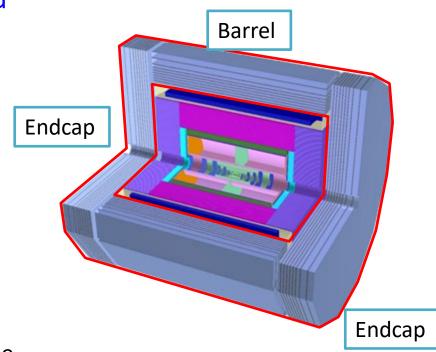


CEPC Muon Detector

Xiaolong Wang (for the Muon Detector Group) Fudan University

Content


- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

Introduction

Muon detector, the outermost detector with the largest volume, clean environment.

Production of Higgs: $e^+e^- \rightarrow ZH$, Higgs could be determined in the recoil of $Z \rightarrow \mu^+\mu^-$.

- Special determination of muon with $p \approx 40 \text{ GeV}/c$.
- Muons provide in many theoretical models a characteristic signature for new physics.
- Muon detector is designed for muon identification, but not limited to this. Benefits:
 - Could be used to detect the leakage of HCAL.
 - Can be used for trigger, like in ATLAS.
 - Could be useful for T0 determination. $\sigma(T0) = \sigma(T_{hit})/\sqrt{n_{hits}}$
 - Can be used to search for Long-lived particles, with its large volume, and relatively clean environment outside HCAL.
- Functions: muon ID, search for NP, leakage of HCAL, trigger and timing information.
- Furthermore, it must be robust and low cost.

Key requirements:

- Muon ID
- Track reconstruction

Requirements

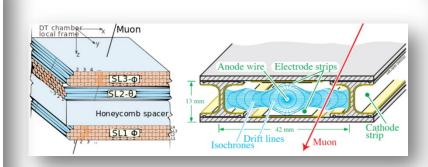
- Solid angle coverage: $0.98 \times 4\pi$
- Detection efficiency ($p_{\mu}^T > 4.0 \text{ GeV}/c$): > 95%
- Fake $(\pi \to \mu)$ @ 30 GeV/c: < 1% \longrightarrow Low fake rate
- Position resolution: $\sim 1 \ cm$ Resolution due to the multiple scattering of muon
- Time resolution: $\sim 1 ns$ —

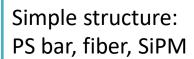
Rate capability: $\sim 60 \text{ Hz}/cm^2$

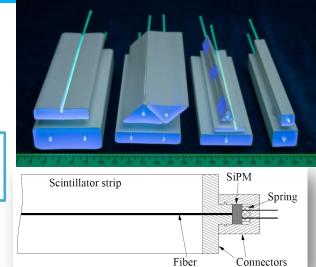
A typical time resolution of modern muon detector, and useful for trigger, T0 and background suppression.

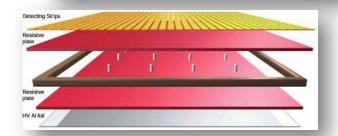
High efficiency

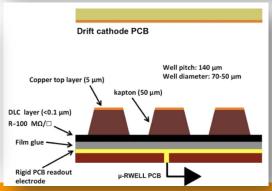
Compatible with the high luminosity operation


Technology survey and our choices


- Extruded plastic scintillator (PS) technology
 - Belle II, JUNO-TAO, MATHUSLA, LHAASO, sPHENIX, etc.
- RPC technology:
 - Belle, BESIII, Dayabay, ATLAS, CMS
- μ -RWELL (MGPD) technology
 - IDEA
- Experiments @ LHC
 - ATLAS: Thin Gap Chamber, RPC, Monitored Drift Tube, Small-Strip Thin-Gap Chamber, and Micromegas
 - LHCb: MWPC, RPC
 - CMS: Drift tube, Cathode Strip Chamber, RPC


Summary of performance and technical requirements for different gaseous μ detectors

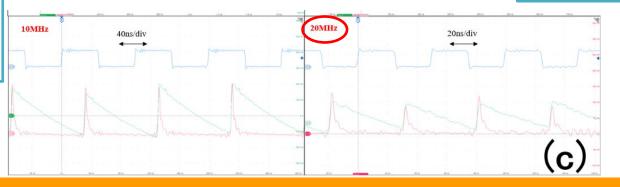

	MDT/DT	CSC	TGC	MRPC	RPC
Spatial resolution $[\mu m]$	150	100	5mm	$15 \mathrm{mm}$	$15 \mathrm{mm}$
Time resolution [ns]	40	7	4.3	0.075	2
Averaged efficiency $[\%]$	98	98	99	95	95
$\mathrm{Hit}\ \mathrm{rate}\ [\mathrm{Hz/cm^2}]$	200	500	1000	500	100
Eletronic dependence	A	A	\mathbf{B}	A	\mathbf{C}
Software dependence	В	A	В	\mathbf{C}	\mathbf{C}
Technology requirement	A	A	В	В	\mathbf{C}
Cost per channel	H	\mathbf{H}	\mathbf{M}	\mathbf{M}	$_{\rm L}$


+PS

A-C are in descending order of the requirements,H-High,M-Middling,L-low.

Comparisons

	Advantages	Disadvantage
PS(+SiPM)	Solid detector, structure simple, high rate capability, low operation voltage, use SiPM similar to HCAL, time resolution	DCR of SiPM
RPC	Cost, mature tech., time resolution	Fill gas, HV system
μ -RWELL	Spatial resolution, high rate capability	Structure, number of readout channels, time resolution, cost.


Consideration of rate capability:

- Decay time: ns level
- SiPM+FE: $< 100 ns \rightarrow 10 MHz$
- Typical area of a bar: $1600 cm^2$
- Pulse shape: width ~ 10-20 ns
- Rate capability: $5 \sim 10 \text{kHz}/cm^2$

Scintillator	base	density ϱ [g/cm ³]	$ au_{ m D} \ [m ns]$	$L_{\rm ph}, N_{\rm ph}$ [per MeV]	$\lambda_{\mathrm{em}} \ [\mathrm{nm}]$	$n(\lambda_{ m em})$
Anthracene BC-408 (BICRON) BC-418 (BICRON) UPS-89 (AMCRYS-H) UPS-91F (AMCRYS-H)	PVT PVT PS PS	1.25 1.032 1.032 1.06 1.06	30 2.1 1.5 2.4 0.6	16 000 10 000 11 000 10 000 6 500	440 425 391 418 390	1.62 1.58 1.58 1.60 1.60

PS bar and RPC have similar cost.

Our choice: PS(+SiPM) as the baseline option, RPC for comparison in R&D.

Test on SiPM+FEE with 20 MHz laser.

Technical Challenges

- Long detector module: > 5m, due to the large size of the muon detector.
- How to achieve the required efficiency and the time resolution from a long PS bar?
 - 2.8*m* bar has been used at Belle II;
 - -1.5m bar has been tested in lab;
 - It's possible since Kuraray fiber has an attenuation length of 6.8m.
 - Effective attenuation length of 2.63m from lab testing on WLS fiber.

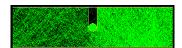
Content

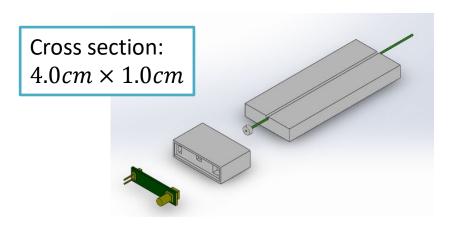
- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

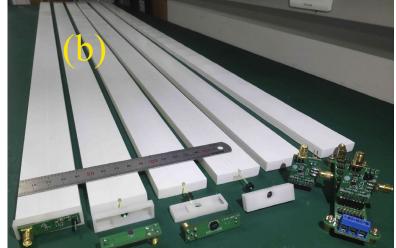
R&D efforts and results

- Simulation and software
- Performance of PS bars
- Front-end electronics
- Prototype and CR testing

Published papers:

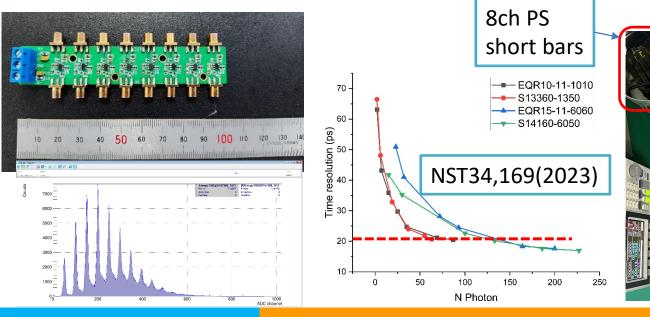

- 1. Design and performance of a high-speed and low-noise preamplifier for SiPM, Nucl. Sci. Tech. 34, 169(2023)
- 2. Design and test for the CEPC muon subdetector based on extruded scintillator and SiPM, JINST 19 P06020(2024)

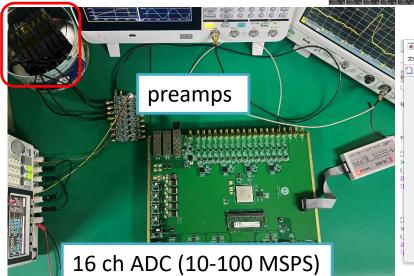

Performance of PS bars

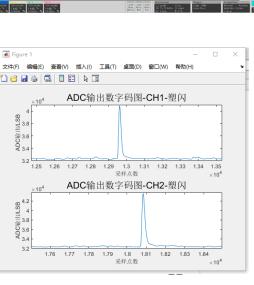

- PS bars made by GNKD company (Beijing)
 - Increase the light yield;
 - Develop/improve the reflection layer with Teflon;
 - Strip production, with a width of 4cm.
- The quality of 1.5m bars has achieved the required performance, which will be described later.

