

CEPC HCAL Detector

Haijun Yang (for the CEPC Calo Group)

Oct. 8th, 2024, CEPC Detector Ref-TDR Review

- **1. Introduction**
- **2. Physics Motivation and Requirement**
- **3. Technology Survey and Our Choice**
- **4. GS-HCAL Performance**
- **5. GS-HCAL Mechanical Design**
- **6. GS-HCAL Electronics**
- **7. HCAL Research Group**
- **8. Summary and Plan**

1. Introduction

- This talk focuses on the design and developments of the hadronic calorimetry system (HCAL) - related to the RefDet TDR Chapter 7
- General remarks: the calorimetry system is based on Particle-Flow Algorithm (PFA)
- Aim to achieve excellent Boson Mass Resolution (BMR) of $3~4\%$;

RefDet TDR Outline

Chapter 7 Hadron calorimeter 7.1 7.2 7.3 $7.3.1$ Semi-Digital HCAL based on RPC (SDHCAL) Analogue HCAL based on plastic scintillator (PS-AHCAL) . . . $7.3.2$ Analogue HCAL based on glass scintillator (GS-AHCAL) . . . 7.3.3 HCAL option selection for the reference detector 7.3.4 7.4 7.5 Designs including electronics, mechanics and cooling $\ldots \ldots \ldots$ 7.6 Performance from simulation and beamtests 7.7 7.8

2. Motivation and Requirement

CEPC as Higgs/W/Z boson factories

- ❖ H/W/Z decay into hadronic final states are dominant, it is crucial to design high performance calorimetry system
- **❖ Required Jet Energy Resolution o/E ~ 3-4% at 100 GeV**

CEPC CDR, [arXiv:1811.10545](https://arxiv.org/abs/1811.10545)

2. Motivation and Requirement

3. Technology Survey and Our Choice

■ **Three major options for CEPC Hardronic Calorimeter**

- ① RPC-DHCAL (SDHCAL, prototype): sampling calorimeter
- ② Plastic Scintillator-AHCAL (PS-HCAL, prototype): sampling calorimeter
- ③ **Glass Scintillator-AHCAL (GS-HCAL):** (**new design** for CEPC Ref-TDR)

PFA calorimetry: various options explored in the CALICE collaboration in past 20 years 6

3.1 RPC based SDHCAL (Prototype)

Semi-digital HCAL (SDHCAL)

- High granularity (1cm x1cm)
- 48 layers $(1m \times 1m \times 1.3m)$
- Three thresholds readout
- Stainless-steel absorber with selfsupporting mechanical structure

SDHCAL (1m³), 3 thresholds, TB at CERN

Chinese Physics C Vol. 43, No. 2 (2019) 023001

Fig. 8. (color online) Distributions of the reconstructed total visible invariant mass for $H \to bb, cc, gg$ events after event cleaning and fitted by Gaussian functions. The resolutions (sigma/mean) of the fitted results are 3.63% (bb), 3.82% (cc), and 3.75% (gg).

DHCAL performance (CDR) $H \to gg$: 3.75% (Full Simu. + Arbor Rec.)

JINST **17 [P07017 \(2022\)](https://iopscience.iop.org/article/10.1088/1748-0221/17/07/P07017/pdf)**

3.2 Plastic Scintillator HCAL (Prototype)

■ We have developed a PS-HCAL prototype in 2022 and TB at CERN

3.2 Plastic Scintillator HCAL (Prototype)

• **Collected large statistics of test beam data samples**

- Muons: 10 GeV (PS-T9), 108/160 GeV (H8), 120 GeV (H2)
- Electrons/positrons: $0.5 5$ GeV at PS; $10 120 250$ GeV at SPS
- Pions: $1 15$ GeV at PS, $10 120 150 350$ GeV at SPS

➔ **About 65 M test beam events**

3.2 Plastic Scintillator HCAL (Prototype)

- **AHCAL prototype using pion TB data with ANN PID selection**
	- Energy linearity within $\pm 1.5\%$
	- Energy resolution $56.2\% / \sqrt{E(GeV)} \oplus 2.9\%$ (expected target $60\% / \sqrt{E(GeV)} \oplus 3\%$)

10

3.3 Comparison of Scintillators

Plastic Scintillator Glass Scintillator Crystal Scintillator

Large density High light yield Energy resolution Low cost Fast decay Large size

Large density High light yield Energy resolution Low cost Fast decay Large size

Large density High light yield Energy resolution Low cost Fast decay Large size

3.4 Glass Scintillator R&D

- \triangleright The GS collaboration was established in 2021, it focuses on the large-area & highperformance glass scintillator for applications in nuclear and particle physics.
- ➢ The GS collaboration is organized by IHEP and the members include 3 Institutes of CAS, 5 Universities, 3 Factories currently. $AS-3$

