

CEPC Gaseous Track Detector

Huirong Qi and Linghui Wu

On behalf the gaseous track detector group

中國科學院為能物品加完施 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 8th, 2024, CEPC Detector Ref-TDR Review

- Motivation and physics requirements
- Technology survey and our choices
- Technical challenges and R&D efforts
- Detailed design including electronics, cooling and mechanics
- Performance from simulation
- Research team and working plan
- Summary

Motivation

This talk relates to the CEPC Physics and Detector Ref-TDR.

- Chapter 5: Gaseous tracker
- Draft of content listed \rightarrow

Chapter	5 Gas	seous trackers
5.1	Physics	s requirements and detection technology
	5.1.1	Physics requirements of Higgs and Tera-Z
	5.1.2	Technology choice and the baseline track detector
5.2	Pixelat	ed readout TPC detection
	5.2.1	TPC detector and readout electronics
	5.2.2	Mechanical and cooling design
	5.2.3	Challenges and critical R&D
	5.2.4	Detector modules toward the validation prototype
5.3	Perform	nance of TPC tracker
	5.3.1	Overall of the simulation framework
	5.3.2	Spatial resolution and PID performance
	5.3.3	Improvement using the machine learning algorithm
5.4	Alterna	tive track detector of Drift Chamber in Tera-Z
	5.4.1	PID for high luminosity Z pole at 2T
	5.4.2	Performance and critical R&D
5.5	Cost es	timation

Physics requirement

- CEPC operation stages in TDR: 10-years Higgs \rightarrow 2-years Z pole \rightarrow 1-year W
- Phys. Requirements of the track detector
 - Thousands of hits with high spatial resolution compatible with PFA algorithm (low X_0)
- Beneficial for jet & differential at higher energy
 - Highly requirements for excellent JOI & PID resolution (in Jets) : Provide dE/dx + dN/dx ~ 2-3%
 - BMR < 4% & pursue 3%</p>

Technology survey and our choices

3D high precision resolution track reconstruction with the Ultra light material budget

- High precision resolution ($\sim 100 \ \mu m$) with thousands hits per track
- High momentum resolution (~10⁻⁴ GeV/c) and High capabilities for Particle Identification (~3%)
- Utilize the timing of drift in the z-direction (nano-second)
- A magnetic field parallel to the electric field direction (Higgs: 3T, Tera-Z: 2T)
- Easily installation and replacement modular design
- Considering the technical challenges, performance, risk of detector construction

Baseline track detector: Pixelated TPC

- The track detector system: Silicon combined with gaseous chamber as the tracker and PID
 - Pixelated readout TPC is as the **baseline track detector** in CEPC ref-TDR.
 - Pixelated readout TPC as the main track (MTK) from radius of 0.6m to 1.8m
 - DC is as the **alternative** track detector at Tera-Z.

Geometry of the track detector system in CEPC TDR

Technical challenges and R&D efforts

Main Technical Challenges

• Pixelated readout TPC (Baseline)

- Material budget at endcape/barrel $\sqrt{}$
- Occupancy and hit density at Tera-Z $\sqrt{}$
- Ion backflow suppression $~\sqrt{}~$
- Running at 2 Tesla √
 Improved PID √
- **Reasonable channels(ongoing)**
- **Reasonable power consumption (ongoing)**
- DC (Alternative at Tera-Z)
 - dN/dx for PID $\sqrt{}$
 - **Risk the 5.8m wires and tension (ongoing)**

Critical key issues

TPC prototype R&D efforts and results

- **CEPC TPC detector prototyping roadmap:**
 - From TPC module to TPC prototype R&D for Higgs and Tera-Z ullet
- Achievement by far: •
 - **IBF × Gain ~1** @ **G=2000** validation with hybrid TPC module
 - Spatial resolution of $\sigma_{r_0} \leq 100 \ \mu m$ and dE/dx resolution of 3.6% ٠
 - FEE chip: reach ~3.0mW/ch with ADC and the pixelated readout R&D •

Ion suppression TPC module R&D

Tracks reconstruction

Highlights of TPC prototype R&D

- Highlights of CEPC pad readout TPC R&D and toward the pixelated readout TPC
 - Massive production and assemble MPGD lab has been setup at IHEP ٠
 - TPC prototype integrated 266nm UV laser tracks has been studied and analyzed the UV laser • signal, all are pretty good to Higgs run.
 - **Easy-to-install modular design** of Pixelated readout TPC for CEPC TDR ۲

