

CEPC HCAL Detector

Haijun Yang (for the CEPC Calo Group)

Oct. 8th , 2024, CEPC Detector Ref-TDR Review

- **1. Introduction**
- 2. Physics Motivation and Requirement
- 3. Technology Survey and Our Choice
- 4. GS-HCAL Performance
- 5. GS-HCAL Mechanical Design
- **6. GS-HCAL Electronics**
- 7. HCAL Research Group
- 8. Summary and Plan

1. Introduction

- This talk focuses on the design and developments of the hadronic calorimetry system (HCAL) - related to the RefDet TDR Chapter 7
- General remarks: the calorimetry system is based on Particle-Flow Algorithm (PFA)
- Aim to achieve excellent Boson Mass Resolution (BMR) of 3~4%;

RefDet TDR Outline

Chapter 7 Hadron calorimeter 7.1 7.2 7.3 7.3.1 Semi-Digital HCAL based on RPC (SDHCAL) Analogue HCAL based on plastic scintillator (PS-AHCAL) . . . 7.3.2 Analogue HCAL based on glass scintillator (GS-AHCAL) . . . 7.3.3 HCAL option selection for the reference detector 7.3.4 7.4 7.5 Designs including electronics, mechanics and cooling 7.6 Performance from simulation and beamtests 7.7 7.8

2. Motivation and Requirement

CEPC as Higgs/W/Z boson factories

- H/W/Z decay into hadronic final states are dominant, it is crucial to design high performance calorimetry system
- Required Jet Energy Resolution σ/E ~ 3-4% at 100 GeV

Physics process	Measurands	Detector subsystem	Performance requirement
$\begin{array}{c} ZH, Z \rightarrow e^+e^-, \mu^+\mu^- \\ H \rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 imes 10^{-5} \oplus rac{0.001}{p({ m GeV}) \sin^{3/2} heta}$
$H ightarrow b ar{b}/c ar{c}/gg$	${ m BR}(H o b ar b / c ar c / g g)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$
$H \rightarrow q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma^{ ext{jet}}_E/E = 3 \sim 4\%$ at 100 GeV
$H ightarrow \gamma \gamma$	${ m BR}(H o \gamma\gamma)$	ECAL	$\Delta E/E = rac{0.20}{\sqrt{E({ m GeV})}} \oplus 0.01$

CEPC CDR, <u>arXiv:1811.10545</u>

2. Motivation and Requirement

Parameter	Conservative Ambitious		Remarks	
Hadron energy resolution	$60\%/\sqrt{E} \oplus 3\%$ $40\%/\sqrt{E} \oplus 5\%$		Jet performance flavor physics	
Longitudinal Depth	48 layers, tot	Containment most of jets		
Transverse Granularity	40mm >	H → gg (gluon jets)		
Signal Dynamic Range	1-40	0.1 MIP as trigger threshold		
Time Resolution (1-MIP signal)	1	Bunch crossing ID timing hadron performance		
Power Consumption	15 m	O(5.6M) channels		

3. Technology Survey and Our Choice

Three major options for CEPC Hardronic Calorimeter

- ① RPC-DHCAL (SDHCAL, prototype): sampling calorimeter
- ② Plastic Scintillator-AHCAL (PS-HCAL, prototype): sampling calorimeter
- ③ Glass Scintillator-AHCAL (GS-HCAL): (new design for CEPC Ref-TDR)

PFA calorimetry: various options explored in the CALICE collaboration in past 20 years

6

3.1 RPC based SDHCAL (Prototype)

Semi-digital HCAL (SDHCAL)

- High granularity (1cm x1cm)
- 48 layers (1m x 1m x 1.3m)
- Three thresholds readout
- Stainless-steel absorber with selfsupporting mechanical structure

SDHCAL (1m³), 3 thresholds, TB at CERN

Chinese Physics C Vol. 43, No. 2 (2019) 023001

Fig. 8. (color online) Distributions of the reconstructed total visible invariant mass for $H \rightarrow bb, cc, gg$ events after event cleaning and fitted by Gaussian functions. The resolutions (sigma/mean) of the fitted results are 3.63% (*bb*), 3.82% (*cc*), and 3.75% (*gg*).

