

Physics Benchmarks & Global Performance

Mingshui Chen for the Physics & Performance group

Content

- Introduction: CEPC Physics
- Physics Benchmarks & Global Performance
 - Key detector requirements
 - Algorithm development: Jet Origin ID & its application
- Physics Benchmarks Reach with CDR detector for reference
- Global Performance of Ref-TDR detector
- Physics Benchmarks Prospect at Ref-TDR
- Challenges, Plan, and Team
- Summary

Operation Plan from Acc. TDR

(Operation mode	ZH	Z	W+W-	t̄t
	\sqrt{s} [GeV]		~91	~160	~360
F	Run Time [years]	10	2	1	5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
30 MW	$\int L dt$ [ab-1, 2 IPs]	13	60	4.2	0.65
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
50 MW	$\int L dt$ [ab ⁻¹ , 2 IPs]	21.6	100	6.9	1
	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

CEPC accelerator TDR (Xiv:2312.14363)

While aiming to meet the needs of the whole energy range, emphasizes more on the Higgs operation mode.

CEPC physics

Higgs

 m_H , σ , Γ_H self-coupling $H \rightarrow$ bb, cc, ss, gg $H \rightarrow$ inv, $H \rightarrow$ sb, ...

Flavor

CKM matrix CPV measurements LFV, LUV ${f r}$ properties (lifetime, BRs..) ${\sf B}_{\sf c} \rightarrow {f r}$ v, ${\sf B}_{\sf s} \rightarrow {\sf D}_{\sf s}$ K/ ${\bf m}$ ${\sf B}_{\sf s} \rightarrow {\sf K}^{\star} {f r}$ ${\bf r}$, B \rightarrow K* v v ${\sf B}_{\sf s} \rightarrow {\sf \phi}$ v v ...

Top

m_{top}, Γ_{top}, top quark coupling, 4 million Higgs 4 trillion Z bosons 200 million W pairs 600 k ttbar

EWK/QCD

 m_Z , Γ_Z , Γ_{inv} $\sin^2\!\theta$, m_W , Γ_W , $A_{FB}^{b,c}$, au pol. α_S ,...

BSM

CEPC physics

Precision Higgs physics at the CEPO

readon $A(x,y,y,y) = V_{\rm c} M(x,y) + V$ Xinchou Lou(委辛丑(^{4,63,1,6} Lianliang Ma(马连良)¹² Brace Mellado^{17,18} Xin Mo(克昂 vvic¹⁸ Jianning Qian(性何明)^{2,15} Zhneni Qian(性存挺)¹⁸ Nikolaos Rempotis²² marinatovik (manina) (manina Yunian Wei(敬珠霉)4 Yue Xu(汗懷)7 Hajiun Yang(杨海军)(0)

Higgs White Paper

The Physics potential of the CEPC

Prepared for the US Snowmass Community Planning Exercise

• Huajie Cheng, Department of Applied Physics, Naval University of Enginee

White Paper for

- Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University Shanghai 200438, China
- · Gang Li, Institute of High Energy Physics, University of Chinese Academy of Science
- Physics, Chinese Academy of Sciences, Beijing 100190, China

Higgs

 m_H , σ , Γ_H self-coupling H→ bb, cc, ss, gg H→inv, H→sb, ...

Top

 m_{top} , Γ_{top} ,

top quark coupling,

Flavor

CKM matrix **CPV** measurements LFV. LUV τ properties (lifetime, BRs..) $B_c \rightarrow \tau V, B_s \rightarrow D_s K/\pi$ $B_s \rightarrow K^* \tau \tau$, $B \rightarrow K^* v v$ $B_s \rightarrow \phi \vee \nu \dots$

4 million Higgs 4 trillion 7 bosons 200 million W pairs 600 k ttbar

EWK/QCD

 $\mathbf{m}_{\mathbf{Z}}$, $\mathbf{\Gamma}_{\mathbf{Z}}$, $\mathbf{\Gamma}_{\mathsf{inv}}$ $\sin^2\theta_{W}$, m_{W} , Γ_{W} , $A_{FB}^{b,c}$, τ pol. α_{s} ,...