Activity international collaboration

- Activity collaboration: Pixelated readout and Pad readout from IHEP and LCTPC collaboration
 - Large Prototype setup have been built to compare different detector readouts for Tera-Z
 - PCMAG: B < 1.0T, bore Ø: 85cm, Spatial resolution of $\sigma_{r\phi} \le 100 \ \mu m$
 - Collaboration implement improvements in **a pixelated readout TPC for CEPC TDR**

ArXiv. (2023)2006.08562 NIM A (2022) 167241 ArXiv (2022)2006.085 JINST 16 (2021) P10023 JINST 5 (2010) P10011 NIM A608 (2009) 390-396

Detailed design and performance of Baseline: TPC

Detailed design of mechanics

TPC detector	Key Parameters		
Modules per endcap	248 modules /endcap		
Module size	206mm×224mm×161mm		
Geometry of layout	Inner: 1.2m Outer: 3.6m Length: 5.9m		
Voltage of Cathode	- 62,000 V		
Operation gases	T2K: Ar/CF4/iC4H10=95/3/2		
Total drift time	34μs @ 2.75m		
Detector modules	Pixelated Micromegas		
3.6m	S.8m		

Ultra-light barrel and FEA analysis

- Consideration of new Carbon Fiber barrel instead of the honeycomb barrel (~2% X₀)
- Ultra-light material of the TPC barrel (QM55 CF) : 0.59% X₀ in total, including
 - FEA preliminary calculation: 0.2mm carbon fibber barrel can tolerant of OTK (~200Kg)
- Optimization of the connection back frame of the endcap (on going)

Material	budget	of TPC	barrel	
·iacei iai	Dudget		builter	•

Layer of the barrels	D[cm]	X ₀ [cm]	d/X ₀ [%]
Copper shielding	0.001	1.45	0.07
CF outer barrel	0.020	25.28	0.08
Mirror strips	0.003	1.35	0.19
Polyimide substrate	0.005	32.65	0.02
Field strips	0.003	1.35	0.19
CF inner barrel	0.010	25.28	0.04
Sum of the r	0.59		

• Low material of the TPC endcap

15%X ₀	in total, including
Readout plane, front-end-electronics	s 4%
Cooling	2%
Power cables	9%

Optimization of Gas flow in Chamber

- Optimized design gas uniformity of **99% or more** in large TPC chamber
 - 8 Ø10mm gas inlets + 8 Ø10mm gas outlets (opposite, 90°/endcap)
 - Working gas flow: 0.3 0.5 L/min
 - **Online monitoring system**: O_2 (ppm) and water H_2O (ppm)
 - Friendly the gases recycle system also considered

Optimized inlet and outlet in Chamber

Simulation of gas flow and uniformity distribution in TPC Chamber

Full Simulation of Pixelated readout TPC

Simulation:

- Full geometry TPC
- Ionization generation by Garfield++
- Drift and diffusion from parameterized model based on Garfield++ simulation

<u>Digitization</u> (Refer to the TPC module and prototype):

- Electronic noise: 100 e-
- Amplification:
 - Number of electrons: 2000
 - Signal size in space: 100 um

readout pads

DOI: 10.22323/1.449.0553 EPS-HEP 2023 talk by Yue Chang

Simulation of TPC detector under 3T/2T and T2K mixture gas

Performance of Pixelated readout TPC

Reconstruction:

- Reconstruction by counting the number of fired pixels that pass a threshold
- Reconstruction with good linearity and reliability

Reconstructed dN/dx 40 38 36 34 32 30 32 28 30 34 36 26 Truth dN/dx

Preliminary PID performance:

• $3\sigma \pi/k$ separation at 20 GeV with a 50

cm drift distance can be achieved

Optimization of the readout size

Timepix (55µm×55µm) readout TPC prototype has been validation four times on DESY beams.

- Power consumption: 2W/cm²; Low power mode: 1W/cm² (Too high power for pixelated readout)
- Simulation results showed that readout size can be optimized at 500µm×500µm.
 - Reasonable readout channels and power consumption need to be studied
 - Focused on 100mW/cm² and 500µm readout for CEPC refTDR (2-phase CO₂ cooling OK!)

