

CEPC Electromagnetic Calorimeter

Yong Liu (IHEP), for the CEPC Ref-TDR ECAL team

中國科學院為能物招研究所 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 8, 2024, CEPC Detector Ref-TDR Review Rehearsal

- Introduction
- Requirements
- Technology survey and option selection
- Technical challenges
- R&D efforts and results
- Detailed design including electronics, cooling and mechanics
- Readout electronics
- Performance from simulation
- Research team and working plan
- Summary

Introduction

RefDet TDR Outline

Chapter	6 Electromagnetic calorimeter
6.1	Introduction
6.2	Requirements
6.3	Survey of ECAL technical options
	6.3.1 Silicon-tungsten ECAL
	6.3.2 Scintillator-tungsten ECAL
	6.3.3 Crystal ECAL
	6.3.4 ECAL option selection for the reference detector
6.4	Critical issues and technical challenges
6.5	R&D efforts and results
6.6	Designs including electronics, mechanics and cooling
6.7	Performance from simulation and beamtests
6.8	Summary

Separation of Higgs hadronic decays in jets

This talk is about the design and developments of the electromagnetic calorimetry system (related to the RefDet TDR Chapter 06)

General remarks: the CEPC calorimetry system (in the reference detector) will based on the particle-flow paradigm → high granularity in 3D

- Aim to achieve an unprecedented Boson Mass Resolution (BMR) of 3 – 4%

ECAL requirements

Parameter	Conservative	Remarks
EM energy resolution	$\frac{\sigma_E}{E} = 15\% / \sqrt{E(GeV)} \oplus 1\%$	Jet performance; flavor physics
Longitudinal Depth	242 (with longitudinal)	Full containment of EM showers
Transverse Granularity	10×10	$H \rightarrow gg$ (gluon jets); $Z \rightarrow \tau \tau$
Signal Dynamic Range	0.1 MIP - 3	0.1 MIP as trigger threshold; Bhabha electrons at 360 GeV
Time Resolution (1-MIP signal)	1 ns	Bunch crossing ID; timing to improve clustering and hadron performance
Power Consumption (per channel)	15 mV	o(1M) channels in final detector

Technical option survey

Three major options for CEPC electromagnetic calorimeter

- Silicon-tungsten (SiW): sampling calorimeter
- Scintillator-tungsten (ScW): sampling calorimeter
- Crystal: homogeneous calorimeter (New!)

Highly granular (imaging) calorimetry+ particle flow algorithm (PFA)

PFA calorimetry: various tech. options explored in the CALICE collaboration in past 20 years

SiW-ECAL option

Large area silicon sensors (pixelated) interleaved with CuW plate (compact showers)

- Baseline ECAL option in CEPC CDR: extensive Higgs physics studies
- Hardware activities in CALICE collaboration, no involvements of CEPC-calo groups
 - Application in CMS-HGCAL project (silicon sector): many synergies

SiW-ECAL option: synergies with CMS-HGCAL

CMS-HGCAL taskforce successfully established two centers at IHEP

- MAC (Module Assembly Center) Beijing Site, with 6 MACs around the world
- SQC (Sensor Quality Control) Beijing Site, with 5 SQCs around the world

ScW-ECAL option

- Scintillator strips + SiPMs, interleaved with CuW plate (compact showers)
- An alternative ECAL option in CEPC CDR

Strong involvements of Chinese and Japanese groups in the CALICE collaboration

Developed a technological prototype, followed by successful beamtests at CERN PS/SPS

ScW-ECAL option

ScW-ECAL tech. prototype

ScW-ECAL tech. prototype developed in 2016-2020

- (Effective) Transverse granularity of $5{\times}5~mm^2$
- 6,720 channels, 32 longitudinal sampling layers (22X0)
- Successful beamtest campaigns at CERN in 2022-2023
 - Collected data sets with various beam particles

