

High-granularity Crystal Calorimeter: R&D progress towards CEPC TDRrd

Yong Liu (IHEP), for the CEPC-Calo Team CEPC Day November 27, 2024

High granularity crystal calorimeter

- Calorimetry for future Higgs factories (e.g. CEPC)
 - Precise measurement of Higgs/Z/W bosons, BSM physics, etc.
 - PFA-oriented design: high granularity (transverse, longitudinal)
 - Aim to achieve Boson Mass Resolution (BMR) of 3 4%
- CEPC Reference Detector
 - High-granularity crystal calorimeter: selected as baseline ECAL option
 - Fine segmentation in crystals: PFA compatible
 - Optimal EM energy resolution better than $3\%/\sqrt{E} \oplus 1\%$

Calorimeters: crystal ECAL and ScintGlass HCAL

PFA-oriented crystal calorimeter for CEPC

- Focus of this talk: (hardware) R&D activities on key issues
 - Crystal-SiPM units in lab and beam tests
 - Response uniformity, timing performance (MIP and EM shower)
 - Crystal calorimeter prototyping and beamtests
 - EM performance, validation of simulation and digitisation
 - Considerations on 2025 planning

- BGO bars in $1 \times 1 \times \sim 40 \ cm^3$
- Effective granularity 1×1×2 cm³
- Modules with cracks not pointing to IP (with an inclined angle of 12 degrees)

Long BGO bar (40cm): 2024 CERN beamtest

- 40cm BGO bar: uniformity scans with π^- beam
 - Data: MIP energy spectrum with 10 GeV π^-
 - Uniformity (MPV) in RMS/mean = 0.43 %

Work in Progress

BGO-SiPM response uniformity

- Uniformity (MPV) in (Max-Min)/Mean = 1.5%
- Excellent response uniformity along crystal length

2000

1800

Long BGO bar (60cm): 2024 CERN beamtest

- 60cm BGO bar: uniformity scans with π^- beam
 - Data: MIP energy spectrum with 10 GeV π^-
 - Uniformity (MPV) in RMS/mean = 3.0 %

BGO-SiPM response uniformity

- Uniformity (MPV) in (Max-Min)/Mean = 10.5%
- 60cm BGO shows worse uniformity than 40cm (7 times)

CERN beamtest in Jul. 2024

2000

BGO crystal bar: uniformity studies in lab (reminder)

- 40cm long BGO: uniformity scans with Cs-137
 - Data: 662 keV full energy spectrum
 - Uniformity in RMS/mean = 0.6 %
 - Uniformity in (Max-Min)/Mean = 2.5%

Crystal options: BGO vs. BSO

- Crystal candidates: BSO versus BGO
 - Similar density and moderate light yield
 - BSO with faster scintillation time (100 ns) than BGO (300 ns)
 - BSO with more potentials in cost effectiveness: without using Germanium
- BGO and BSO tested with Cs-137 and cosmic muons in lab
 - BSO shows ~1/4 of BGO light yield: consistent with publications

BSO properties: density and XO

Atomic and nuclear properties of bismuth silicate	(BSO)[((Bi ₂	03)	$)_2(Si$	O ₂)	3]
---	------	-----	------------------	-----	----------	------------------	----

Quantity			Value		Units	Value	Units	
<z a=""></z>			0.42260		mol g ⁻¹			
Density		7.120		g cm ⁻³				
Mean excitation energy			519.2	19.2 eV				
Minimum ionization			1.279	.279 MeV g ⁻¹ cm ²		9.103	MeV	
Nuclear interaction length			157.0		g cm ⁻²	22.06	cm	
Nuclear collision length		95.5		g cm ⁻²	13.42	cm		
Pion interaction length			189.2		g cm ⁻²	26.57	cm	
Pion collision length			121.9		g cm ⁻²	17.12	cm	
Radia	Radiation length		7.81		g cm ⁻²	1.097	cm	
Critical energy		10.68		MeV (for e)	10.32	MeV		
Muon critical energy		183.		GeV				
Molière radius			15.52		g cm ⁻²	2.179	cm	
Plasma energy $\hbar \omega_p$		49.98		eV				
Comp	ositi	ion:						
Elem	Ζ	Atomic frac*		Α	M	lass frac		
0	8	12.00	1	5.9990 0.		172629		
Si	14	3.00	28.0855		0.	075759		
Bi	83	4.00	20	08.9804	0.	751613		
* calc	* calculated from mass fraction data							

For muons, dE/dx = a(E) + b(E) E. Tables of b(E): <u>PDE TEXT</u> Table of muon dE/dx and Range: <u>PDE TEXT</u> <u>Explanation of some entries</u> Note: Mean excitation energy calculated using the ICRU37 Table 5.1 algorithm for liquids and solids Note: Evalute structure: less common is Bi {12} SiO {20} <u>Note: Check density. Probably wrong</u>

https://pdg.lbl.gov/2024/AtomicNuclearPropertie s/HTML/bismuth_silicate_BSO.html

Crystal	Density (gcm ⁻³)	Radiation length (mm)	Decay constant (ns)	Peak emission (nm)	Refractive index n	Relative light output
BSO	6.80	11.5	~ 100	480	2.06	0.04
BGO	7.13	11.2	~ 300	480	2.15	0.15

https://doi.org/10.1016/j.nima.2011.03.013

- BSO density and XO: PDG values are wrong
 - BSO in PDG: higher density and shorter X0 than BGO
- BSO crystals produced at SIC
 - Density recently measured by SIC colleagues: 6.78 g/cc
 - Result Consistent with the NIMA publication (6.80 g/cc)
- Will apply updated values in calorimeter simulation