R&D on longer bar with hole has started

Samples with U groove

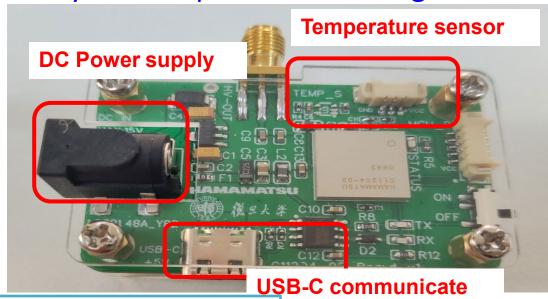




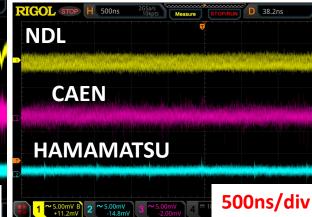


R&D for front-end electronics

- Many different kinds of preamps for SiPM have been designed and tested, such as:
 - Design high-speed and low-noise preamp for SiPM.
 - Baseline noise of 0.6 mV, bandwidth of 426 MHz, and time resolution of 20 ps.
 - Test with laser input at 20MHz.
 - Clear N_{pe} spectrum.
 - Design FEE to test with 16 ch ADC
 - Develop the FPGA for ADC.
 - Works well, but time resolution is several ns due to the DCR.



ADC output signals of scintillators

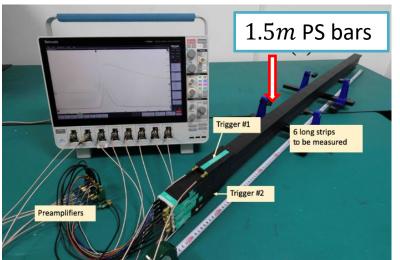

SiPM mini power

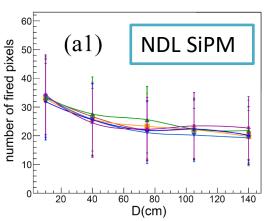
Study on mini power to be integrated into the FEE.

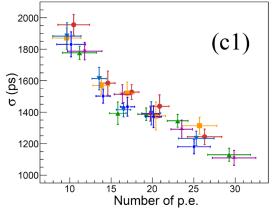
Ripple noise @ OUTPUT:45V

SiPM POWER	BIAS-2-14/70 C14156 @NDL @Hamamatsu		MAX5026 @Fudan
Voltage (V) Output Range	14~70	0~80	0~71
Current (mA) Output Range	0.5	2	2
Number of SiPMs driven	100	400	400
Power consumption (mW)	250	100	200
Ripple noise (mV/Vpp)	5.2	0.1	2
Price (¥)	~2000	500	30

1\$ = 7¥

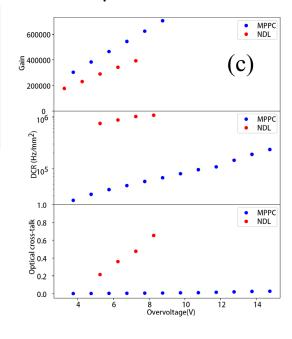


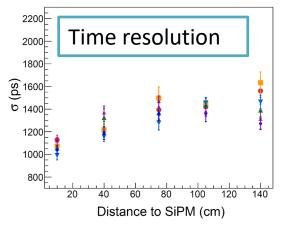

Prototype and CR test


- Study of SiPMs, WLS fibers
- Prototype:
 - 1.5m PS bar + WLS fiber (1.2mm) + NDL SiPM/MPPC (3.0mm/1.3mm)
- Performance:
 - $-\epsilon > 98\%$
 - Time resolution better than 1.5ns

JINST 19 P06020(2024)

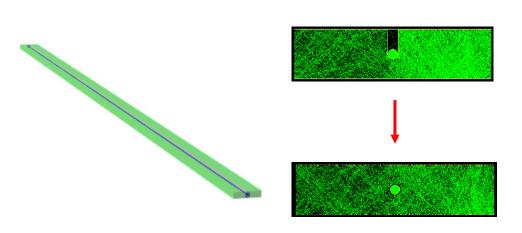
Effective attenuation length of fiber $L_{Att} = 2.63 \pm 0.37 m$

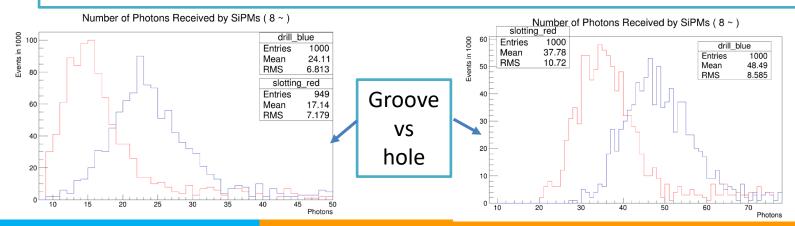


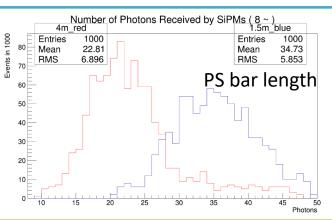


Properties of SiPMs

MPPC

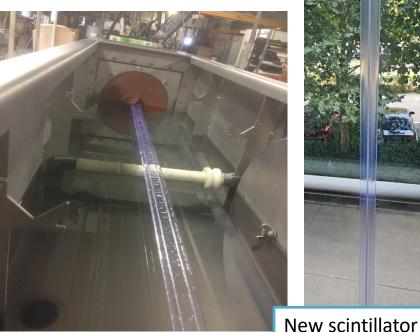

(b)




Standalone simulation

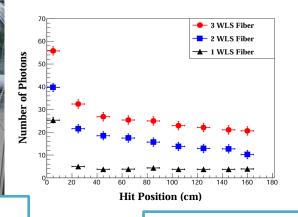
- Improving the performance of a single channel is to the key for a long detector module.
 - Light yield and light collection
- Simulation for single channel
 - Light collection and compared to lab test
 - Fiber embedding: Groove → hole, $N_{pe} \times 1.4$
 - Diameter: $1.2mm \rightarrow 2.0mm$, $N_{pe} \times (2-2.8)$

Simulation shows potential to increase the light yield by a factor of (2.8 - 3.9), which is helpful for building long detector module.

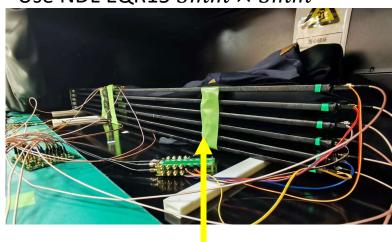


Improvements on the scint. strip

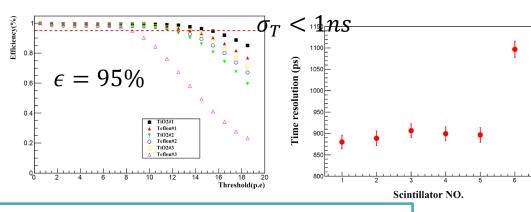
- Very new R&D in the past months, like the production in Fermi Lab.
- Fiber embedding: Groove → hole
- Diameter: no new fiber available yet, we use three 1.2mm fibers instead.


provided by GNKD,

with our R&D!



