

CEPC Beam Backgrounds Status

Haoyu SHI (On behalf of the CEPC MDI Working Group)

中國科學院為能物品補完所 Institute of High Energy Physics Chinese Academy of Sciences

Nov. 27th, 2024, CEPC Day

- Introduction
- Sources, tools, mitigation methods
- Impacts Estimation
- Shielding of the BG
- Summary & Outlook

Introduction

Reasonable Estimation of Beam-induced background levels

- Based on the 50-MW design of CEPC Accelerator TDR
- Keep updating with the Ref-TDR detector
- Higgs, Z, W, ttbar
- Estimation of the Noise on Detector due to Backgrounds, Normal Operation
 - Hit Rate/Occupancy
- Estimation of the Radiation Environment: contributions from Backgrounds in normal operation(the failure case, contributions from the signal will be considered later)
 - Radiation Damage to the Material(Detector, Accelerator, Electronics, etc...)
 - Radiation Damage to the personnel and the environment
 - Absorbed Dose, 1 MeV Si-eq fluence, Hadron fluence...
- Mitigation Methods

	TT!	7	337		
	Higgs	Z	w	tt	
Number of IPs		2			
Circumference (km)		10	0.0		
SR power per beam (MW)			50		
Half crossing angle at IP (mrad)		1	6.5		
Bending radius (km)		1	0.7		
Energy (GeV)	120	45.5	80	180	
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1	
Damping time $\tau_x/\tau_y/\tau_z$ (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.6	
Piwinski angle	4.88	29.52	5.98	1.23	
Bunch number	446	13104	2162	58	
Provel and in a (max)	355	23	154	2714	
Bunch spacing (ns)	(53% gap)	(10% gap)	154	(53% gap)	
Bunch population (10 ¹¹)	1.3	2.14	1.35	2.0	
Beam current (mA)	27.8	1340.9	140.2	5.5	
Phase advance of arc FODO (°)	90	60	60	90	
Momentum compaction (10 ⁻⁵)	0.71	1.43	1.43	0.71	
Beta functions at IP β_x^* / β_y^*	0.2/1	0.12/0.0	0.21/1	1 04/2 7	
(m/mm)	0.5/1	0.13/0.9	0.21/1	1.04/2.7	
Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7	
Betatron tune v_x/v_y	445/445	317/317	317/317	445/445	
Beam size at IP σ_x / σ_y (um/nm)	14/36	6/35	13/42	39/113	
Bunch length (natural/total) (mm)	2.3/4.1	2.7/10.6	2.5/4.9	2.2/2.9	
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.15	0.07/0.14	0.15/0.20	
Energy acceptance (DA/RF) (%)	1.6/2.2	1.0/1.5	1.05/2.5	2.0/2.6	
Beam-beam parameters ξ_x / ξ_y	0.015/0.11	0.0045/0.13	0.012/0.113	0.071/0.1	
RF voltage (GV)	2.2	0.1	0.7	10	
RF frequency (MHz)	650				
Longitudinal tune v_s	0.049	0.032	0.062	0.078	
Beam lifetime	40/40	00/020	60/105	91/22	
(Bhabha/beamstrahlung) (min)	40/40	90/930	60/195	81/23	
Beam lifetime requirement (min)	20	81	25	18	
Hourglass Factor	0.9	0.97	0.9	0.89	
Luminosity per IP $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	83	192	26.7	0.8	

Sources and Simulation Tools

Single Beam

- Touschek Scattering
- Beam Gas Scattering(Elastic/inelastic)
- Beam Thermal Photon Scattering
- Synchrotron Radiation

Luminosity Related

- Beamstrahlung
- Radiative Bhabha Scattering
- Injection(Will be considered future)

Photon BG

Beam Loss BG

Injection BG

Background	Generation	Tracking	Detector Simu.
Synchrotron Radiation	BDSim/Geant4	BDSim/Geant4	
Beamstrahlung/Pair Production	Guinea-Pig++		<u>CEPCSW/FLUKA</u>
Beam-Thermal Photon	PyBTH[Ref]	SAD	
Beam-Gas Bremsstrahlung	<u>PyBGB[Ref]</u>		
Beam-Gas Coulomb	BGC in <u>SAD</u>		
Radiative Bhabha	BBBREM		
Touschek	TSC in <u>SAD</u>		

Collimators

Collimators were implemented to reduce IR loss caused by single beam.