Detailed design of electronics and BEC

Pixel Readout Electronics: TEPix development

- Multi-ROIC chips + Interposer PCB as RDL
- Four-side bootable

TEPix: Low power Energy/Timing measurement

- LPower Consumption ~ 0.5mW/ch
- Timing ~ <1LSB(10ns)
- Noise ~ < 300e (even high gain)

FEE ASIC: TEPIX—Test Results in May ¹⁹

Validation and commission of TPC prototype

- R&D on Pixelated TPC readout for CEPC TDR
 - Pixelated readout TPC ASIC chip developed and 2nd prototype wafer has done and tested.
 - The TOA and TOT can be selected as the initiation function in the ASIC chip
- Prototyping pixelated readout TPC detector
 - The validation of prototype assembled for beam test.

Photos TPC modules assembled for the beam test

Cnts

Amplitude (left) and Uniformity/ch (right)²⁰

Performance of pixelated readout TPC

Parameters	Higgs run	Z pole run
B-field	3.0 T	2.0 T
Readout size (mm)/All channels	0.5mm×0.5mm/2×3×10 ⁷	0.5mm×0.5mm/2×3×10 ⁷
Layers per track in rφ	2300	2300
Material budget barrel (X ₀)	0.59 %	0.59 %
Material budget endcap (X ₀)	15 %	15 %
σ in rφ	120μm (full drift)	400µm (full drift) w. distortion
σ in z	\simeq 0.6 - 1.0 mm (for zero – full drift)	\simeq 0.6 - 1.0 mm (for zero – full drift)
2-hit separation in rφ	0.5 mm	0.5 mm
K/ π separation power @20GeV	3 σ	3 σ
dE/dx	< 3.0 %	< 3.0 %
Momentum resolution normalized:	a = 1.9 e -5	a = 3.3 e -5
$\sigma_{1/pT} = \sqrt{a^2 + (b/pT)^2}$	b = 0.8 e -3	b = 1.5 e -3

Detailed design of DC for Tera-Z

- CF frame structure
- Length: 5800 mm; Outer diameter: 3600 mm; Inner diameter: 1200 mm
- Thickness of each end plate: 20 mm, weight: 880 kg
- **Gas mixture:** He + iC_4H_{10} (90/10)
- Cell size: 18mm x 18mm, number of cells: 26483
- Material: 0.16% X₀ for Gas+Wires, 0.21%X₀ for inner and outer cylinders
- Finite element analysis: Endplate deformation 2.7mm, CF frame deformation 1.1mm

International collaboration of DC

- Beam tests at CERN organized by INFN group (leaded by Franco Grancagnolo and Nicola De Filippis) :
- Cooperation on
 - Data taking
 - Data analysis
 - Reconstruction algorithm study

Research Team

- Core of the research team (10 staffs + TPC group)
 - IHEP: Huirong Qi, Linghui Wu, Guang Zhao, Mingyi Dong, Yue Chang, Xin She, Jinxian Zhang, Junsong Zhang
 - Tsinghua: Zhi Deng, Canwen Liu, Guanghua Gong, Feng He, Jianmeng Dong, Yanxiao Yang
- Collaboration of the research team (6 staffs +10 students + 5 LCTPC members)
 - **TPC:** CIAE, Shandong University, Nankai University, Zhengzhou University and Liaoning University
 - **DC:** Wuhan University, Jilin University
 - **TPC and DC**: DRD1 collaboration and LCTPC collaboration
- Organization of team
 - Regular weekly meeting from April 2024
 - Collaboration regular meeting with some international groups

Working plan

- Short term working plan (before June 2025)
 - Optimization of TPC detector for CEPC ref-TDR
 - Prototyping R&D and validation with the test beam
 - mechanics, manufacturing, beam testing, full drift length prototype
 - Performance of the simulation and Machine Learning algorithm
- Long term working plan (next 3-5 years)
 - Development of the pixelated TPC prototype with low power consumption FEE ASIC
 - Beam test collaborated with LCTPC collaboration
 - Development of the full drift length prototype
 - Drift velocity. Attachment coefficient, T/L Diffusion along the drift length

Summary

- TPC detector prototype R&D using the pad readout towards the pixelated readout for the future e⁺e⁻ colliders, espial to the high luminosity Z pole run at future e⁺e⁻ collider. DC will be as the alternative detector at Tera-Z.
- Pixelated TPC is choose as the baseline detector as main track in CEPC ref-TDR. The simulation framework has been developed using Garfied++ and Geant4 at IHEP. Some validation of TPC prototype have been studies.
- Synergies with CEPC/FCCee/EIC/LCTPC allow us to continue R&D and ongoing, we learn from all of their experiences. All will input to CEPC ref-TDR in next some months.

Thank you for your attention!

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 8th, 2024, CEPC Detector Ref-TDR Review