BSM

Heavy Neutral Leptons Dark Photons Z_D **Axion Like Particles** Exotic Higgs decays

- Physics merit quantified by simulation & phenomenology studies:
 - Higgs White Paper, etc: Precisions exceed HL-LHC ~ 1 order of magnitude
 - ◆ EW: Precision improved from current limit by 1-2 orders of magnitudes
 - Flavor, sensitive to NP of energy scale of 10 TeV or above (Flavor White Paper, summarizing ~ 40 benchmarks)
 - Sensitive to various BSM signals

CEPC physics

CEPC Detector Requirements

Excellent tracking resolution/
Jet energy resolution
Impact parameter resolution
for b,c,s tagging

Higgs

 m_H , σ , Γ_H self-coupling $H \rightarrow$ bb, cc, ss, gg $H \rightarrow$ inv, $H \rightarrow$ sb, ...

Flavor

CKM matrix
CPV measurements
LFV, LUV τ properties (lifetime, BRs..) $B_c \rightarrow \tau \text{ V, } B_s \rightarrow D_s \text{ K/}\pi$ $B_s \rightarrow \text{K*}\tau \tau \text{, } B \rightarrow \text{K*} \text{ V V}$ $B_s \rightarrow \phi \text{ V V ...}$

Superior impact parameter resolution for vertices, tagging; Energy resolution for π^0 or γ reco; PID: K/π separation over wide momentum range for b and τ physics

Top

m_{top}, Γ_{top}, top quark coupling, 4 million Higgs 4 trillion Z bosons 200 million W pairs 600 k ttbar

EWK/QCD

 m_Z , Γ_Z , Γ_{inv} $\sin^2\!\theta_W$, m_W , Γ_W , $A_{FB}{}^{b,c}$, au pol. α_S , ...

BSM

Heavy Neutral Leptons

Dark Photons Z_D

Axion Like Particles

Exotic Higgs decays

LLP sensitivity via far detached vertices (mm→m): Tracking, Calorimetry, Muon

Small systematics:

Absolute normalisation (luminosity, 10⁻⁴)
Momentum resolution

Physics Benchmarks & Requirements

	Processes @ c.m.s.	Domain	Relevant Det. Performance
H→ss/cc/sb	vvH @ 240 GeV	Higgs	PFA + Jet Origin Id (JoI)
H→inv	qqH	Higgs/NP	PFA
Vcb	WW→lvqq @ 240/160 GeV	Flavor	Jol + Pid (Lepton, tau)
W fusion Xsec	vvH @ 360 GeV	Higgs	PFA + Jol
$\alpha_{\scriptscriptstyle S}$	Z→tautau @ 91.2 GeV	QCD	PFA: Tau & Tau final state id
CKM angle $\gamma - 2\beta$	Z→bb, B→DK @ 91.2 GeV	Flavor	PFA + JoI + Pid (Kaon)
Weak mixing angle	Z@ 91.2 GeV	EW	Jol
Higgs recoil	IIH	Higgs	Pid (Lepton), track dP/P
H→bb, gg	vvH + qqH	Higgs	PFA + JoI + Color Singlet id
H→di muon	qqH	Higgs	PFA, Leptons id, Tracking
H→di photon	qqH	Higgs	PFA, Photons id, EM resolution
W mass & Width	W threshold scan @160 GeV	EW	Beam energy
Top mass & Width	Top threshold scan @360 GeV	EW	Beam energy
Bs→ υυφ	91.2 GeV	Flavor	Object (ϕ) in jets; MET
$Bc \rightarrow \tau v$	91.2 GeV	Flavor	Object ($ au$) in jets; MET
$B0 \rightarrow 2\pi^0$	91.2 GeV	Flavor	π^0 in jets; EM resolution

PFA is required by most of the benchmarks, emphasizing **global reconstruction performance**

- **BMR < 4%** required, to pursue 3%
- Object identification: need to efficient reconstruct and identify final state particles (1-1 correspondence)
- Kaon ID with eff and purity > 95%
- Capable to find composited objects in jets

Sub-Det level performance

- Tracking: ~0.1% momentum resolution
- EM resolution: ~1% level
- **VTX:** position resolution $\sim 5 \mu m$
- Rely on not only sub detector performance, but also excellent global reconstruction algorithms
 - **CyberPFA** being developed to cope with Xstal bar ECal, and rely on full simulation of the detector
 - New concepts (Jet origin ID & color singlet ID) emerge, need to establish their relevance to algorithm
 & sub-detector configuration & performance

Jet Origin ID

- ◆ Jet Flavor Tagging + Jet Charge measurement,
 s, gluon, u & d -tagging
- ◆ Input: PID & 4-momentum of all reconstructed particles + impact parameters for charged ones (~o(50) particles)

Jet flavor tagging efficiencies and charge flip rates with perfect identifications

Concept demonstrated with CEPC CDR baseline detector & Arbor PFA, and perfect PID: di-jet events (vvH(qq) & Z→qq) simulated