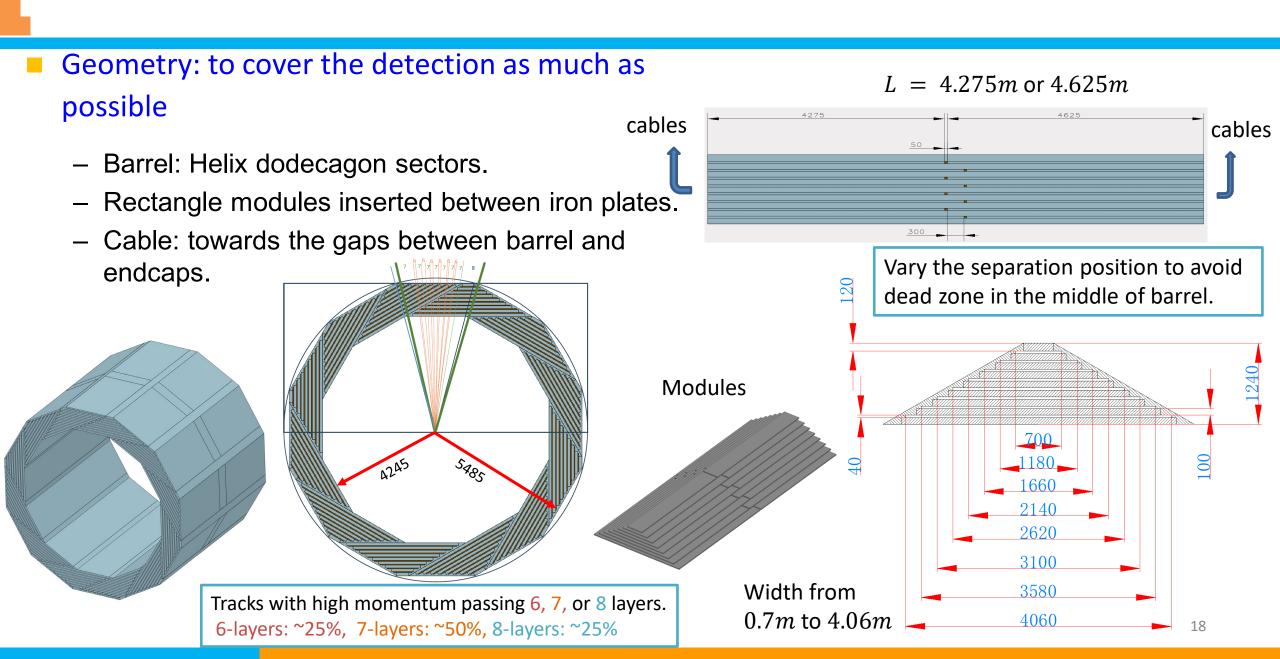
Scintillator production at Fermilab


1.65m new scint with 2.5mm diameter hole

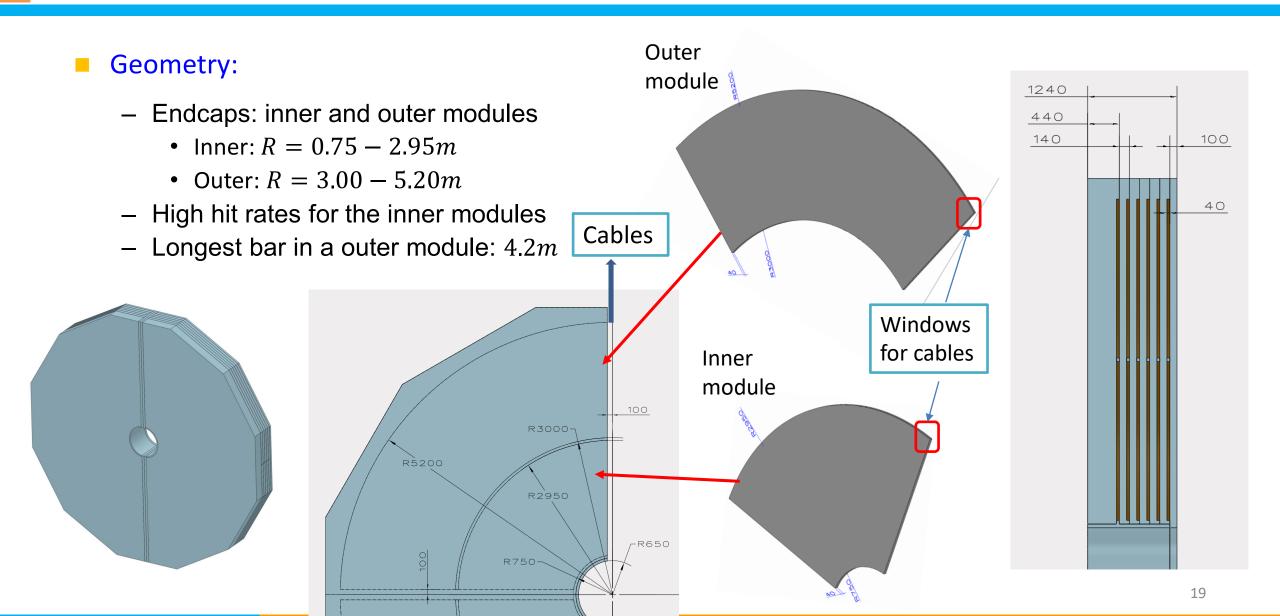
Use NDL EQR15 $3mm \times 3mm$

Trigger at middle

Very positive to the design of long module (>4m).

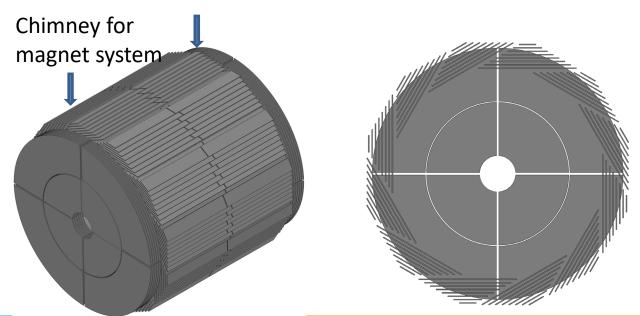

Content

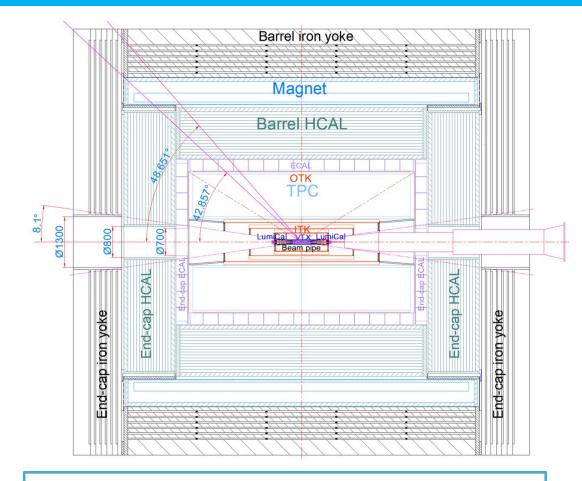
- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary


Detailed design

- Geometry: barrel and endcaps
- Detector channel elements and module
- Consideration on readout electronics

Detailed design - geometry




Detailed design - geometry

Overall of the design

- Number of channels: (288 modules) 51,744
 - Barrel: 192 modules, 32,544 ch
 - Inner endcaps: 48 modules, 6,912 ch
 - Outer endcaps: 48 modules, 12,288 ch
- Sensitive length: 148,416m
 - Length for PS bar and WLS fiber
- Sensitive area: 5936m²

Detection dead area: $\sim 1.5\%$

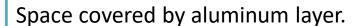
0.04% due to chimneys in the barrel for magnet system, 0.07% from the cross in endcaps, and 1.4% due to the beampipe.

Scenarios of geometry

- Different number of the layers are considered.
- Scenario #1 (current selection): 8 layers of barrel, 6 layers of endcaps
 - Cost ¥27M
- Scenario #2: all 8 layers
 - Cost ¥30M; better performance in endcaps
- Scenario #3: all 6 layers
 - Cost ¥25M; OK for muon ID, tracking will be difficult in some area
- Scenario #4: all 4 layers
 - Save the cost, but it only works for muon ID, and 50% in barrel has only 3 superlayers.
 - Width of iron plate is ~20cm, too thick.

Will show the comparisons on the performance later.