- 16 sets of collimators were implemented for MDI purpose
- ~20 sets of collimators were installed for passive machine protection and will also contribute to mitigating beam background.
- With the implementation of collimators, multi-turn beamstrahlung and radiative Bhabha loss particles have been
 effectively shielded outside the interaction region.

Xiaohao Cui, Yuting Wang, Sha Bai

Loss Map at the IR @ Higgs

- Single Beam only
- **Errors** implemented
 - High order error for magnets

-2

Beam-beam effect

-6

-4

 10^{-2}

10-3

 10^{-4}

 10^{-5}

 10^{-6}

Loss Rate/MHz/10cm

Loss Map at the IR @ Higgs

- Single Beam only
- Errors implemented
 - High order error for magnets
 - Beam-beam effect

$L_{oss} P_{ato} = \frac{Loss Number}{2}$	<u>Bunch number</u> * Particles per Bunch * $(1 - e^{-1})$
Loss Rute – Loss Time	– Beam Lifetime

	50MW Higgs, 346ns/BX
Pair Production	~1.82GHz in IR
Beam Thermal Photon	~0.36MHz/beam in IR
Beam Gas Bremsstrahlung	~0.04MHz/beam in IR
Beam Gas Coulomb	~0.24MHz/beam in IR

	50MW Higgs, 346ns/BX
Pair Production	~1.82GHz in IR
Beam Thermal Photon	~0.30MHz/beam in IR
Beam Gas Bremsstrahlung	~0.04MHz/beam in IR
Beam Gas Coulomb	~0.23MHz/beam in IR
Touschek Scattering	~0.06MHz/beam in IR
Radiative Bhabha	
SR	~630 PHz/beam generated at last bending magnet

SR only contains last bending magnet, the contributions from solenoid, quads(especially from beam tail passing quads) will be implemented later. 7

Estimation of Impacts in the MDI

- We have obtained a preliminary estimate of the beam-induced background levels in Higgs mode
 - Assume an operational time of 7000hr/yr
 - TDR_o1_v01_20241018, time window: 10BX(~3us)

Hancen Lu, Xin She, Zhan Li, Dian Yu, Weizheng Song, Haopeng Li, Renjie Ma

Sub-Detectors	Ave. Hit Rate(MHz/cm2)	Max. Hit Rate(MHz/cm ²)	Max. Occupancy/BX(%)	Ave. TID(Gy/yr)
Vertex	0.49	0.61	0.0022	~21000
ІТК	0.0021	0.25	0.025(Strip)	128
ТРС	2.7	6.0	0.0045	23.4(Supporting)
OTK – Endcap	0.0002	0.0006	0.35(Strip)	6.95
ECal – Endcap	0.011/bar	0.3/bar	0.0008	0.322
HCal – Endcap	0.002/GS	0.05/GS	0.0005	0.044
Muon – Endcap	0.00000001/cell	0.00002/cell	0.006	0.21
LumiCal – Crystal	3.37	7.82	9.1	2610

Comparing with FCC-ee @ Higgs

- At, higgs, pair production dominates@ CEPC.
- FCC-ee also has their higgs study results. The generator is same.
 - At same level

Manuela Boscolo, Andrea Ciarma

	CEPC	FCC-ee
Pair produced per bunch crossing	~2200(1300 with cut)	~2700
Max. Occupancy VXD	2.2e-4	4.1e-4
Max. Occupancy ITK-B		3.8e-5
Max. Occupancy ITK-E	2.5e-4(Single contributes)	2.3e-4

Loss Map at the IR @ High-Lumi Z

- Single Beam only
- Errors implemented
 - High order error for magnets
 - Beam-beam effects