4D Crystal ECAL option

- A new option: development started since ~2020
- Compatible for PFA: Boson mass resolution (BMR) < 4%</p>
- Optimal EM performance: $\sigma_E/E = 3\%/\sqrt{E}$
- Minimal longitudinal dead material: orthogonal arranged bars
 - 3D positioning with two-sided readout for timing

- BGO bars in $1 \times 1 \times \sim 40 \ cm^3$
- Effective granularity $1 \times 1 \times 2 \ cm^3$
- Modules with cracks not pointing to IP (with an inclined angle of 12 degrees)

Crystal ECAL: physics motivations

- Crystal provides an energy resolution to photons and electrons at the level of $\frac{3\%}{\sqrt{E}}$
 - Significantly enhance EM performance with similar budget of SiW-ECAL
- Higgs and EW physics programs
 - Precision measurements of Higgs recoil mass: e.g. Bremsstrahlung energy corrections of electrons in $ZH \rightarrow eeX$
 - To further enhance jet performance by fine reconstruction of neutral pions ($\pi^0 \rightarrow \gamma \gamma$), esp. in 4-/6-jet scenarios
- Flavour physics programs: benefit from excellent performance for photons and neutral pions
- Searches for new physics beyond Standard Model
 - Using photons as a portal to search for new particles (e.g. Axion-Like Particles)

Technical options: comparison and option selection

Technical Option	Silicon-Tungsten ECAL	Scintillator-Tungsten ECAL	Crystal ECAL
EM energy resolution	$\sigma_E/E = 17\%/\sqrt{E(GeV)}$	$\sigma_E/E = 13\%/\sqrt{E(GeV)}$	$\sigma_E/E = 3\%/\sqrt{E(GeV)}$
Particle-Flow Algorithm(s)	Arbor; Pandora	Arbor; Pandora	New dedicated PFA (ongoing developments)
Jet Performance (with a full detector)	Bos		
Technical Readiness Level (prototypes, beamtests)	Physics Prototype (2006-2010) Technological Prototype (2011- now)	Physics Prototype (2007) Technological Prototype (2016 - 2021)	First Physics Prototype (2022- 2024)
Novelty Level	ILD (proposed in <u>ILC TDR, 2013</u>), concepts: <u>CLICdp CDR (2012</u>), <u>CEP</u>	A completely new concept proposed by the CEPC team	

Option selection

Selected as a baseline option for the CEPC reference detector

Crystal ECAL, as a novel option of PFA calorimetry, provides optimal EM resolution

Main Technical Challenges

High granularity: at the level of 1 million channels

- Multi-channel ASIC embedded in readout boards
- Hermetic design: minimum space for mechanics and services (cooling, cabling)
- Low power consumption, given material budget and hermicity
- Mass production capability and scalability to a final detector
- Beam-induced backgrounds
 - Data throughput, pile-ups (events + backgrounds)
- Irradiation damages
 - SiPM, crystal: monitoring, calibration, annealing
 - ASIC, FPGA: radiation tolerant
- In-situ calibration system (on-detector)
 - SiPMs, crystals due to irradiation (instantaneous, long-term) and temperature

Crystal ECAL: specifications

Key Parameters	Value	Remarks
MIP light yield	~200 p.e./MIP	Ensure EM resolution $\sim 3\%/\sqrt{E}$
Energy threshold	0.1 MIP	Balance between S/N and dynamic range
Crystal non-uniformity	< 1%	Along the crystal length and between crystals
Dynamic range	0.1~3000 MIPs / channel	Maximum energy deposition with 360 GeV Bhabha
Timing resolution	~500 ps @ 1 MIP	Bunch Crossing ID; clustering and hadron performance

Detector requirements

- Moderate MIP light yield
- Good uniformity
- Optimal time resolution
- Large dynamic range
- Moderate S/N ratio

Hardware activities: addressing crucial issues

- SiPM response linearity
- Uniformity of long crystal bar
- Time resolution: different crystal dimensions
- Dynamic range of electronics
- Energy response of crystal module