1\$ = 7¥ RMB


Detailed design of the channel and module

Detector channel

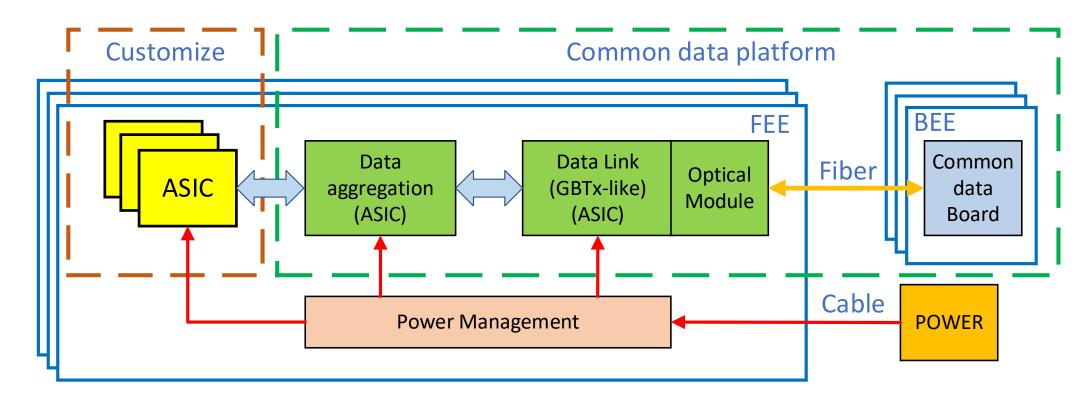
- PS bar: $4cm \times 1cm$ cross section

- WLS fiber: $\phi = 2.0mm$

- SiPM: $3mm \times 3mm$

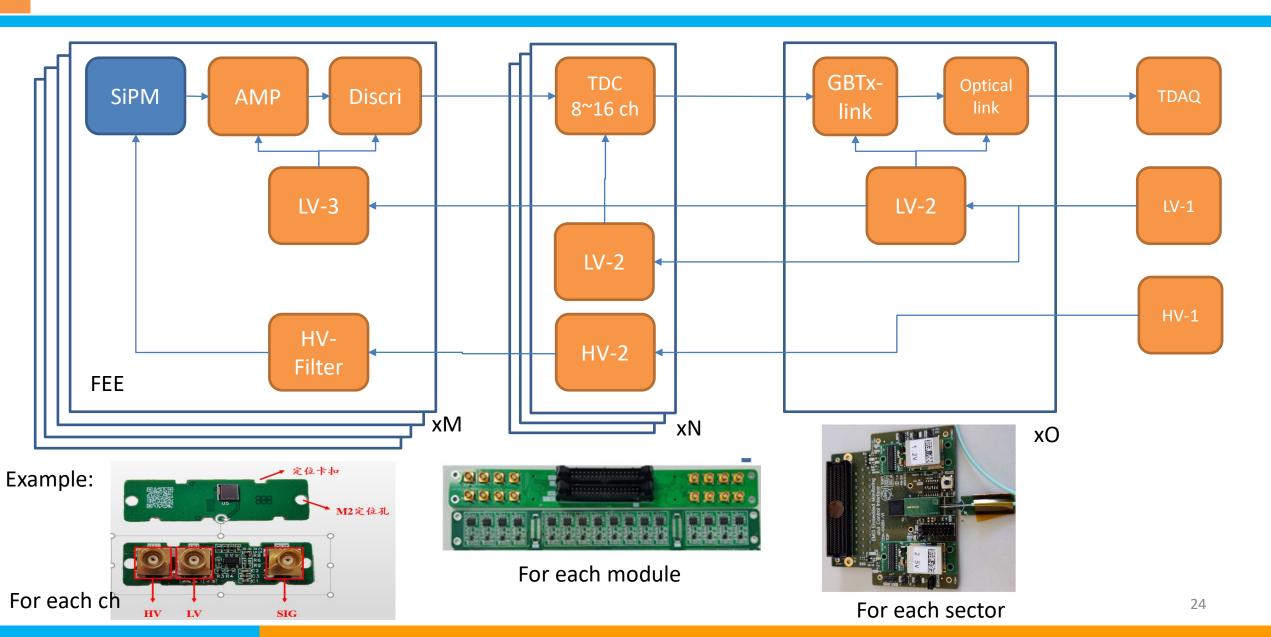
- Superlayer with perpendicular channels
- Carriers for preamps held at the frame
- Space between PS bars and aluminum layer is allowed for long cables.
- Mechanics
 - Aluminum frame, PS bars

To BEE with ribbon cables



Al frame is ready, considerations for prototype: Time resolution, FEE, power consumption, space, temperature, mechanic support, COST, etc.

superlayer


Carrier for the FEE, inside the module. Can be modified for the new electronics in the future.

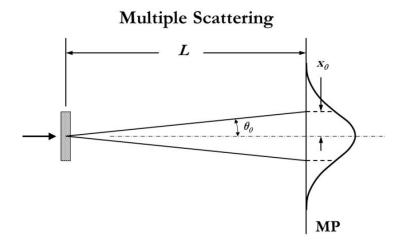
Baseline for SiPM readout

- Readout design for ECAL and HCAL covers the requirements of Muon detector: $N_{pe} < 100$, $\sigma_T < 0.5 ns$
- Use the ASIC scheme from ECAL or HCAL, and customize the FEE based on ASIC.
- Revise according to the constraints from cooling and mechanical structure of the detector

Stage scheme

Content

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary


Geant4 simulation for performance

- Geometry and Geant4 simulation is implemented in CEPCSW, reconstruction and performance studies are ongoing:
 - Study of the Molière radius of muons originating at the interaction point and traversing the ECAL and HCAL. → Spatial resolution

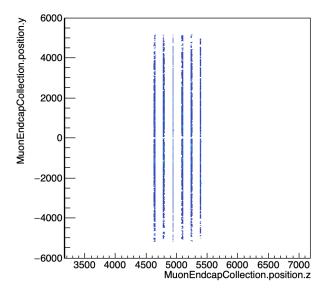
Spatial resolution

Spatial resolution due to the multiple scattering:

$$\Theta_{rms}^{proj.} = \sqrt{\langle \Theta^2 \rangle} = \frac{13.6 \text{ MeV}}{\beta cp} z \frac{x}{X_0} [1 + 0.038 \ln(x/X_0)]$$

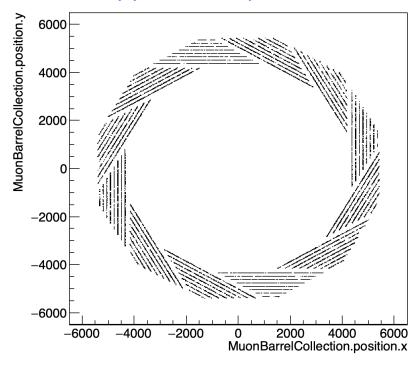
- From the calculation: $\sim 1.3cm$
- Reference to Belle II (1cm):

$$L \times 2$$
, $p_{th} \times 4 \rightarrow \sigma_{scat} \sim 1cm$

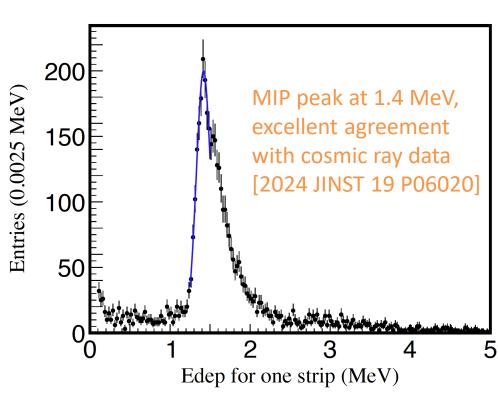

- The higher momentum, the smaller σ_{scat}
- $\frac{4cm}{\sqrt{12}} = 1.15cm$ for the spatial resolution, but this requires multiple layers.
- Number of superlayers is up to 8.
- The distance between muon detector and HCAL is >0.7m, due to the magnet system.
- The magnet field turns over the direction before and after the magnet system.

Detector Simulation

Everything based on CEPCSW framework.

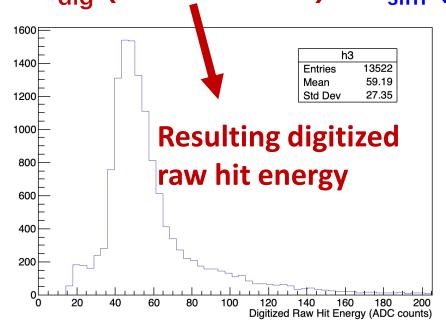

Muon Sim Hit positions

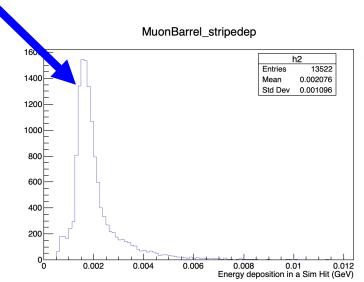
z-y position map in Endcap


1k muons at 10 GeV muons

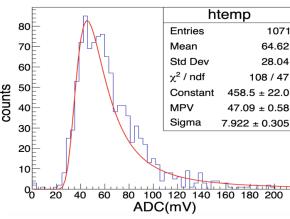
x-y position map in Barrel

Muon detector geometry is clearly visible!