 $Loss Rate = \frac{Loss Number}{Loss Time} = \frac{Bunch number * Particles per Bunch * (1 - e^{-1})}{Beam Lifetime}$

	50MW Higgs, 23ns/BX
Pair Production	~25.5GHz in IR
Beam Thermal Photon	~0.26GHz/beam in IR
Beam Gas Bremsstrahlung	~0.01GHz/beam in IR
Beam Gas Coulomb	~2.36GHz/beam in IR
Touschek Scattering	~6.24GHz/beam in IR

Estimation of Impacts in the MDI

We have obtained a preliminary estimate of the beam-induced background levels in High Lumi Z mode

– TDR_o1_v01_20241018, time window(1BX, 23ns)

Hancen Lu, Xin She, Zhan Li, Dian Yu, Weizheng Song, Haopeng Li

Sub-Detectors	Ave. Hit Rate(MHz/cm2)	Max. Hit Rate(MHz/cm²)	Max. Occupancy/BX(%)	TID(Gy/yr)
Vertex	15.64	18.34	3.73e-3	
ІТК	0.61	57.61	0.0543	
ТРС	2	3.5	0.0026	
OTK – Endcap				
Ecal – Barrel	1.54/bar	22.3/bar	7.03	
ECal – Endcap	2.84/bar	43.5/bar	9.29	
HCal – Endcap				
Muon – Endcap			1.5	
LumiCal – Crystal				

Current Parameters of Low-Lumi Z

	Z	Z (3T)	
Number of IPs		2	
Circumference (km)		100	
SR power per beam (MW)	8.7	12.1	
Half crossing angle at IP (mrad)		16.5	
Bending radius (km)		10.7	
Energy (GeV)		45.5	
Energy loss per turn (GeV)	(0.037	
Damping time $\tau_x/\tau_y/\tau_z$ (ms)	816/	/816/408	
Piwinski angle		24	
Bunch number		3978	
Bunch spacing (ns)		69.2	
Bunch population (10^{11})	1.22	1.7	
Beam current (mA)	233.2	325.0	
Phase advance of arc FODO (°)	90	60	
Momentum compaction (10 ⁻⁵)	0.71	1.43	
Beta functions at IP β_x^* / β_y^* (m/mm)	0.2/1.0	0.13/1.0	
Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)	0.092/1.7	0.27/5.1	
Betatron tune v_x/v_y	445/445	317/317	
Beam size at IP σ_x/σ_v (um/nm)	4/42	6/72	
Bunch length (natural/total) (mm)	2.1/8.3	2.5/8.8	
Energy spread (natural/total) (%)	0.04/0.11	0.04/0.13	
Energy acceptance (DA/RF) (%)	1.0/1.9	1.0/1.7	
Beam-beam parameters ξ_x/ξ_y	0.0065/0.11	0.0053/0.082	
RF voltage (GV)	0.09	0.12	
RF frequency (MHz)	650 (2 cell cavity)		
Longitudinal tune v _s	0.021	0.035	
Beam lifetime (Bhabha/beamstrahlung) (min)	120/200	150/180	
Beam lifetime requirement (min)	68		
Hourglass Factor		0.97	
Luminosity per IP $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	24	26	

Dou Wang

- Higgs lattice: 90°
- Z lattice: 60°

~1/8 comparing with High-Lumi Z 12

Loss Map at the IR @ Low-Lumi Z

- Single Beam only
- **Errors** implemented
 - High order error for magnets
 - Beam-beam effect

Beam Way

10-5

10³

10¹

Loss Rate/MHz/10cm $_{-01}$ Loss Rate/MHz/10cm

 10^{-1}

Loss Map at the IR @ Low-Lumi Z

- Single Beam only
- **Errors** implemented
 - High order error for magnets
 - Beam-beam effect
- Assume that the beam lifetime is same as High-Lumi Z

