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- Introduction -

• Cornell potential is very widely used in describing the confinement feature 
of heavy-flavor mesons, which consist of a Coulomb potential and a linear 
potential (isotropic, tends to bind the hadrons together).

• There is already a well-known linear potential in classic physics, which is 
the vector potential of electric field (anisotropic, tends to split hadrons 
apart).



- General Formalism -

• The mesonic wave function Ψ(𝐫1, 𝐫2) satisfies two-body Schroedinger Eq.

• The Coulomb part in Cornell potential is neglected, and only linear 
confining part is left (long-range scenario).

• Redefine the independent coordinates

𝐑 ≡
𝑚1𝐫1+𝑚2𝐫2

𝑚1+𝑚2
,           𝐫 ≡ 𝐫1 − 𝐫2

• The Schroedinger Eq. becomes

• Reduced mass: 𝑚 =
𝑚1𝑚2

𝑚1+𝑚2
, charge: 𝑞 =

𝑚

𝑚1
𝑞1 −

𝑚

𝑚2
𝑞2



- General Formalism -

• Take the variable separation for the wave function Ψ 𝐫1, 𝐫2 = 𝜓 𝐫 Φ 𝐑

Total energy:

• The masses and charges of 𝑐 and 𝑏

Relative energy



- One dimensional case -

• Schroedinger Eq. at 𝑑 = 1

Effective 

string tension



- One dimensional case -

• The solutions of the above equation are Airy functions

Airy function

• To fix the eigenenergy 𝐸𝑟 and the coefficient, introduce the smooth 
condition and normalization



- One dimensional case -

• For 𝑥 > 0, since 𝑎+ is positive definite

• For 𝑥 < 0, if 𝑎− is negative (𝜎 > 𝑞 𝜀)

Combined with smooth condition and normalization



- One dimensional case -

If 𝑎− is positive (𝜎 < 𝑞 𝜀), both 𝐶1− and 𝐶2− can be nonzero, and we need a 
boundary at −𝑏 (𝑏 > 0) to bind the mesons

Negative ground state relative energy and strongly oscillating wave function 
around the boundry −𝑏 signals deconfinement



- Two dimensional case -

• Schroedinger Eq. at 𝑑 = 2

• First consider limit 𝜀 → 0, and define                              and 

For a given orbital angular momentum 𝑙, the equation can be reduced to 



- Two dimensional case -

• For a finite 𝜀

• If we assume                                   and                is small, it can be separated 
into two coupled equations

The former equation’s solution is Mathieu function



- Two dimensional case -

• The requirement of 2𝜋-periodicity constrains the eigenenergy 𝜖2𝑛 to

with 𝑏2𝑛(𝑝) and 𝑎2𝑛 𝑝  are the characteristic values of 𝑆(𝑎, 𝑝,
𝜃

2
) and 

𝐶(𝑎, 𝑝,
𝜃

2
), which give the eigenfunctions Θ2𝑛(𝑟, 𝜃) in form of elliptic cosine 

and sine functions



- Two dimensional case -

• Then the latter equation

• Numerically solving the above equation gives

Two degenerate states broken by 𝜀



- Three dimensional case -

• Schroedinger Eq. at 𝑑 = 3

• Detail of 𝑑 = 3 case is similar to 𝑑 = 2 case, we can just go to numerical 
result 



- Three dimensional case -

• In a more relativistic situation, the potential gives

𝛽 = 2.06 for charmonium and 𝛽 = 0.318 for bottomium

The increasing feature reflects the competition 
between effects of small electric field and 
Coulomb potential

Around the critical point 𝑞 𝜀𝑐 ≡ 𝜎 of 
deconfinement, the relative energy decreases 
greatly for every quarkonium, but there is still a 
small positive redundant energy left at 𝑞 𝜀𝑐 due 
to the spin-spin interactions
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