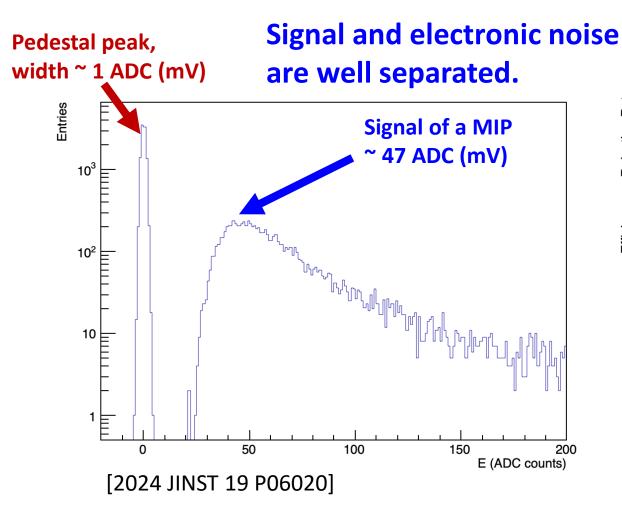

Muon Sim Hit Energy deposition

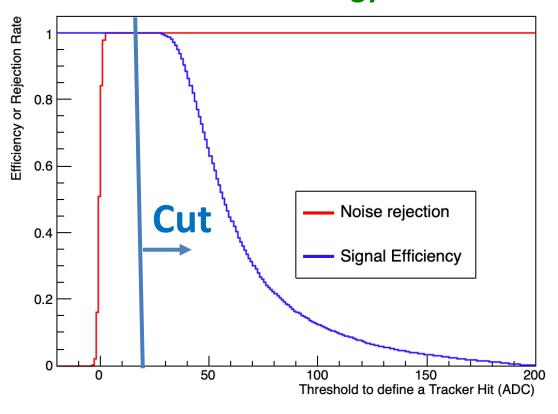


Detector Simulation


- Digitization from "Sim Hit" (deposited energy) to "Raw Hit" (ADC counts)
- A first experimental version implemented:
 - A simplified model from deposited energy to ADC counts.
 - Only for barrel at the moment.

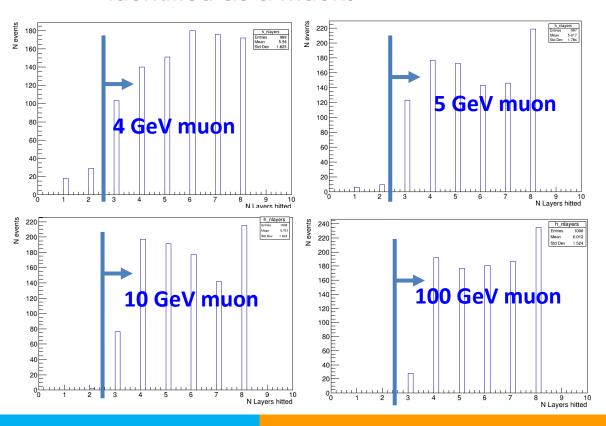
E_{dia} (ADC counts) = E_{sim} (MeV) ÷ 1.4 MeV ⊗

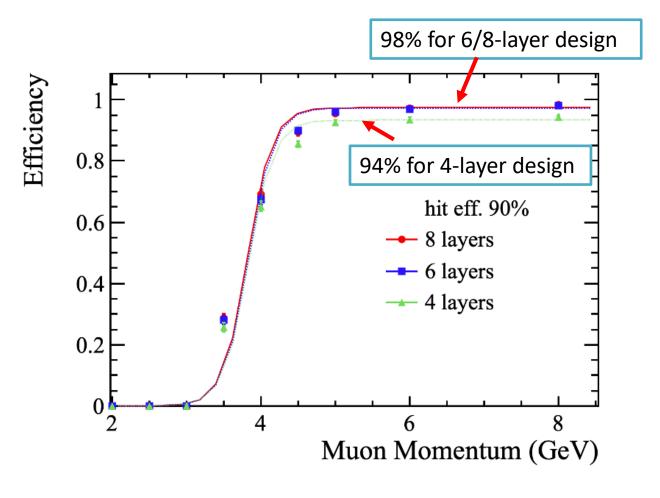

ADC distribution of MIPs from CR testing.


[2024 JINST 19 P06020]

Detector Optimization

The muon tracker hit vs. energy threshold:

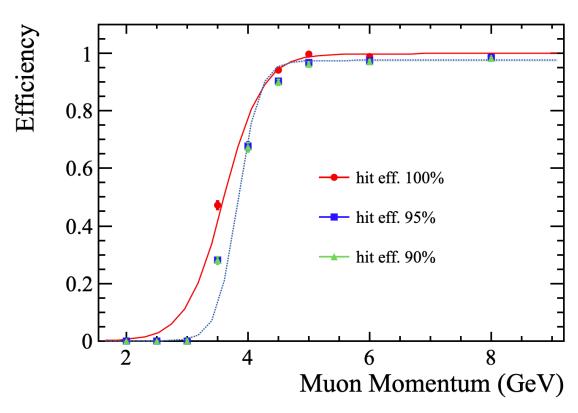

The noise rejection (red) as a function of the energy threshold



Muon ID from simulation

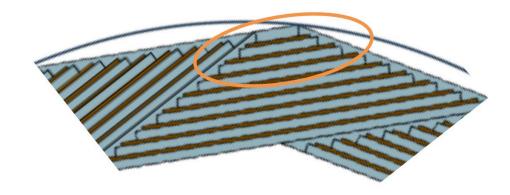
- Muon ID efficiency vs. momentum
- Define Muon ID:

If a muon candidate has 3 or more hits reconstructed in the muon detector, it is identified as a muon.

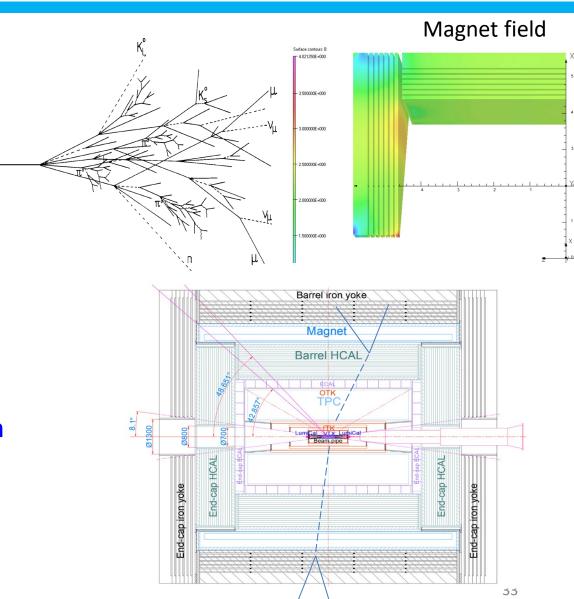


Muon ID efficiency of the barrel

Detector Optimization


Muon ID efficiency vs efficiency of single channel

6-layer design of the barrel


What we learn from the simulations:

- 1. Efficiency of a single channel should $\geq 95\%$,
- 2. Number of superlayers should ≥ 6 , while, layers #7,8 are not very helpful for the muon ID, due to the short ϕ -length
- 3. Threshold of momentum > 4 GeV/c, need help from HCAL for the lower momentum muon track.

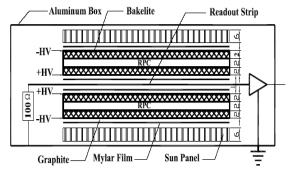
About track reconstruction

- Tracking in the muon detector may be used to rescusome energy leakage of HCAL:
 - Distance between Muon detector and HCAL is 0.7m;
 - Magnet field in the iron layers can be simulated;
 - Most charged particles in the tail of a hadronic shower are π^\pm and μ^\pm . Their deposited energy in HCAL may be low.
 - If we can reconstruct the momentum of these charged particles, or
 - Add their masses, add least.
 - K_L may be reconstructed from its decay to $\pi^+\pi^-\pi^0$.
- Tracking in the Muon detector can extend the search of LLP from L<3.5 m to L<4.9m.</p>
- The more layers and the smaller spatial resolution, the better track reconstruction.

Content

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

For the backup option

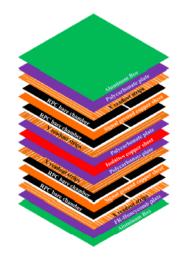

RPC technology – BESIII


- Homemade Oil-free Bakelite RPC;
- Gas mixture: Ar:R134a:ISO-B=50:42:8
- First time successful mass production in China, bare chamber pass rate > 90%;
- Good performance and keep running even now (>15years)!