	50MW Z, 23ns/BX	
Pair Production	~25.5GHz in IR	Pair Production
Beam Thermal Photon	~0.26GHz/beam in IR	Beam Thermal Photon
Beam Gas Bremsstrahlung	~0.01GHz/beam in IR	Beam Gas Bremsstrahlung
Beam Gas Coulomb	~2.36GHz/beam in IR	Beam Gas Coulomb
Touschek Scattering	~6.24GHz/beam in IR	Touschek Scattering

Loss Rate much lower than 1/8

Beam Lifetime

Both because of parameter change and the correction on emittance Y in SAD

 $Loss Rate = \frac{Loss Number}{Loss Time} = \frac{Bunch number * Particles per Bunch * (1 - e^{-1})}{Ream Lifetime}$

Estimation of Impacts in the MDI

- We have obtained a preliminary estimate of the beam-induced background levels in Low Lumi Z mode using scale
 - TDR_01_v01_20241018, time window(1BX, 23ns), scaling factor 0.125 Dian Yu, Weizheng Song, Haopeng Li

Sub-Detectors	Ave. Hit Rate(MHz/cm2)	Max. Hit Rate(MHz/cm ²)	Max. Occupancy/BX(%)	Ave. TID(Gy/yr)
Vertex	1.96	2.30	3.73e-3	
ІТК	0.08	7.20	0.0543	
ТРС	0.25	0.45	0.0026	
OTK – Endcap				
ECal – Barrel	0.2	2.79/bar	7.03	
ECal – Endcap	0.35	5.44/bar	9.29	
HCal – Endcap				
Muon – Endcap			1.5	
LumiCal – Crystal				

Shielding of the Detectors

The sources of the BG has two groups:

- From IP, luminosity related(pair-production, radiative Bhabha)
- From anywhere around the ring, less in IP(single beam losses and SR)

Previously, we have several methods of shielding(or mitigation)

- Using collimators to block single beam loss outside of the IR
- Using mask to block SR outside of the Be beam pipe
- Using heavy metal(like W) somewhere in the IR(like outside the cryomodule)
- Using paraffine at both ends of the yoke(together with concrete wall maybe) to block the upstream single loss entering the IR

Shielding Effects of Paraffine

We are adding 10cm paraffine at both ends of the yoke.

- Preliminary results show that it do help.

Shielding Effects of Tungsten

- After fixing the threshold @ TPC, we need to find some space for shielding.
- Currently, we have several attempts, including
 - Add 1cm/2cm tungsten shielding outside of the cryo-module
 - Change all the crystal (900-1100 of LumiCal) to tungsten for testing
 - Therefore, we have 5 versions
 - Crystal Lumi + No tungsten outside cryomodule
 - Crystal Lumi + 1cm tungsten outside cryomodule
 - Crystal Lumi + 2cm tungsten outside cryomodule
 - Tungsten Lumi + 1cm tungsten outside cryomodule
 - High Z Pipe + Crystal Lumi + 1cm tungsten outside cryomodule
- The shielding would impact ITK/TPC/OTK/Calo

Shielding Effects @ TPC

We have preliminary version on TPC.

In general, wlumi>w2cm>w1cm>highzpipe/w0cm

Xin She

Shielding Effects @ Calo

- We have preliminary version on both hit rate and occupancy, including ecal and hcal.
- For barrel, wlumi>w0cm>w2cm>w1cm>highzpipe

For endcap, wlumi>w2cm>w1cm>w0cm>highzpipe

Summary & Outlook

- The beam induced backgrounds @ Higgs and Z-pole are updating. (Priority: Higgs > Low-Z@3T > High-Z)
 - Higgs simulation could be finished this week.
 - Low-Z @ 3T are simulating. High-Z @ 2T needs to re-simulated.
- The study on the effects of shielding is ongoing, we need shielding.
 - The paraffine shielding at both ends of yoke is needed. Software merging.
 - The tungsten shielding outside lumical helps, we need to balance.
 - The tungsten shielding outside cyro-module needs more detailed study.

Thank You

Backup

Simulation Workflow

Generation/Tracking

Detector Simulation

(Pre-)Digitalization

Could get the step information at sub-detectors Implemented time window, 1BX/3BX for higgs

Merge the steps into cell