■ DHCAL performance (CDR) $H \rightarrow gg$: 3.75% (Full Simu. + Arbor Rec.)

JINST 17 P07017 (2022)

3.2 Plastic Scintillator HCAL (Prototype)

■ We have developed a PS-HCAL prototype in 2022 and TB at CERN

Calo	Layers	material	Absorber	Granularity	Electronics	Thickness	Resolution	Weight
PS-HCAL	40	PS+SiPM \$14160-1315	Fe	$4 \times 4 \text{ cm}^2$	SPIROC-2E 12960-ch	4.6 λ _I	$60\%/\sqrt{E}\oplus$ 3%	5.0 T

3.2 Plastic Scintillator HCAL (Prototype)

Collected large statistics of test beam data samples

- Muons: 10 GeV (PS-T9), 108/160 GeV (H8), 120 GeV (H2)
- Electrons/positrons: 0.5 5 GeV at PS; 10 120 250 GeV at SPS
- Pions: 1 15 GeV at PS, 10 120 150 350 GeV at SPS

→ About 65 M test beam events

3.2 Plastic Scintillator HCAL (Prototype)

- AHCAL prototype using pion TB data with ANN PID selection
 - Energy linearity within $\pm 1.5\%$
 - Energy resolution $56.2\%/\sqrt{E(GeV)} \oplus 2.9\%$ (expected target $60\%/\sqrt{E(GeV)} \oplus 3\%$)

3.3 Comparison of Scintillators

Plastic Scintillator

Glass Scintillator

Crystal Scintillator

Large density High light yield Energy resolution 🛨 Low cost **Fast decay** Large size

Large density High light yield Energy resolution 📩 📩 Low cost **Fast decay** Large size

Large density High light yield Low cost **Fast decay** Large size

3.4 Glass Scintillator R&D

- The GS collaboration was established in 2021, it focuses on the large-area & high-performance glass scintillator for applications in nuclear and particle physics.
- The GS collaboration is organized by IHEP and the members include 3 Institutes of CAS, 5 Universities, 3 Factories currently.

中国科学院上海光学精密机械研究所

CNNC Beijing Unclear Instrument Factory 中核(北京)核仪器有限责任公司

3.4 Glass Scintillator R&D

- ✓ The GS group did substantive research based on five glass scintillator types simultaneously and impressive progress has been achieved
- ✓ The performance of the best glass sample approach our initial goals, i.e. 6 g/cm³ & 1000 ph/MeV & ~100 ns
- \checkmark The GS group is leading R&D efforts on high density glass scintillator

3.4 Glass Scintillator (GS1) TB Performance

CERN Muon-beam (10 GeV muon) 11 glass tiles tested at CERN (2023/5)

- **Typical Light Yield:** 500 - 600 ph/MeV
- > Typical MIP response: 60 – 70 p.e./MIP

DESY Electron-beam (5 GeV electron) 9 glass tiles tested at DESY (2023/10)

Typical Light Yield: 600 - 700 ph/MeV > Typical MIP response:

70 - 80 p.e./MIP

IHEP Cosmic Muon (3 GeV muon) 4 glass tiles tested at IHEP (2024/4)**Muon Events** PS E-5 GS **Coin-Trigger** 20 cm for muon E-6 GS PS

Typical Light Yield: 500 - 700 ph/MeV **Typical MIP response:** 60 - 80 p.e./MIP 14

4.1 GS-HCAL vs PS-HCAL

Sampling fraction of PS-HCAL and GS-HCAL

$$f = \frac{\lambda_{PS}}{\lambda_{PS} + \lambda_{Steel} + \lambda_{PCB}} = 3.51\%$$

$$\frac{\text{GS-HCAL}}{f = \frac{\lambda_{Glass}}{\lambda_{Glass} + \lambda_{Steel} + \lambda_{PCB}} = 32.57\%$$