Physics Benchmarks: H→ss

Physics Benchmarks: H→cc & Vcb

PRL 132, 221802 (2024)

- From Jet Flavor Tagging to Jet Origin ID:
 - \bullet vvH, H \rightarrow cc: 3% \rightarrow 1.7% (preliminary)
 - ◆ Vcb: 0.75% → 0.45% (mvqq channel, evqq: 0.6%, combined 0.4%)

Physics Benchmarks using CDR det. + TDR lumi

	Processes @ c.m.s.	Domain	Anticipated relative accuracies/up limit with CDR baseline detector + TDR Luminosity, with Jol
H→cc			1.7%
H→ss [1]	vvH @ 240 GeV	Higgs	95% up limit of 0.75E-3
H→sb [1]			95% up limit of 0.22E-3
H→inv [2]	qqH	Higgs/NP	95% up limit of 0.13%
Vcb [3]	WW→lvqq @ 240/160 GeV	Flavor	0.4%
W fusion Xsec [2]	vvH @ 360 GeV	Higgs	1.1%
$lpha_{S}$	Z→tautau @ 91.2 GeV	QCD	NAN
CKM angle $\gamma - 2\beta$	Z→bb, B→DK @ 91.2 GeV	Flavor	NAN
Weak mixing angle [4]	Z@ 91.2 GeV	EW	2.4E-6 using 1 month of Z pole data (~ 2E11 Z)
Higgs recoil [5]	IIH	Higgs	δm = 2.5 MeV
			$\delta\sigma/\sigma$ = 0.25%/0.4% (wi/wo qqH)
H→bb, gg [2]	vvH + qqH	Higgs	bb: 0.14% -> 0.13%
			gg: 0.81% -> 0.65%
			(wi/wo JoI)
H→di muon [2]	qqH	Higgs	6.4%
H→di photon [2]	qqH	Higgs	3%
W mass & Width [6]	W threshold scan @160 GeV	EW	0.7 MeV & 2.4 MeV @ 6 iab
Top mass & Width [7]	Top threshold scan @360 GeV	EW	9 MeV & 26 MeV @ 100 ifb
Bs→ <i>υυ</i> φ [8]	91.2 GeV	Flavor	0.9% (1.8%@Tera-Z)
Bc→ τυ [9]	91.2 GeV	Flavor	0.35% (0.7%@Tera-Z)
$B0 \rightarrow 2\pi^0 \ [10]$	91.2 GeV	Flavor	NAN

- 1. H. Liang, et al, PHYSICAL REVIEW LETTERS 132, 221802 (2024)
- 2. CEPC Phy-Det Snowmass White Paper, arXiv:2205.08553v1
- 3. H. Liang, Ph.D thesis
- Z. Zhao, et al., Chinese Physics C
 Vol. 47, No. 12 (2023) 123002
- 5. Z. Yang, et al., Chinese Physics C Vol. 41, No. 2 (2017) 023003
- 6. P. Shen, et al., Eur. Phys. J. C (2020) 80:66
- 7. Z. Li, et al., arXiv:2207.12177
- 8. Y. Wang, et al., PHYSICAL REVIEW D 105, 114036 (2022)
- 9. T. Zheng, et al., Chinese Physics C Vol. 45, No. 2 (2021) 023001
- 10. Y. Wang, et al., JHEP12(2022)135

Detector Concepts: CDR to refTDR

	CDR	Ref-TDR		
	Inner radius of 16 mm	Inner radius of 11 mm		
VTX	Material Budget: 0.15%*6+0.14%(beampipe)= 1.05% X0	Material Budget: 0.06%*4(inner)+0.25%*2(outer)+0.16%(beampipe)= 0.9% X0		
Gaseous Tracker	TPC with 1 mm* 6 mm readout	TPC with 0.5 mm* 0.5 mm readout To have dE/dx or dN/dx resolution 3% (Drift Chamber with the capability of dN/dx as alternative)		
ToF	-	AC-LGAD, with 50 ps per MIP		
ECAL	Si-W-ECAL: 17% /√E ⊕ 1%	Crystal Bar-ECAL: 3%/√E ⊕ 1%		
HCAL	RPC-Iron: <mark>60%</mark> /√E ⊕ 2%	Glass-Iron: 40%/√E ⊕ 2%		

Tracking @ full simulation

- To be updated with full tracking system Vertex + ITK + TPC + OTK, and also versus costheta
- ~0.1% for bulk of tracking resolution reachable