R&D efforts and results: MIP response, uniformity

- Geant4 full simulation with digitization: shower studies, requirements
- Dedicated setup with radioactive sources for energy resolution, response uniformity
- MIP response: >200 p.e./MIP $\rightarrow \sigma_E / E = 3\% / \sqrt{E}$
- Energy threshold: 0.1 MIP

Uniformity along one 40 cm crystal bar: ~2.5%

Can be further improved after calibration

R&D efforts and results: dynamic range

- Simulation of high energy electrons: maximum energy per crystal
- Test-stand with pico-second laser: SiPM non-linearity effects (target for 6μm pixel pitch)
- Beamtest of crystal-SiPM units with a state-of-art chip: dynamic range of SiPM and ASIC

~30 GeV as max. energy deposition per crystal bar

2023 DESY beamtest: crystal-SiPM units and a state-of-art front-end chip with EM showers induced by 5 GeV electrons

R&D efforts and results: timing studies

Dedicated beamtests for timing studies with MIP and EM showers

Timing performance within EM showers

- Tested 40cm/60cm BGO bars with 5GeV electron beam
- ~200 ps within EM showers (>12 MIPs)

4D Crystal Calorimeter: First Physics Prototype

Custom-made readout boards (144-ch), equipped with 6 ASICs (CITIROC-1A) \rightarrow Custom-made ASIC in planning 18

Beam tests: 4D Crystal Calorimeter Prototype

Crystal Calorimeter Prototype: 2024 CERN beamtest

Studies based on electron beam data in 1 – 10 GeV

Data taken with ALL beam instrumentation in upstream: Cherenkov detectors (XCET), SciFi trackers for beam profiles

EM response linearity within $\pm 1\%$

 Better understanding of calibration precision (~0.5%) and corrections of crosstalk in ASIC neighbouring channels

EM energy resolution

- MC/data generally good consistency in higher energy region
- In lower energy region (< 4GeV), noticeable discrepancy
- CERN expert confirmed our observation: larger beam momentum spread in data than expected from beamline lattice (~1%)

Extensive studies on PS-T9 beamline

 Kind help of CERN beamline physicist: beamline simulation to quantify impacts to momentum due to beam instrumentation

Crystal Calorimeter Prototype: 2024 CERN beamtest

MC + digitisation can be generally consistent with data by including beam properties

- Implementing momentum spread from PS-T9 beamline simulation (1, 2 and 5 GeV electrons), kindly shared by CERN beamline expert → ongoing crosschecks
- EM performance majorly dominated by beam spread in lower energy (e.g. ~3% at 1GeV)
- Crystal prototype expected EM performance (preliminary): $1.7\%/\sqrt{E} \oplus 1.2\%$

ECAL mechanics design

Crystal ECAL mechanics integrated with active cooling

Flanges to fix ECAL to HCAL

Barrel ECAL design

Endcap ECAL design

• Support structure is based on Carbon-Fibers for BGO modules (in cyan)

ECAL mechanics: main structure for barrel modules

Barrel ECAL parameters

Parameters	Value
Inner Radius	1830 mm
Outer Radius	2130 mm
Length in Z	5800 mm
(Typical) Crystal Length	400 mm
#Modules in R-Phi	32
#Modules in Z	15
Tilted Angle in Phi	12 degrees
Longitudinal Layers	28

Main structure of ECAL is based on carbon fibers

Barrel ECAL modularity

- 16 segments in phi, 15 segments along Z-axis
- In each segment: two crystal modules in trapezoidshape, one in upwards and the other in downwards

Endcap crystal ECAL: first designs

- Endcap crystal modules: 6 different types
 - Trapezoid modules (in blue and yellow) to avoid projectile cracks
- Supporting frame to hold both endcap ECAL and OTK
- Planning: FEA simulation for stability, deformation and cooling

Front-end PCBs (SiPMs, ASICs)

Carbon-fibre

(SiPMs, ASICs)