PS-HCAL

4.2 GS-HCAL Energy Resolution

A full detector geometry constructed with DD4hep in CEPCSW

- GS1 (Gd-AI-B-Si-Cs): density 6 g/cm^3 , $\lambda_I = 242.8$ mm, attenuation length ~ 23mm
- Geometry: follow the mechanics design, with simplified supporting structures.
- GS cell size $4 \times 4 \times 1$ cm³, 2.7cm / layer, 48 layers, $6\lambda_I$ in total

4.3 GS-HCAL Physics Performance

- **Hadron Energy Resolution (full sim + digi) :** $\sigma_E/E = \frac{29.75\%}{\sqrt{E}} \oplus 6.46\%$
- **PFA Reconstruction for** $ee \rightarrow ZH \rightarrow \nu\nu gg$ events:
 - Truth track + crystal bar ECAL + GS-HCAL (barrel only)
 - BMR = $3.70 \pm 0.08\%$ ($m_{vis} = 125.79 \pm 4.66$ GeV).

4.4 GS-HCAL Background Estimation

Simulation of beam background processes:

- 50 MW(H), bunch spacing 355 ns, with pair production, single beam processes
- Event rate with 0.1 MIP threshold: barrel < 5 kHz, endcap < 50 kHz
- Need further investigation of pile-up effect

5. GS-HCAL Design

□ GS-HCAL: Barrel (16 sectors) and two Endcaps

- $\,\circ\,$ Thickness of the Barrel : 1315 mm
- \circ Inner radius of the Barrel : 2140mm (D_{in}=4280 mm)
- Barrel Length along beam direction : 6460 mm
- $\circ~$ Number of Layers : 48 (~ 6 $\lambda_{\rm I})$

5.1 GS-HCAL Mechanical Design (Barrel)

5.1 GS-HCAL Mechanical Design (Barrel)

Deformation difference within 1 layer is lower than 0.7mm ²¹

5.1 GS-HCAL Mechanical Design (Barrel)

> Simulation of one active layer module (320mm × 646mm)

Total Deformation Type: Total Deformation Unit: mm Time: 1 2024/10/6 4:50

0.70112 Max

0.62322

0.54531

0.46741

0.38951

0.31161

0.23371

0.1558

0 Min

0.077902

Max. deformation 0.7mm - One layer with absorber

28.122 Max

24.679

21.236

17.793

14.349

10.906

7.4634 4.0203 0.57729 -**2.8658 Min** Max. stress 28.1MPa of GS

5.2 GS-HCAL Mechanical Design (Endcap)

Schematic of one layer 23

5.2 GS-HCAL Mechanical Design (Endcap)

5.2 GS-HCAL Mechanical Design (Endcap)

- Max. deformation in one active layer: 3mm (due to gravity)
- Horizontal extrusion deformation: 0.037mm
- > Max. principal stress at narrow end: 37MPa

5.3 GS-HCAL Cooling Simulation

> Cooling simulation of 1 active layer module (320mm × 646mm)

- Heat source (chip): 15 mW/ch
- coefficient of heat conduction: 5000W/m² K;
- Inlet water 25°C, environment temperature is 25°C
- Thermal contact resistance: $500W/m^2$

Temperature difference (GS vs SiPM): 2.8 ^o₂₀C

Temperature distribution: 25 °C ~ 32 °C

6. GS-HCAL Readout Electronics

- Thickness: 3.2mm
 - PCB 1.2mm
 - ASIC Chip 2mm
- Power: 15 mW/ch
- Aggregation board at the end of barrel

Aggregation board at the end of barrel, cable connection 27

- Energy Measurement: ASIC for ECAL & HCAL
- Data transmission: common data platform (see electronics report)
- Trigger mode: FEE trigger-less readout

7. HCAL Research Group

• CEPC-HCAL team: IHEP, USTC, SJTU, HNNU

- Detector for RPC-DHCAL: Staff(2) + Student(1)
- **Detector for PS/GS-AHCAL:** Staff(9) + Student(5)
- **Electronics:** Staff(5)
- Mechanics: Staff(3)