Bare RPCs	$1,272 m^2$
Box	136
Readout strip & insulation materials	$636 m^2$
Electronics	9,152ch

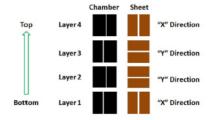
Table 2-4 BESIII Detector Performance

Paramet	OMG	Design Target	Real Performance			
T at affict	ers	Design Target	Cosmic Ray	Double μ	$\pi\pi J/\psi(\mu\mu)$	Total
Average Effic	ciency	95	94.7	95.11	95.17	93.6
Counting Rate < 0		$< 0.1 Hz/cm^2$	0.04 (Random Trigger)			
Spatial	$\sigma_{R\Phi}$	< 20mm	19	18	19	17.6
Resolution	σ_Z	< 30mm	23	21	22	22.5
$P(\pi \to \mu)$ @	$P(\pi \to \mu)$ @1 $GeV/c \parallel < 5\%$			5.5%	(MC)	

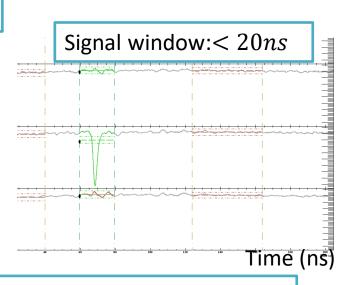


RPC technology – Dayabay

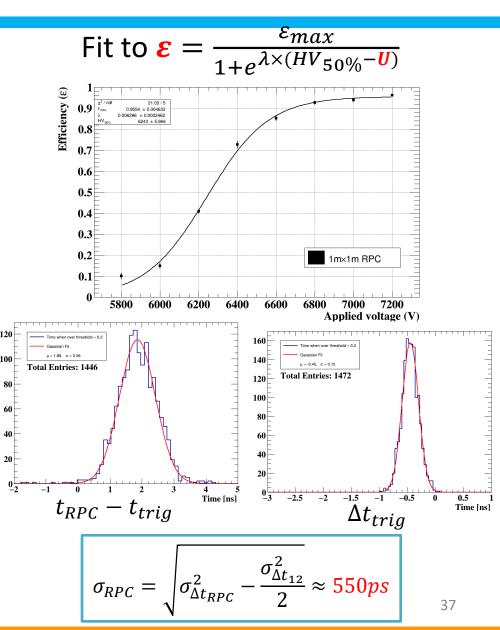
Super module:


- Two layers of 2-D readout
- 4-layer RPCs
- Module size: $2.17m \times 2.20m \times 0.08m$
- Number of modules: 194
- Bare RPC sizes: $1.0m \times 2.10m$, $1.1m \times 2.1m$
- Bakelite plate size limitation: $2.4m \times 1.2m!$

Bare RPCs	$3,200 \ m^2$
Box	195
Readout strip & insulation materials	$3,200 m^2$
Electronics	6,000 ch


We have the tech. based on Bakelite ready.

Ongoing test at SJTU


- A prototype from ATLAS (upgrade).
- Use R134a gas, 1.2 mm gas gap.
- Gain of preamp: 16
- Efficiency curve and time resolution determined from CR testing.

Trigger with time resolution < 0.1ns

For the backup option, we will perform the R&D focusing on glass with low resistance $(10^{10}\Omega m)$, which is available in China.

Content

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

Research Team

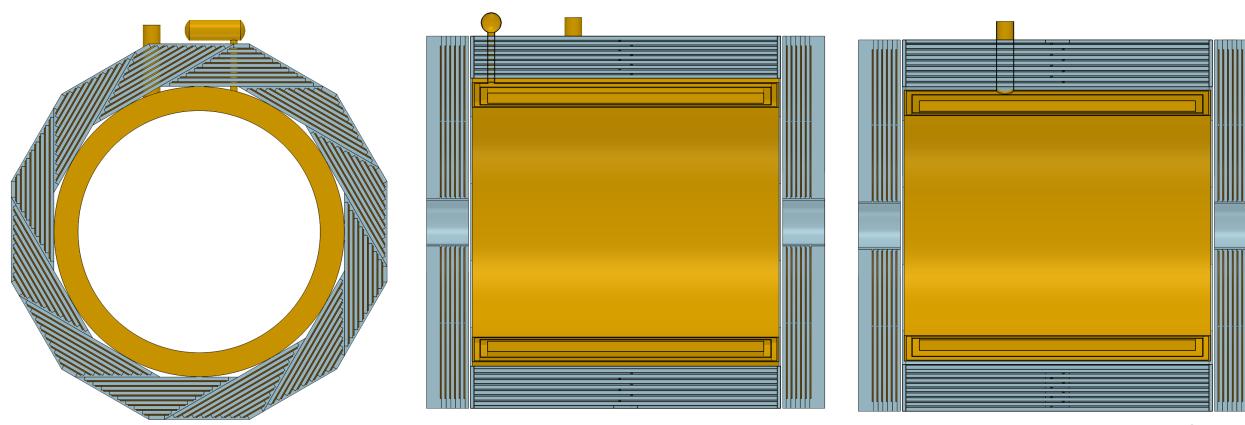
- Institutions (5) and faculties/staff (11)
 - Fudan University (FDU): Xiaolong Wang, Wanbing He, Weihu Ma
 - Shanghai Jiaotong University (SJTU): Jun Guo, Liang Li
 - IHEP: Zhi Wu, Yuguang Xie, Jie Zhang
 - South China Normal University (SCNU): Hengne Li
 - Nankai University: Minggang Zhao, Junhao Yin
- Graduate students: ~15
- Task board:
 - Overall: X.L. Wang
 - Software and simulation: H.N. Li, J.H. Yin, M.G. Zhao
 - R&D on PS scheme: X.L. Wang, Z. Wu, W.B. He, W.H. Ma
 - R&D on PRC scheme: J. Guo, Y.G. Xie
 - Production and testing: Z. Wu, Y.G. Xie
 - Electronics: J. Zhang
 - Radiation hardness test: W.H. Ma
 - LLP search: L. Li

Working plan

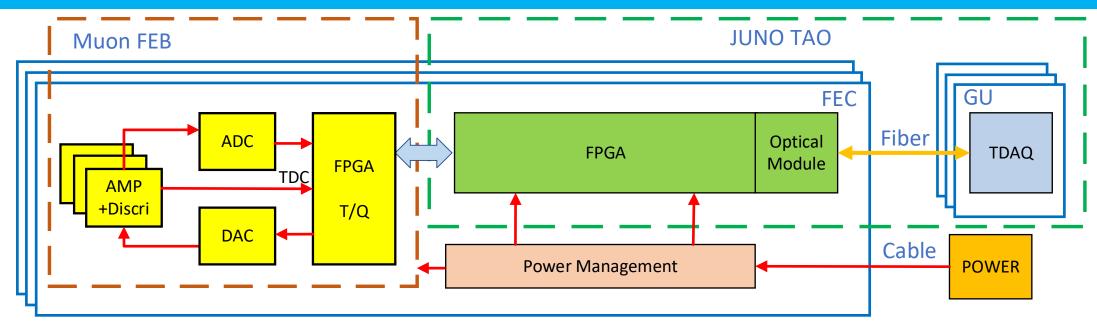
- Improvement and optimization of PS bars
 - Increase the light yield to reduce the weight of a long module
- Electronic readout
 - Study of electronics for prototype testing
- Build a prototype module and testing
 - The performance of a module with a length of 5m: efficiency, time resolution
- Optimization of structure design
- Software and simulation
 - Improvement of muon ID
 - Algorithm for track reconstruction
 - More physics performance study
- Radiation hardness studies.

Summary

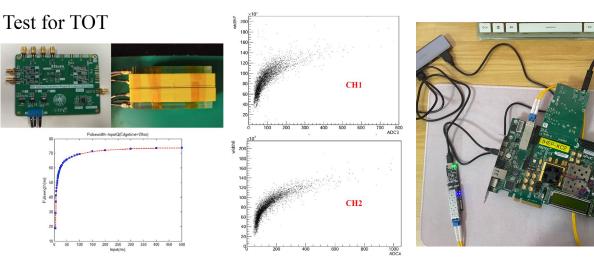
- Muon detector will be designed for muon ID, but not limited to this.
- Many R&D efforts have been performed: FEE, prototype, simulation, etc.
 - Performance of a 1.5*m* prototype: $\epsilon > 98\%$, $\sigma_T < 1.5 ns$
 - R&D on new scintillator with hole shows very good performance.
- Detailed design:
 - Barrel: 8 layers, 2 long modules per layer, helix dodecagon
 - Endcaps: 6 layers, 4 sectors per layer, two modules (inner and outer) per sector
 - Large area modules with long PS bars.
 - 51,744 channels, 5,936 m^2 area, and 148,416 m long fiber, in total.
- Work plan will focus on electronics, software and simulation for performance, prototype modules with long bars.



Thank you for your attention!