VTX and Jet Flavor/Charge measurement

Eur. Phys. J. C (2024) 84:152 https://doi.org/10.1140/epjc/s10052-024-12475-5 Regular Article - Experimental Physics THE EUROPEAN
PHYSICAL JOURNAL C

Eur.Phys.J.C 84 (2024) 2, 152

ParticleNet and its application on CEPC jet flavor tagging

Yongfeng Zhu^{1,a}, Hao Liang^{2,3}, Yuexin Wang^{2,3}, Huilin Qu⁴, Chen Zhou^{1,b}, Manqi Ruan^{2,3,c}

- ¹ State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
- ² Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- ³ University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- ⁴ EP Department, CERN, 1211 Geneva 23, Switzerland

- Compared to CDR, VTX at TDR:
 - ◆ Inner radius reduced by 40% (16 mm -> 11 mm)
 - ◆ Material reduced by 10% (1.05 -> 0.9 X0)
- Trace(Migration Matrix): 2.64 -> 2.68
 - ♦ H->cc accuracy improved by ~5%
 - ♦ Vcb accuracy improved by ~10%

PID: dE/dx or dN/dx + TOF

Nucl.Instrum.Meth.A 1047 (2023) 167835

Table 3 The K^{\pm} identification performance with different factors, $\sigma_{actual} = factor \cdot \sigma_{intrinsic}$, with/without combination of TOF information at the Z-pole.

	Factor	1.	1.2	1.5	2.
Jr./J.,	ε_K (%)	95.97	94.09	91.19	87.09
dE/dx	$purity_K$ (%)	81.56	78.17	71.85	61.28
JE /J- 0 TOE	ε_K (%)	98.43	97.41	95.52	92.3
dE/dx & TOF	$purity_K$ (%)	97.89	96.31	93.25	87.33

dE/dx or dN/dx with relevant uncertainty of 3% + TOF of 50 ps: eff & purity of Kaon ID > 95%

dE/dx or dN/dx @ ref-TDR goal

Performance from simulation

- Full simulation framework of pixelated TPC developed using Garfied++ and Geant4 at IHEP
- Investigating the π/κ separation power using reconstructed clusters, a 3σ separation at 20GeV with 50cm drift length can be achieved
- dN/dx has significant potential for improving PID resolution

Detailed design of DC for Tera-Z

- A major goal for the Ref-TDR Gaseous Tracker is the PID: to achieve 3% dE/dx or dN/dx performance
- Promising results, to be validated with further studies, especially test beam.
- Gaseous Tracker inner radius: to be optimized for endcap performance

PFA Goal: BMR < 4% & pursue 3%

- BMR used to quantify jet reconstruction: 4% will well separate W/Z and Higgs, and separate ZH from the ZZ
 - Accuracies of different physics benchmarks as a function of the BMR show a turning point at roughly BMR of 4%
- H->inv as an example:
 - BMR from **4% to 8%** (typical LHC experiment performance), one need to **double the luminosity** to reach same accuracy
 - BMR from **4% to 3%**, **save roughly one year** of operation

BMR Decomposition

(for BMR of 3.7% at CDR)

- ~50% from confusion
- ~25% from detector resolution
- ~25% from acceptance

- HCAL resolution dominates among the uncertainties from detector resolutions:
 - Using Glass Scintillator (TDR HCAL) Iron with thickness of 6 lambda (compared to GRPC - Iron of 5 lambda) → BMR of 3.4%

BMR of ~ 4% at refTDR

Physics performance in simulation: Higgs boson

- Higgs benchmark studies at CEPC 240 GeV
 - Higgs decays to 2 photons (EM performance) and 2 gluon jets (PFA performance)

Double-side Crystal Ball fit

Long tail from lossy processes of crystal calorimeter and imperfect correction in crack region -> can be improved

Reconstruction of two gluon jets in the full CEPC detector (Vertex, Silicon + TPC tracker, crystal ECAL, ScintGlass HCAL) 34

- Preliminary BMR at ref-TDR: 4.1%, not far from CDR (BMR of 3.7%).
- To control the confusion (fake particles, etc) is critical: need optimization + reconstruction development