Power/back-end board: data concentrator, DC-DC

Front-end PCBs

Barrel ECAL: module integration

Barrel ECAL: module integration

CF structure to protect BGO bars

Install front-end readout PCBs

Install BGO crystal bars (grouping 5 BGO bars per casing)

5

Install plates to "seal" and fix BGO bars, with holes for couplings with SiPM

Assemble the module into the main support structure

Barrel ECAL mechanics: FEA simulation

FEA simulation studies on ECAL mechanics (ongoing): optimization + validation

Barrel ECAL cooling system

FEA simulation studies on ECAL cooling

- Preliminary result: temperature gradient of ~8 degrees
- Ongoing studies in calorimeter simulation to quantify its possible impacts to EM performance

Plan to investigate cooling with future low-power ASIC (expected < 10mW/ch)

Readout electronics for ECAL

Beam-induced backgrounds: simulation studies

50MW Higgs runs (355ns bunch spacing): updates from 30MW

- Count rate: 650kHz 1MHz in all energy hits
- Rate reduced to 200-300 kHz with 0.1 MIP threshold

Bean	n Backgrounds	50MW Higgs (355 ns)	50MW Z-pole (23 ns)
Luminosity dependent	Pair Production	1300/BX	TBD
	Beam-Thermal Photon	359kHz *2	265MHz *2
Single Beam	Beam-Gas Bremsstrahlung	41kHz *2	19MHz *2
	Beam-Gas Coulomb	238kHz *2	2.4GHz *2
	Touschek Scattering	/	6.2GHz *2

Table remade from the <u>talk of Weizheng</u>

Beam-induced backgrounds: simulation studies

- **50MW** Higgs runs (355ns bunch spacing): updates from 30MW
 - Barrel module: maximum rate¹ (~100 kHz) vs. mean rate² (a few kHz)
 - Patterns in even/odd staves: different crystal lengths in the first layer (300mm/400mm)

Bean	n Backgrounds	50MW Higgs (355 ns)	50MW Z-pole (23 ns)
Luminosity dependent	Pair Production	1300/BX	TBD
Single Beam	Beam-Thermal Photon	359kHz *2	265MHz *2
	Beam-Gas Bremsstrahlung	41kHz *2	19MHz *2
	Beam-Gas Coulomb	238kHz *2	2.4GHz *2
	Touschek Scattering	/	6.2GHz *2

Maximum rate¹ : max. rate in a crystal bar per module Mean rate² : average over all crystal bars over threshold per module

Performance in simulation: separation power

- New PFA reconstruction software developed for the design of long crystal bars
- Separation power of close-by particles: key performance in particle flow
 - $\gamma \gamma$ separation: 100% efficiency for distance > 20mm
 - $-\gamma \pi$ separation : 100% efficiency for distance > 50~100mm

Performance in simulation: neutral pions

Using CyberPFA for long crystal bars

- Crystal ECAL shows excellent performance for single π^0 in 1-10 GeV
 - More than 95% of π^0 with energy <15 GeV in jets from Higgs and Z
 - Ongoing crosschecks to further improve π^0 performance in higher energy

Physics performance in simulation: Higgs boson

Higgs benchmark studies at CEPC 240 GeV

- Higgs decays to 2 photons (EM performance) and 2 gluon jets (PFA performance)

imperfect correction in crack region -> can be improved

Reconstruction of two gluon jets in the full CEPC detector (Vertex, Silicon + TPC tracker, crystal ECAL, ScintGlass HCAL) 34

Alternative ECAL design: stereo crystals

Stereo design with long crystal bars inclined

- Longitudinal segmentation by tilting crystal bars
- Single-end readout: 50% less readout channels than crossed bars (two-sided readout)

100% eff. After 20 mm distance Di-photon efficiency 100% eff when 2 γ distance >20 mm 2 γ have diff. shower start Longitudinal separation, 1->2, conversion

20

Distance (mm

Separation power of two particles

~100% efficiency when > 100 mm distance

0.0

Prob. of 1 v reco

as 2 ys (1->2)