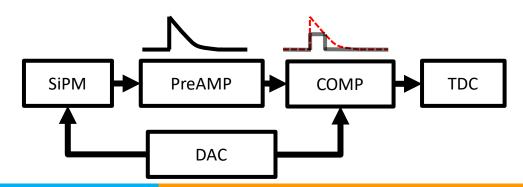


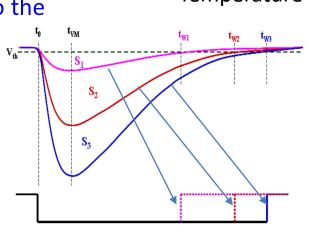
Add chimneys

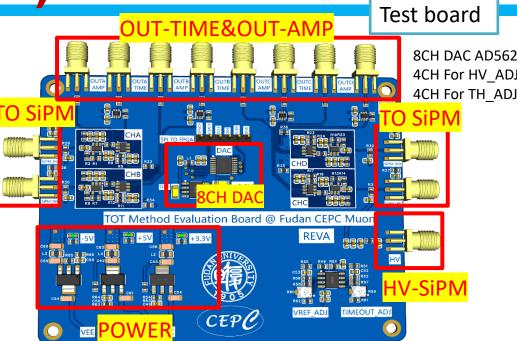

- Input the chimneys of the magnet system.
- It contributes a dead zone of <0.4%.

Near-term test environment

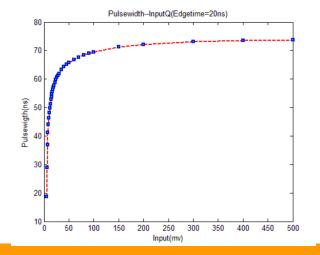
- FEB (Front-end Electronics Board)
 - Commercial chips with radiation tolerance based on past studies for particle physics experiments
 - FPGA based TDC for TOA and TOT measurement with
 ~1 ns time resolution
 - ADC for charge measurement or TOT calibration
 - DAC for threshold setting or SiPM bias voltage adjustment
- Reuse JUNO-TAO electronics for readout, clock synchronization and TDAQ
 - To accelerate the development schedule

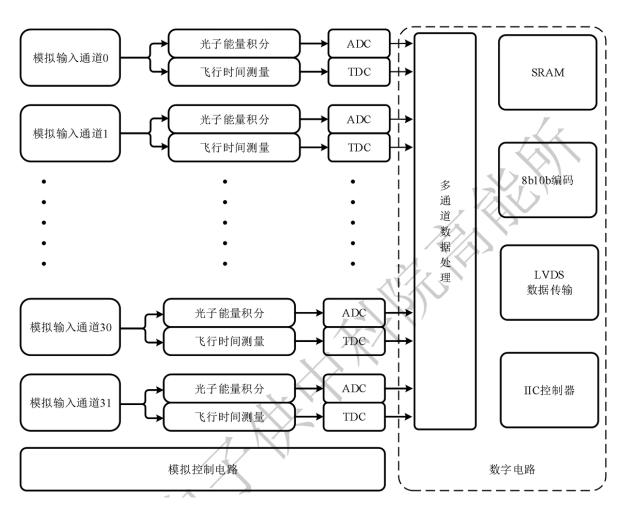

Readout electronics:

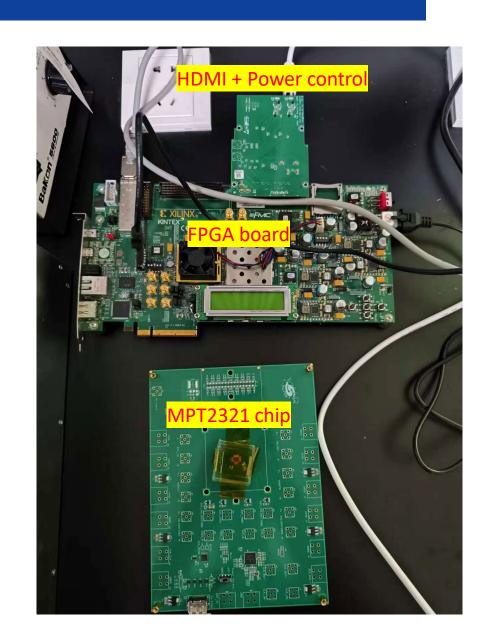

Time-over-threshold (TOT) scheme


Long cables!

- Front-end electronics ready:
 - High time resolution preamp: $\sigma_T \approx 20 \ ps$
 - − High-speed discriminator shows $\sigma_T \approx 0.2 \ ns$
- Implementation of TOT: operational amplifier + high-speed discriminator + TDC.
- FEE integrated DAC to adjust threshold and SiPM bias voltage.
- It's possible to get N_{pe} according to TOT.
- Investigating the possibility of integrating the BEE into the


detector module: only power cable and signal fiber.




Temperature sensor will be included.

SiPM - ASIC MPT2321

MPT2321, made in China 32CH ADC (12bit) + TDC(50ps)

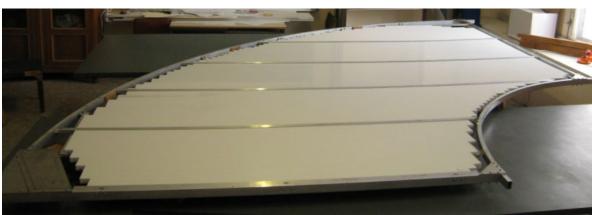
Bandwidth requirement

Muon	Module	Channel/Module	Readout Channel	Hit rate/Hz (worst case)	Data format	Raw data rate / Gbps
Barrel	192	169.5	32544	10 k	48bit (8b BX+ 10b ADC + 2b range + 9b TOT + 7b TOA+ 4b chn ID + 8b chip ID)	15.63
Inner endcaps	64	144	9216	10k~100 k, Average 20 k		8.85
Outer endcaps	64	256	16384	10 k		7.87
Total			~58.2 k			~32.4

- Very preliminary, conservative estimation according to data from Belle II experiment.
- We assigning a faculty to take care of this issue.