• The Glass Scintillator Collaboration

Institute (11) + Staff (20) + Student (10)

• Join the DRD6 - WP1 for the GS study and HCAL study

8. Summary and Plan

Detector

- R&D of high denisty and high light yield glass scintillator
- Small prototype of GS-HCAL for beam test
- Test special shape plastic/glass scintillator

Electronics

- ASIC chips R&D
- Readout electronics design

Mechanics

- Optimization of the mechanic design
- Optimization of the cooling design

Simulation and Performance

- Optimization of GS-HCAL geometry in CEPCSW
- GS-HCAL full simulation and reconstruction in CEPCSW

Thanks for your attention !

Oct. 8th, 2024, CEPC Detector Ref-TDR Review

4. Main Technical Challenges

■The main challenge

- R&D of the high denisity and high light yield glass scintillation;
- Mass production and quality / cost control;

Technical innovations needed to meet the challenge

- Technique for large scale production of high quality scintillator tiles in a low-cost way
- Highly integrated, fully embedded and scalable electronics with a parallel readout design for high rate application
- The **design and installation** of the **big size and heavy weight** detector structure.

Backup slides

Key parameters to energy resolution

Dynamic range: 0 ~ 100 MIP can cover >99.99% cases

- For SiPM: 8000 p.e. can be controlled in linear range (suppose LY ~ 80 p.e./MIP).
- For electronics: 1~1k can be achieved.
- Considering the common electronics design for ECAL, HCAL and Muon, HCAL's demands can be covered by ECAL.

1. GS-HCAL: Sample test

Parameters	Unit	BGO	GS1	GS1+	GS5
Cost		1	0.1 ?		
Density	g/cm ³	7.13	6.0	6.0	5.9
Transmittance	%	82	70	80	80
Refractive Index		2.1	1.74	1.71	1.75
Emission peak	nm	480	400	390	390
Light yield, LY	ph/MeV	8000	985	2445	1154
Energy resolution, ER	%	9.5	30.3	25.8	25.4
Decay time	ns	60, 300	36, 105	101,1456	90, 300

The samples (called AS glass) post to EIC for the test.

1. GS-HCAL: Sample test

tino 1800

1600

1400

1200

1000

800

200

10000

15000

20000

25000

30000

35000 400 ADC channel

Small-Size Sample

- **Size=5*5*5 mm³**
- Density~6.0 g/cm³
- LY~2445 ph/MeV
- ER=25.8%
- LO in 1 μ s=1074 ph/MeV
- Decay=**101** (2%), 1456 ns

Large-Size Sample

- Size=40*40*10 mm³
- Density=6.0 g/cm³
- LY ~1200 ph/MeV
- ER=33.0%
- LO in 1µs=607 (51%)
- Decay=117 (3%), 1368 ns

SIOM-56 SIOM-57

SIOM-58

BGO

2. GS-HCAL Performance (MC)

Status	CDR	CDR	R&D	Ref-TDR
Design Option	SDHCAL	AHCAL	GSHCAL	GSHCAL
Active Material	RPC	PS	GS	GS
Boson Mass Res.	3.7%	3.8%	3.6%	3.5%
No. of Layers	40	40	40	48
Nucl. Inter. Length	4.8λ _I	5λ _Ι	5λ _Ι	6λ _Ι

- Using similar setup as PS-HCAL, GS-HCAL can achieve a more compact structure and less readout channels, as well as a comparable PFA performance with the DHCAL;
- The energy resolution is about 30% by simulation with the construction of Ref-TDR design.

2. GS-HCAL Performance (MC)

- Improvements of hadronic energy resolution
 - Glass density and thickness, energy threshold
- Targets for scintillating glass R&D
 - Density: 6 g/cc
 - Thickness: 10mm
 - Intrinsic light yield: 1000 photons/MeV

Stochastic term [%]

Constant term [%]

12

14

10

3. GS-HCAL Mechanical Design