Simulation studies on reconstruction: promising separation power of two particles

Ongoing designs on mechanics, cooling and integration

Taskforce and collaborations

Taskforce working on CEPC ECAL

- Detector (hardware/software): physicists (9), postdocs (3), students (8)
- Engineers in electronics (3) and mechanics (2)
- Many members deeply involved in large-scale experiments/projects
 - BES-III Experiment: Electromagnetic Calorimeter with 6,240 CsI(Tl) crystals
 - JUNO Experiment: 20,000 ton ultra-pure liquid scintillator
 - CMS HGCAL project for HL-LHC: ~5,000 silicon modules (8-inch) at MAC-Beijing
- Institutions as working groups in CALICE and DRD6 collaborations
 - China: IHEP, SIC-CAS, SJTU/TDLI, USTC, SCNU
 - Japan: Shinshu U. and U. Tokyo (on ScW-ECAL option)

CEPC calorimeter team in beamtests

Working plan

Near future activities (in 2024): towards reference detector TDR

- Beam-induced backgrounds: simulation in barrel and endcap regions, impacts to physics performance, estimate of data throughput
- Mechanics and cooling: refine FEA simulations, validation by dedicated tests
- Detector: fully exploit beamtest data on EM performance and validation studies
- Software: geometry updates (interplay with mechanics/cooling), digitisation (inputs from beamtests and electronics chip design)
- Calibration: sensitive units (SiPM, crystal, ASIC) versus temperature, irradiation
- Particle flow performance: further optimizations

Summary

Overview of CEPC ECAL options and dedicated R&D activities in past 8 years

Crystal selected as a baseline option for the CEPC reference detector

- Extensive studies on simulation performance and specifications
- Steady progress with prototyping/beamtests, and dedicated PFA developments
- First designs of general design, mechanics, cooling and readout electronics
- More efforts in planning to address critical issues for reference detector TDR
 - Beam-induced backgrounds and data throughput
 - System integration issues with mechanics, cooling and readout electronics
 - Calibration schemes for SiPM-crystal units and ASIC

Thank you for your attention!

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

References

- The CALICE Collaboration, Response of the CALICE Si-W electromagnetic calorimeter physics prototype to electrons, <u>Nuclear Instruments and Methods in Physics Research A 608 (2009) 372–383</u>
- The CALICE Collaboration, Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter, <u>Nuclear Instruments and Methods in Physics Research A 763 (2014) 278–289</u>
- CEPC Conceptual Design Report Volume II Physics & Detector, <u>IHEP-CEPC-DR-2018-02</u>
- New perspectives on segmented crystal calorimeters for future colliders: M.T. Lucchini et al 2020 JINST 15 P11005
- Crystal calorimeter R&D: contributions at CALOR 2024
 - <u>Development of high-granularity crystal calorimeter</u>
 - <u>SiPM dynamic range studies</u>
 - Particle-flow software and performance of crystal ECAL
 - <u>Stereo Crystal ECAL</u>
- High-granularity crystal calorimeter talk at ICHEP2024

Summary: crystal ECAL with long bars

Parameter Name	Barrel	Sum	
Inner Radius for ECAL	1900 mm	NA	
Length for barrel; Outer radius for endcap	5900 mm	NA	
Longitudinal Depth	24X ₀ (2	NA	
Modularity	28 modules in phi,15 rings along Z6 types of modules		NA
Material Volume (m ³)	20.2	7.8	28.0
Readout channels	0.92 M	0.36 M	1.3 M
Power dissipation	18.4 kW 7.2 kW		25.6 kW

Electronics diagram for ECAL & HCAL

- Energy and time measurements: ASIC for ECAL & HCAL
- Data transmission: common data platform (refer to the "Electronics TDR Report")
- Trigger mode: trigger-less readout in Front-End Electronics (FEE)

