced
- n Trace(Migration Matri
	- \leftrightarrow H->cc accuracy i
	- \blacklozenge Vcb accuracy improvement

PID: dE/dx or dN/dx + TOF

Nucl.Instrum.Meth.A 1047 (2023) 167835

Table 3

The K^{\pm} identification performance with different factors, $\sigma_{actual} = factor \cdot \sigma_{intrinsic}$, with/without combination of TOF information at the Z-pole.

dE/dx or dN/dx with relevant uncertainty of **3%** + TOF of **50 ps**: **eff & purity of Kaon ID > 95%**

dE/dx or dN/dx @ ref-TDR goal

Performance from simulation

- Full simulation framework of pixelated TPC developed using Garfied++ and Geant4 at IHEP
- Investigating the π / κ separation power using reconstructed clusters, **a** 3 σ separation at 20GeV with 50cm drift length can be achieved
- dN/dx has significant potential for **improving PID resolution**

Detailed design of DC for Tera-Z

- n A major goal for the Ref-TDR Gaseous Tracker is the PID: to achieve 3% dE/dx or dN/dx performance
- Promising results, to be validated with further studies, especially test beam.
- Gaseous Tracker inner radius: to be optimized for endcap performance

PFA Goal: BMR < 4% & pursue 3%

n BMR used to quantify jet reconstruction: 4% will well separate W/Z and Higgs, and separate ZH from the ZZ

ⁿ Accuracies of different physics benchmarks as a function of the BMR show a turning point at roughly BMR of 4%

\blacksquare H->inv as an example:

- ⁿ BMR from **4% to 8%** (typical LHC experiment performance), one need to **double the luminosity** to reach same accuracy
- ⁿ BMR from **4% to 3%**, **save roughly one year** of operation

BMR Decomposition

(for BMR of 3.7% at CDR)

- ~50% from confusion
- **n** ~25% from detector resolution
- ~25% from acceptance
- n HCAL resolution dominates among the uncertainties from detector resolutions:
	- ◆ Using Glass Scintillator (TDR HCAL) Iron with thickness of 6 lambda (compared to GRPC - Iron of 5 lambda) \rightarrow BMR of 3.4%

BMR of \sim 4% at refTDR

Physics performance in simulation: Higgs boson

- Higgs benchmark studies at CEPC 240 GeV
	- Higgs decays to 2 photons (EM performance) and 2 gluon jets (PFA performance)

Preliminary BMR at ref-TDR: 4.1%, not far from CDR (BMR of 3.7%). To control the confusion (fake particles, etc) is critical: need optimization + reconstruction development

Physics Benchmarks at CDR & refTDR

 \blacksquare H- \gt yy precisions improves significantly, if low mass tail tamed. **n** Physics measurements using JoI, etc, benefit from better VTX and have 5-10% improvements, and assuming that the TDR BMR could eventually reach 3.7%

- \bullet If BMR of 3% achieved, precisions of most benchmarks could be further improved by 5-10%
- \triangleleft Need further development on pattern recognition capability of Crystal Bar ECAL

Challenges & Team

n Challenges:

- \bullet Impact of beam induced background (~ Nov. 2024)
- \bullet High data rate ω Z pole: need to reconstruct in Space time (PFA in space time)
- \triangleq New CyberPFA development: rely on full simulation, as it significantly impacts the final resolution on hadronic objects
	- To further validate & verify the pattern recognition performance (~ Dec. 2024)
- **n** Physics Performance Team: \sim 10 staffs + 4 Postdocs + \sim 10 Students
	- \triangleleft Synergies with sub-detector team
	- \triangle Also collaboration with PKU, LLR & CERN on ML algorithms

n Physics white paper efforts: IHEP team $+ \sim$ > 20 staffs from \sim 10 Universities

- ^u Flavor Physics: Tao Liu (HKUST), Lorenzo (NKU), Shanzhen Chen(IHEP) etc
- ^u New Physics: Xuai Zhuang (IHEP), Mengchao Zhang (JNU)
- ^u EW: Zhijun Liang (IHEP), Jiayin Gu (FuDan U), Siqi Yang (USTC)
- QCD: Zhao Li (IHEP), Meng Xiao (ZJU), Huaxing Zhu (PKU)

Physics studies in pace with ECFA physics focus studies

Summary

n Intensive CEPC Physics studies

- \triangleleft Well quantified Physics Merits
- \bullet Iterates with Detector R&D

■ CEPC Ref-TDR detector provides

- \triangleleft PID: critical for Higgs/Flavor physics
- ◆ Better VTX: improves precisions on benchmark analysis by 10-20%
- \triangleleft PFA Compatible Calorimeter with larger sampling:
	- HCAL improves the BMR by ~10%,
	- Crystal Bar ECAL: pattern recognition is challenging.

n To do:

- Quantify the impact of beam induced background, the readout, especially at Z pole
- \triangle Further develop reconstruction algorithms, and validate with full simulation
	- PFA, smarter algorithm with AI tools
- \triangle Physics benchmarks analyses with full simulation (H measurements) + fast simulation
- \bullet Involve more efforts from theory community to ensure that theoretical uncertainties will be under control

Thank you for your attention!

Oct. 21-23, 2024, CEPC Detector Ref-TDR Review