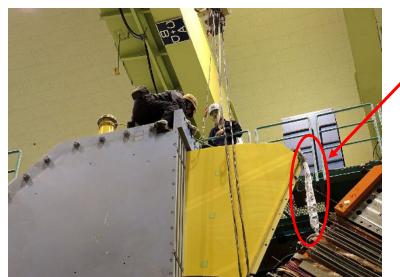
Bandwidth requirement

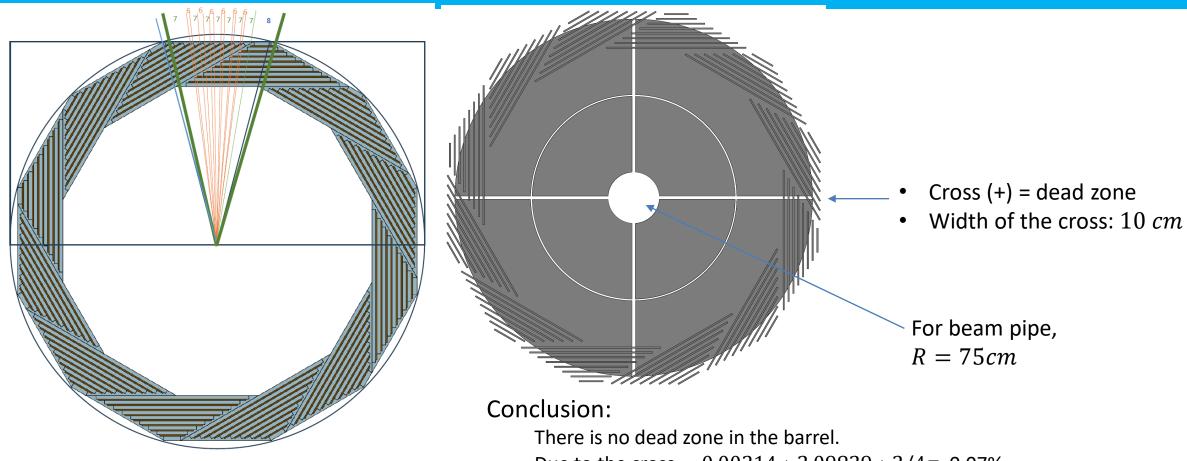
Requirement from Sub-Detector



	Vertex	Pix(ITKB)	Strip (ITKE)	TOF (OTK)	TPC	ECAL	HCAL	Muon
Channels per chip	512*1024 Pixelized	512*128 (2cm*2cm@34u m*150um)	512	128	128	8~16	8~16	8~16
Ref. Signal processing	XY addr + BX ID	XY addr + timing	Hit + TOT + timing	ADC+TDC/TOT+TOA	ADC + BX ID	TOT + TOA/ ADC + TDC	TOT + TOA/ ADC + TDC	TOT+TOA/ ADC+TDC
Data Width /hit	32bit (10b X+ 9b Y + 8b BX + 5b chip ID)	48bit (9b X+7b Y +14b BX + 6b TOT + 5TOA + 4b chip ID)	32bit (10b chn ID + 8b BX + 6b TOT + 5b chip ID)	40~48bit (7b chn ID + 8b BX + 9b TOT + 7b TOA+5b chip ID)	48bit (7b chn ID + 8b BX + 11b chip ID + 12b ADC + 10b TOA)	48bit (8b BX+ 10b ADC + 2b range + 9b TOT + 7b TOA+ 4b chn ID + 8b chip ID)	48bit (8b BX+ 10b ADC + 2b range + 9b TOT + 7b TOA+ 4b chn ID + 8b chip ID)	48bit (8b BX+ 10b ADC + 2b range + 9b TOT + 7b TOA+ 4b chn ID + 8b chip ID)
Data rate / chip	1Gbps/chip@ Triggerless@ Low LumiZ Innermost	640Mbps/chip Innermost	Avg. 1.01MHz/chip Max. 100MHz/chip	Avg: 26kHz/chip @ z pole Max: 210kHz/chip @z pole	~70Mbps/modu le Inmost	<4.8Gbps/module	<4.8Gbps/module	<1 Gbps/module
Data aggregation	10~20:1, @1Gbps	1. 1-2:1 @Gbps; 2. 10:1@O(10Gbp s)	1. 10:1 @Gbps 2. 10:1 @O(10Gbps)	1. 10:1 @1Mbps 2. 10:1 @O(10Mbps)	1. 279:1 FEE-0 2. 4:1 Module	1. 4~5:1 side brd 2. 7*4 / 14*4 back brd @ O(10Mbps)	< 10:1 (40cm*40cm PCB – 4cm*4cm tile – 16chn ASIC)	<= 256:1
Detector Channel/module	2218 chips @long barrel	30,856 chips 2204 modules	22720 chips 1696 modules	41580 chips 1890 modules	258 Module	1.1M chn	6.7M chn	~58.2 k chn
Data Volume before trigger	2.2Tbps	2Tbps	22.4Gbps	1Gbps	18Gbps	164.8Gbps	14.4Gbps	~32.4 Gbps


Reference for endcaps


Structure of a module


Installation

Cables

Estimation of dead zone

Tracks passing 6, 7, or 8 layers.

6-layers: ~25%, 7-layers: ~50%, 8-layers: ~25%

Due to the cross: $0.00214 * 2.09829 * 2/4\pi = 0.07\%$

Due to the beam pipes: $2*\Omega_1=0.173$; $2*\frac{\Omega_1}{4\pi}=1.4\%$

Cost estimation – PS scheme

Unit: CNY

SiPM+FEE:

- Number of detector channels: 51,744
 - Endcaps:
 - Inner modules: $72 \times 2 \times 4 \times 6 \times 2 = 6{,}912$
 - Outer modules: $128 \times 2 \times 4 \times 6 \times 2 = 12,288$
 - Barrel: $1356 \times 2 \times 12 = 32,544$
- Cost: $51,744ch \times 80/ch = 4.14 M$

SiPM: ¥50/ch

Preamp: ¥30/ch (could be ¥10)

PS + fiber

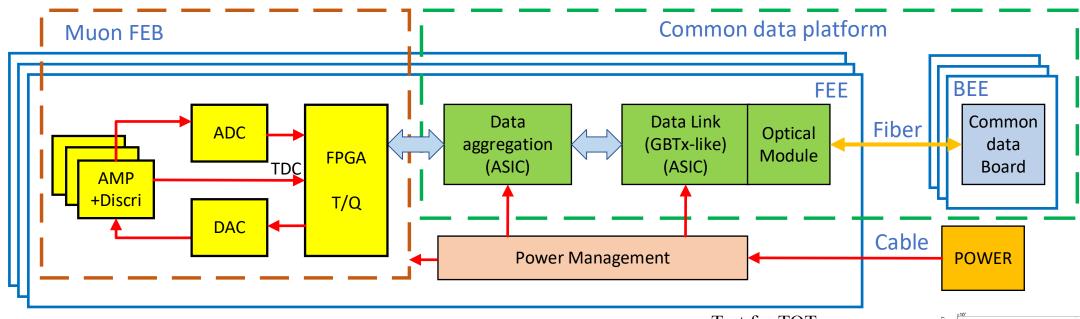
- Sensitive length: 148,416 m
 - Endcaps: $(154.83 + 343.73) \times 2 \times 4 \times 6 \times 2 = 47861.76 m$
 - Barrel: $4189.76 \times 2 \times 12 = 100,554.24 m$
- Sensitive area: $5936.64 m^2$
- Scintillator volume: $59.3664 m^3$

Cost for fiber: $148,416m \times 45/m = 6.68 M$ Cost for scintillator: $59.3664m^3 \times 200/L = 11.87 M$

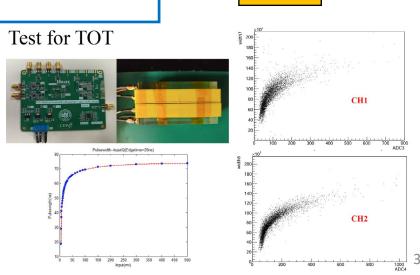
Total cost: 4.14 + 6.68 + 11.87 = 22.69 M

Consider 20% is for additional costs, like the module structure, wastage, etc.

 $22.69 \times 1.2 = 27.228 M$

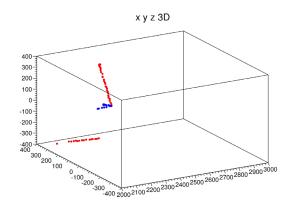

> CEPC RPC Muon cost

Bare RPCs (Bakelite)	5080 m^2	2200/m^2	11.18 +0.6 = 11.78M	From GNKD		
Bare RPCs(glass)	5080 m^2	1000/m^2	5.08+0.6=5.68M	Estimated		
Box	280	3500/module	0.98 M	Estimated		
Readout strip & insulation materials	5080 m^2	1000/m^2	5.08 M	Ref to DYB		
Subtotal			17.84(Bakelite)/11.74(glass)			
Electronics (discrete)	31100 ch	~200/ch	6.22 M	From USTC		
Electronics (ASIC)	31100 ch	~146.5/ch	4.55M	From USTC		
HV system			1.5M	Estimated		
Gas system			1.0M	Estimated		
Total	Bakelite RPC: 26.56M(discrete)/2.489(ASIC); Glass RPC: 20.46M(discrete)/18.79(ASIC					


> RPC mass production condition

Vendor: GaoNengKeDi co.ltd only, currently; glass RPC no problem. A new clean room is needed. Raw materials are not an issue. (Bakelite, graphite, glass, glue, strips of insulation film, etc.)

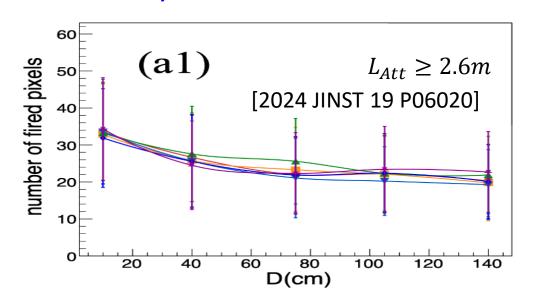
Alternative: discrete device scheme



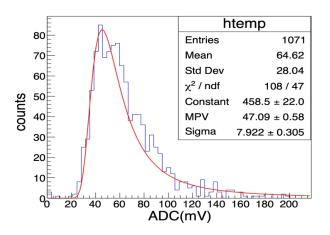
- FEB (Front-end Electronics Board)
 - Commercial chips with radiation tolerance based on past studies for particle physics experiments
 - FPGA based TDC for TOA and TOT measurement with ~1 ns time resolution
 - ADC for charge measurement or TOT calibration
 - DAC for threshold setting or SiPM bias voltage adjustment

Requirements according to functions

- Muon ID: passing >= 3 superlayers of the muon detector.
- Leakage of hadronic shower from HCAL: muon ID and/or standalone tracking.
- Search for NP, such as LLP: tracking to find the common vertex, and momentum measurement.
- Trigger: rough tracking and timing information.
- Additional T0 determination: timing information.
- Background veto at high luminosity: timing is useful.


There will be background due to KL in searching for LLP, especially from the hadronic shower.

Key requirements:


- Muon ID
- Track reconstruction

Detector Simulation

- Digitization from "Sim. Hit" (GeV) to "Raw Hit" (ADC counts)
- A first experimental version implemented:
 - A simplified model from GeV to ADC counts directly.
 - Only for barrel at the moment.
- A more realistic model with N_p.e. per MIP attenuated along the strip is to be ready this week: →

MIP peak distribution in unit of ADC counts

Merge Request in CEPCSW is almost-ready.