Temperature impacts to crystal-SiPM

- Linear modeling of temperature gradient
 - The same temperature change for a given distance
- Assuming temperature difference can not be corrected, which is especially true for crystals
- Check EM performance by varying temperature gradient (Tmax - Tmin)
- Preliminary result: temperature gradient of 5 degrees seems to introduce no significant impact

- 100p.e./MIP, 0.1MIP threshold per channel, 12-bit ADC
- 150ns time window, 2,500,000 Hz DCR
- Temperature dependence of BGO light yield: -1.38%/K, doi:10.1007/s11433-014-5548-4
- Temperature dependence of SiPM(HAMAMATSU S13360-3050CS) gain: -3%/K, doi:10.1016/j.nima.2016.09.053
- Temperature dependence of SiPM(HAMAMATSU S13360-3050CS) DCR vs temperature, doi:10.1016/j.nima.2016.09.053

SiPM irradiation damage: neutron fluence

- Simulation based on measurements: SiPM DCR vs. neutron fluence
- Estimate noise-only events above 0.1MIP trigger threshold (10 p.e.) for ECAL
- Preliminary conclusion: 4. $3 \times 10^9 n_{eq} (1 MeV) / cm^2$ is likely the limit for SiPM operated at room temperature; beyond this limit, SiPM needs specific cooling

SiPM irradiation damage: neutron fluence

- Estimate noise-only events above 0.1MIP trigger threshold (10 p.e.) for ECAL
 - Based on the Hamburg SiPM simulation model

Beam-induced backgrounds at CEPC: TID

50MW Higgs runs (355ns bunch spacing): updates from 30MW

- TID per year: ~4k rad for barrel crystals; 50k rad for endcap crystals

Beam-induced backgrounds: simulation studies

Simulation studies on beam background in Higgs mode: crystal ECAL barrel

- Including physics events + backgrounds (major contributions from pair production)
- With threshold, rate can be significantly reduced: 100kHz (0.1 MIP threshold) from 700kHz (0 threshold)
- Ongoing simulation studies to investigate impacts of pile-ups, and endcap regions

Crystal ECAL: impacts of temperature stability

Energy Resolution σ_E/E_{beam} [%] SY setup w/ cooling, Stoc.=3.65%, Cons.=1.169 setup w/o cooling Stoc =3.8 Passive cooling: $\sigma_F / \mathbf{E} = \mathbf{3} \cdot \mathbf{8} \% / \sqrt{\mathbf{E}} \oplus \mathbf{2} \cdot \mathbf{9} \%$ Active cooling: $\sigma_E / \mathbf{E} = 3.6 \% / \sqrt{E} \oplus 1.2 \%$ 0 1.5 2 2.5 4.5 3 3.5 EReco [GeV] Temperature stability is crucial to crystal ECAL

- Significant impact to constant term of EM resolution

– Specification on stability of ± 0.05 °C is validated with beamtest data

R&D efforts and results: dynamic range

SiPM with 10um/15um pixel pitch

Type no	Dark cou D(int rate* ⁵ CR	Direct crosstalk probability	Terminal capacitance at Vop ^{*6}	Gain	Temperature coefficient of Vop
туре по.	typ. (kcps)	max. (kcps)	Pct (%)	Ct (pF)	М	ΔTVop (mV/°C)
S14160-1310PS	120	360		100		
S14160-3010PS	700	2100		530	1.8 × 10 ⁵	
S14160-6010PS NEW	3000	10000	_1	2200		34
S14160-1315PS	120	360		100		57
S14160-3015PS	700	2100		530	3.6 × 10 ⁵	
S14160-6015PS NEW	3000	10000		2200		