Physics Benchmarks at CDR & refTDR

	Processes @ c.m.s.	Domain	Anticipated relative accuracies/up	@Ref TDR
			limit with CDR baseline detector +	
			TDR Luminosity, with Jol	
H→cc			1.7%	1.6%
H→ss [1]	vvH @ 240 GeV	Higgs	95% up limit of 0.75E-3	95% up limit of 0.70E-3
H→sb [1]			95% up limit of 0.22E-3	95% up limit of 0.20E-3
H→inv [2]	qqH	Higgs/NP	95% up limit of 0.13%	Same
Vcb [3]	WW→lvqq @ 240/160 GeV	Flavor	0.4%	0.36%
W fusion Xsec [2]	vvH @ 360 GeV	Higgs	1.1%	Same
$lpha_{\scriptscriptstyle S}$	Z→tautau @ 91.2 GeV	QCD	NAN	Theoretical Uncertainty Dominant
CKM angle $\gamma - 2\beta$	Z→bb, B→DK @ 91.2 GeV	Flavor	NAN	~o(0.1 - 1) degree
Weak mixing angle [4]	Z@ 91.2 GeV	EW	2.4E-6 using 1 month data (~ 2E11 Z)	~ tiny improvement due to VTX
Higgs recoil [5]	IIH	Higgs	δm = 2.5 MeV	Same
			$\delta\sigma/\sigma$ = 0.25%/0.4% (wi/wo qqH)	
H→bb, gg [2]	vvH + qqH	Higgs	bb: 0.14% -> 0.13%	bb: 0.12%
			gg: 0.81% -> 0.65%	gg: 0.62%
			(wi/wo Jol)	
H→di muon [2]	qqH	Higgs	6.4%	Same
H→di photon [2]	qqH	Higgs	3%	1.8%
W mass & Width [6]	W threshold scan @160 GeV	EW	0.7 MeV & 2.4 MeV @ 6 iab	Same
Top mass & Width [7]	Top threshold scan @360 GeV	EW	9 MeV & 26 MeV @ 100 ifb	Same
Bs→ <i>νν</i> φ [8]	91.2 GeV	Flavor	0.9% (1.8%@Tera-Z)	Same, if object recon. ~ CDR
Bc→ τυ [9]	91.2 GeV	Flavor	0.35% (0.7%@Tera-Z)	Same, if object recon. ~ CDR
$B0 \rightarrow 2\pi^{0}$ [10]	91.2 GeV	Flavor	NAN	0.3%, need to validate photons finding

- H->γγ precisions improves
 significantly, if low mass tail tamed.
- Physics measurements using Jol, etc, benefit from better VTX and have 5-10% improvements, and assuming that the TDR BMR could eventually reach 3.7%
 - ◆ If BMR of 3% achieved, precisions of most benchmarks could be further improved by 5-10%
 - Need further development on pattern recognition capability of Crystal Bar ECAL

Challenges & Team

Challenges:

- ◆ Impact of beam induced background (~ Nov. 2024)
- ◆ High data rate @ Z pole: need to reconstruct in Space time (PFA in space time)
- New CyberPFA development: rely on full simulation, as it significantly impacts the final resolution on hadronic objects
 - To further validate & verify the pattern recognition performance (~ Dec. 2024)
- Physics Performance Team: ~ 10 staffs + 4 Postdocs + ~10 Students
 - Synergies with sub-detector team
 - ◆ Also collaboration with PKU, LLR & CERN on ML algorithms
- Physics white paper efforts: IHEP team $+ \sim > 20$ staffs from ~ 10 Universities
 - ◆ Flavor Physics: Tao Liu (HKUST), Lorenzo (NKU), Shanzhen Chen(IHEP) etc
 - ♦ New Physics: Xuai Zhuang (IHEP), Mengchao Zhang (JNU)
 - ◆ EW: Zhijun Liang (IHEP), Jiayin Gu (FuDan U), Siqi Yang (USTC)
 - ◆ QCD: Zhao Li (IHEP), Meng Xiao (ZJU), Huaxing Zhu (PKU)
- Physics studies in pace with ECFA physics focus studies

Summary

- Intensive CEPC Physics studies
 - Well quantified Physics Merits
 - Iterates with Detector R&D
- CEPC Ref-TDR detector provides
 - ◆ PID: critical for Higgs/Flavor physics
 - ◆ Better VTX: improves precisions on benchmark analysis by 10-20%
 - ◆ PFA Compatible Calorimeter with larger sampling:
 - HCAL improves the BMR by ~10%,
 - Crystal Bar ECAL: pattern recognition is challenging.
- To do:
 - ◆ Quantify the impact of beam induced background, the readout, especially at Z pole
 - Further develop reconstruction algorithms, and validate with full simulation
 - PFA, smarter algorithm with AI tools
 - Physics benchmarks analyses with full simulation (H measurements) + fast simulation
 - Involve more efforts from theory community to ensure that theoretical uncertainties will be under control

Thank you for your attention!