CNNC Beijing Unclear Instrument Factory

中核(北京)核仪器有限责任公司

3.4 Glass Scintillator R&D

- The GS group did substantive research based on five glass scintillator types simultaneously and impressive progress has been achieved
- The performance of the best glass sample approach our initial goals, i.e. 6 g/cm³ & 1000 ph/MeV & \sim 100 ns
- \checkmark The GS group is leading R&D efforts on high density glass scintillator

3.4 Glass Scintillator (GS1) TB Performance

CERN Muon-beam (10 GeV muon) 11 glass tiles tested at CERN (2023/5)

- ➢ **Typical Light Yield:** 500 – 600 ph/MeV
- ➢ **Typical MIP response:** 60 – 70 p.e./MIP

DESY Electron-beam (5 GeV electron) 9 glass tiles tested at DESY (2023/10)

- ➢ **Typical Light Yield:** 600 – 700 ph/MeV ➢ **Typical MIP response:**
	- 70 80 p.e./MIP

- ➢ **Typical Light Yield:** 500 – 700 ph/MeV ➢ **Typical MIP response:** $60 - 80$ p.e./MIP $_{14}$
	-

4.1 GS-HCAL vs PS-HCAL

■ Sampling fraction of PS-HCAL and GS-HCAL

$$
f = \frac{\lambda_{PS}}{\lambda_{PS} + \lambda_{Steel} + \lambda_{PCB}} = 3.51\%
$$

PS-HCAL

$$
f = \frac{\lambda_{\text{glass}}}{\lambda_{\text{glass}} + \lambda_{\text{steel}} + \lambda_{\text{PCB}}} = 32.57\%
$$

4.2 GS-HCAL Energy Resolution

◼ **A full detector geometry constructed with DD4hep in CEPCSW**

- GS1 (Gd-Al-B-Si-Cs): density 6 g/cm^3 , $\lambda_I =$ 242.8 mm, attenuation length ~ 23mm
- Geometry: follow the mechanics design, with simplified supporting structures.
- $-$ GS cell size $4 \times 4 \times 1$ cm³, 2.7cm / layer, 48 layers, 6 $\lambda_{_I}$ in total

4.3 GS-HCAL Physics Performance

- Hadron Energy Resolution (full sim + digi) : $\sigma_E/E = \frac{29.75\%}{\sqrt{E}}$ E $\bigoplus 6.46\%$
- **PFA** Reconstruction for $ee \rightarrow ZH \rightarrow \nu \nu gg$ events:
	- Truth track + crystal bar ECAL + GS-HCAL (barrel only)
	- BMR = $3.70\pm0.08\%$ (m_{vis} = 125.79 ± 4.66 GeV).

17

4.4 GS-HCAL Background Estimation

◼ **Simulation of beam background processes:**

- 50 MW(H), bunch spacing 355 ns, with pair production, single beam processes
- Event rate with 0.1 MIP threshold: barrel < 5 kHz, endcap < 50 kHz
- Need further investigation of pile-up effect

5. GS-HCAL Design

GS-HCAL: Barrel (16 sectors) and two Endcaps

- o Thickness of the Barrel : 1315 mm
- o Inner radius of the Barrel : 2140mm $(D_{in}=4280$ mm)
- o Barrel Length along beam direction : 6460 mm
- \circ Number of Layers : 48 (~ 6 λ _I)

5.1 GS-HCAL Mechanical Design (Barrel)

5.1 GS-HCAL Mechanical Design (Barrel)

➢ **Absorber layer structure** The bolts go through the upper trapezoid plate, the lower absorber layer and fix it with the lower trapezoid plate Screws used for fix the upper absorber plate and upper 4 cooling pipes trapezoid plate for each layer Screws used for fix the edge sealing Screw for fixing active **Absorber Layers** layer module **module (320mm 646mm)** 0.75106 Max ➢ **Simulation of absorber structure** 0.74619 0.74132 0.73645 C: Copy of Static Structural 0.73158 Total Deformation 0.72671 Type: Total Deformation 0.72184 Unit: mm 0.71697 Time: 1 0.7121 2024/9/19 16:04 0.70723 Min 0.69901 **Deformation difference between 48 layers is lower than 0.05mm** 0.61163 0.52426 0.43688 0.72296 Max 0.3495 0.65002 0.26213 0.57707 0.17475 0.50413 0.087376 0.43118 0.35824 0.28529 **Deformation:0.786mm** 0.21234 0.1394 0.066453 Min **Due to gravity** $3e + 03$ $6e + 03$ (mm)