SiPM with 25um pixel pitch

Type no.	Measurement conditions	Spectral response range λ	Peak sensitivity wavelength λp	Photon detection efficiency PDE ^{*4} $\lambda = \lambda p$	Dark o	Max.	Terminal capacitance Ct	Gain M	Breakdown voltage VBR	Crosstalk probability	Recommended operating voltage Vop	Temperature coefficient at recommended operating voltage Δ TVop
		(nm)	(nm)	(%)	(kcps)	(kcps)	(pF)		(V)	(%)	(V)	(mV/°C)
S13360-1325PE		320 to 900			70	210	60					
S13360-3025CS		270 to 900			400	1200	220					
S13360-3025PE	Vover	320 to 900		25	400	1200	320	7.0 × 10⁵		1	Vbr + 5	54
S13360-6025CS		270 to 900			1600	5000	1200					
S13360-6025PE		320 to 900			1000	5000	1280					

Dynamic range of a state-of-art chip: ~33000 p.e. for 25um SiPM

State-of-art ASIC dynamic range

- Expected to reach ~128k p.e. for SiPM with 10um pixel pitch

Beam-induced backgrounds: simulation studies

Background	Rate/Hz	N _{MCParticle} / 3.6 μ <i>s</i> time window
Pair production		~ 7800
Beam-Gas Bremsstrahlung (BGB)	83,280.65	~ 0.30
Beam-Gas Coulomb (BGC)	884,002.12	~ 3.18
Beam Thermal Photon Scattering (BTH)	623,520.09	~ 2.24
Synchrotron Radiation		
Radiative Bhabha		
Touschek		

Higgs mode:

- pair production: double beams, e+-
- BG: single beam
- Using 4 types of beam backgrounds.
- Simulation Time Window: 3.6 us (6 collisions and 6 bunch spacing)
 - Considering physics events and beam background events.
 - Taking into account the scintillation decay time of the crystal and the shaping time of the electronics.

Beam-induced backgrounds: time structures

single crystal bar

Barrel ECAL: integrate modules in main structure

- Each module is fixed in the main support structure by bottom bolts
- Four active cooling pipes are installed at the top of each row of modules

Barrel ECAL: Installation procedures

Installation procedure

- 1. The overall processing of carbon fiber structure is completed;
- 2. Install stainless steel flanges on both sides (thickness 20mm);
- 3. Install steel rotating cylinder on both sides;
- 4, install the lateral rotary tooling (mining machinery screen commonly used transmission system);
- 5, the installation platform is built in the cylinder (2m high, 3.5m wide);
- 6. Install trapezoidal module from top to bottom, and use crane to lift to corresponding position, workers tighten the bolts on the installation platform. Install the module 1 first, and then the module 2.
- ed 7. After the assembly of the cylinder, the rotating cylinder on both sides can be used as the subsequent overall installation tool, and it can be removed after the completion of ECAL and HCAL installation. 53

ECAL module integration

FEA simulation studies on ECAL mechanics (ongoing): further iterations + validation

Frame is made of CFRP with 5 BGO bars in 1 cell.

Frame + BGO bars

Mechanics: FEA studies on deformation

ECAL barrel: geometry and materials

- Design of 32-side crystal ECAL geometry.
 - Invert trapezoid module with minimized crack angle: reduce energy leakage.
 - Correspondence of layers between adjacent modules: clear shower structure.
- A realistic crystal ECAL geometry has been implemented with DD4HEP and released at CEPCSW MR 19.
- Summary of all crystal ECAL parameters.

Fine geometry and material description.

Parameter		Value / mm
Inner radius		1900
Outer radius		2200
Length		5900
Crystal length		~ 400
# Modules in $r - \phi$		32
# Modules in Z		15
ϕ Projectivity tilt		12°
# Layers		28
Demonstran / mana	Ant: Then eroidel	Thereadile
arameter / mm	Anti-Trapezoidal	Trapezoida
Bottom length	314.598	435.106
	100 075	000 000

Bottom length	314.598	435.106
Top length	492.657	369.809
Module height	280.232	292.216
Layer height	9.651	10.079
Crystal height	9.451	9.879
Radiation length	23.628 X_0	24.698 X_0

Barrel ECAL geometry: detailed design

Digitization and single photons energy resolution

• Digitization: energy deposition \rightarrow digits in ADC, considering crystal scintillation and electronic design.