Crystal MIP timing resolution: 2024 CERN beamtest

- Tested different crystal types and lengths with 10 GeV π^-
- BGO (8cm) and BSO (7cm) exhibit similar timing resolution
 - Effects of intrinsic light yield and scintillation time (somehow) cancel out
- Timing resolution generally degrades when length increases

Typical τ_{sc}

300ns

100ns

Crystal

BGO

BSO

EM shower timing studies: 2023 DESY beamtest

• Signal amplitude distributions with different upstream (pre-shower) materials: to mimic different shower depths and study timing performance

EM shower timing studies: 2023 DESY beamtest

• Reaching the limitation of test stand (2.5 GS/s sampling rate)

600

800

1000

<Amp> [mV]

1200

Crystal Calorimeter Prototype: 2023 DESY beamtest

- Crystal calorimeter modules: with total depth of $21X_0$
- First beamtest: electron beam (1-6 GeV) at DESY TB22
 - Motivations: system integration, EM shower performance
 - EM Performance: dominated by TB22 beam momentum spread
 - DESY beamline momentum spreads
 - TB21: measured with dipole magnet and beam telescope ~16% (at 1GeV)
 - **TB22: no direct measurements**, expected at ~8% at 1 GeV from our testbeam data; but spread seems not to follow 1/p function as in TB21

Crystal Calorimeter Prototype: 2024 CERN beamtest

- Data taking with muon and electron beams CERN PS-T9
 - MIP calibration (5 GeV muons), EM performance (1–10 GeV electrons)
 - Extensive studies on detector calibration, simulation digitisation, beam momentum
 - Considerably smaller beam spread than DESY beamline
 - Crucial for testing high-precision detectors like crystal calorimeters
- Extensive studies on PS-T9 beamline simulation with CERN beamline physicist
 - Confirmed larger beam momentum spread in data than expected from beamline lattice (~1%)
 - Quantified beam momentum spread due to **Beam Instrumentation** in upstream

[MeV]

²⁰ ¹⁵

Cha

Crystal Calorimeter Prototype: 2024 CERN beamtest

- MIP calibration with 5 GeV muons
 - Done for all 144 channels, and also High Gain and Low Gain modes per ASIC channel
 - Data and MC (simulation + digitisation) reach reasonable consistency in MIP energy spectrum
- EM performance with 1 10 GeV electrons
 - Use beam momentum from beamline simulation as an input to calorimeter simulation
 - Energy spectra: simulation + digitisation can generally reproduce data

Crystal Calorimeter Prototype: EM performance

- Studies based on electron data in 1 10 GeV
 - Data taken with *beam instrumentation* in upstream: Cherenkov detectors (XCET), SciFi trackers (beam profilers)
- EM response linearity within $\pm 1\%$
 - Better understanding of calibration precision (~0.5%) and corrections of crosstalk in ASIC neighbouring channels
- EM energy resolution
 - Preliminary EM performance after excluding beam momentum spread: $< 2\%/\sqrt{E} \oplus 1\%$
- Dedicated digitisation model for crystal prototype
 - Generally well validated by electron beam data
- Ongoing studies
 - Corrections for SiPM and ASIC with large signals (high energy)
 - Further discussions on beamline simulation

Summary and planning

- CEPC crystal calorimeter R&D: steady progress to address key issues
 - Crystal-SiPM units
 - Comprehensive studies in response uniformity, timing performance (MIP and EM shower)
 - Crystal calorimeter prototype
 - Promising results on EM performance and validation of simulation and digitisation with data
- Considerations on R&D planning in 2025
 - To fully exploit existing testbeam data (1-10 GeV) in 2023/2024: finish data analysis and prepare publications (also as references for CEPC Ref-TDR)
 - To study performance with BSO crystals and also SiPMs from domestic vendors
 - Crystal calorimeter prototype: performance with beam energy above 10 GeV
 - To measure SiPM-crystal signals as large as ~<u>30 GeV</u> (the upper limit for one channel in CEPC ECAL)
 - To evaluate the response linearity with testbeam data
 - To provide a solid input for SiPM-readout ASIC design
 - Need further discussions and planning for beamtest preparations

Thank you!

Backup Slides

Beam backgrounds: impacts to EM performance

- Beam-induced backgrounds at 50MW Higgs mode
 - Varying ECAL time window: 150 ns 1800 ns
 - Preliminary results: significant contribution to the noise term

Beam backgrounds: impacts to EM performance

- Beam-induced backgrounds at 50MW Higgs mode
 - Varying ECAL time window: 150 ns 1800 ns
 - ECAL time window: trade-off in crystal scintillation signals and beam backgrounds

Reminder: *shaping time of 87.5 ns* in beamtests of crystal calorimeter prototype

BGO-SiPM: gated time window studies

- BGO-SiPM unit: MIP signal (in p.e.) versus time window
 - 200 ns time window: effective for collecting over 50% of the photons
 - Bear in mind: for each SiPM, ~100 p.e./MIP is required for stochastic term <3%