Deformation difference within 1 layer is lower than 0.7mm 21

5.1 GS-HCAL Mechanical Design (Barrel)

➢ **Simulation of one active layer module (320mm 646mm)**

Total Deformation Type: Total Deformation Unit: mm Time: 1 2024/10/6 4:50

0.70112 Max

0.62322

0.54531

0.46741

0.38951

0.31161

0.23371

0.1558

0 Min

28.122 Max

24,679

21.236

17.793

14.349

10.906 7,4634 4.0203 0.57729 -2.8658 Min

0.077902

Max. deformation 0.7mm - One layer with absorber

Max. stress 28.1MPa of GS

5.2 GS-HCAL Mechanical Design (Endcap)

Schematic of one layer 23

5.2 GS-HCAL Mechanical Design (Endcap)

5.2 GS-HCAL Mechanical Design (Endcap)

- ➢ **Max. deformation in one active layer: 3mm (due to gravity)**
- ➢ **Horizontal extrusion deformation: 0.037mm**
- ➢ **Max. principal stress at narrow end: 37MPa**

5.3 GS-HCAL Cooling Simulation

➢ **Cooling simulation of 1 active layer module (320mm 646mm)**

Temperature distribution: 25 ℃ ~ 32 ℃

Temperature difference (GS vs SiPM): 2.8%

6. GS-HCAL Readout Electronics

- ◼ **Thickness: 3.2mm**
	- PCB 1.2mm
	- ASIC Chip 2mm
- **Power: 15 mW/ch**
- ◼ **Aggregation board at the end of barrel**

27 **Aggregation board at the end of barrel, cable connection**

- **Energy Measurement: ASIC for ECAL & HCAL**
- **Data transmission:** common data platform (see electronics report)
- **Trigger mode:** FEE trigger-less readout

7. HCAL Research Group

⚫ **CEPC-HCAL team**:**IHEP, USTC, SJTU, HNNU**

- **Detector for RPC-DHCAL:** Staff(2) + Student(1)
- **Detector for PS/GS-AHCAL:** Staff(9) + Student(5)
- **Electronics:** Staff(**5**)
- **Mechanics:** Staff(**3**)

⚫ **The Glass Scintillator Collaboration**

• Institute (11) + Staff (20) + Student (10)

⚫ **Join the DRD6 - WP1 for the GS study and HCAL study**

8. Summary and Plan

Detector

- R&D of high denisty and high light yield glass scintillator
- Small prototype of GS-HCAL for beam test
- Test special shape plastic/glass scintillator

■ **Electronics**

- ASIC chips R&D
- Readout electronics design

■ Mechanics

- Optimization of the mechanic design
- Optimization of the cooling design

Simulation and Performance

- Optimization of GS-HCAL geometry in CEPCSW
- GS-HCAL full simulation and reconstruction in CEPCSW

Thanks for your attention !

Oct. 8th, 2024, CEPC Detector Ref-TDR Review

4. Main Technical Challenges

■The main challenge

- \blacksquare R&D of the high denisity and high light yield glass scintillation;
- Mass production and quality / cost control;

■Technical innovations needed to meet the challenge

- ‒ Technique for **large scale production of high quality scintillator tiles** in a low-cost way
- ‒ Highly integrated, **fully embedded and scalable electronics** with a parallel readout design for high rate application
- ‒ The **design and installation** of the **big size and heavy weight** detector structure.

Backup slides

Key parameters to energy resolution

◼ **Dynamic range: 0~100 MIP can cover >99.99% cases**

- $-$ For SiPM: 8000 p.e. can be controlled in linear range (suppose LY \sim 80 p.e./MIP).
- For electronics: 1~1k can be achieved.
- Considering the common electronics design for ECAL, HCAL and Muon, HCAL's demands can be covered by ECAL.

1. GS-HCAL: Sample test

The samples (called AS glass) post to EIC for the test.

1. GS-HCAL: Sample test

 $\frac{12000}{21800}$

1600

1400

 1200

1000^F 800

200

5000

10000

15000

20000

25000

30000

35000 **ADC** channel

Small-Size Sample

- ◼ **Size=5*5*5 mm³**
- Density~6.0 $g/cm³$
- LY~2445 ph/MeV
- $ER = 25.8%$
- LO in $1\mu s = 1074$ ph/MeV
- ◼ Decay=**101** (2%), 1456 ns

Large-Size Sample

- ◼ **Size=40*40*10 mm³**
- Density= 6.0 g/cm³
- LY ~1200 ph/MeV
- $ER = 33.0%$
- **LO** in $1\mu s = 607(51\%)$
- Decay= $117 (3\%)$, 1368 ns

SIOM-56 SIOM-57

SIOM-58

BGO

2. GS-HCAL Performance (MC)

- ➢ Using similar setup as PS-HCAL, GS-HCAL can achieve a **more compact structure and less readout channels**, as well as a comparable PFA performance with the DHCAL;
- \triangleright The energy resolution is about 30% by simulation with the construction of Ref-TDR design. $_{37}$

2. GS-HCAL Performance (MC)

- Improvements of hadronic energy resolution
	- Glass density and thickness, energy threshold
- Targets for scintillating glass R&D
	- Density: $6 g/cc$
	- Thickness: 10mm
	- Intrinsic light yield: 1000 photons/MeV

Stochastic term [%]

Constant term [%]

12

10

14

3. GS-HCAL Mechanical Design

