

CEPC TDAQ and Online

 $Fei\ Li$ On behalf of CEPC TDAQ Group

中國科學院為能物加加完施 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 21th, 2024, CEPC Detector Ref-TDR Review

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- Previous experience on large facilities
- R&D efforts and results
- Detailed design
- Research team and working plan
- Summary

Introduction

- This talk is about the design and development of the TDAQ and online
- This talk relates to the Ref-TDR Ch 12.
- Questions for physics and simulation
 - What kind of events need to be saved?
 - How to identify these events?
 - Background level?
- Questions for each detectors and electronics
 - Raw data readout bandwidth?
 - How much latency is acceptable?
 - What trigger primitives can be provided?
 - Noise level itself?
 - Control and monitoring requirements?

12.1 Introduction	
12.2 Requirements and Design Considerations	
12.2.1 Requirements	
12.2.2 Event rate & background rate estimation	
12.2.3 Technology survey	
 12.2 Requirements and Design Considerations	
12.2.5 TDAQ Interface with electronics	
12.3 Trigger Simulation and Algorithms	
12.4 Hardware Trigger	
12.4.1 Previous experience on large facilities	
12.4.2 System architecture	
12.4.3 Common Trigger Board	
12.4.4 Trigger Control and Distribution	
12.4.5 Resource cost estimation	
12.5 Software and High Level Trigger	
12.6 Data Acquisition System	
12.6.1 Previous experience on large facilities	
12.6.2 Overview of System Functionality	
12.6.3 Detector Readout	
12.6.4 Dataflow	
12.6.5 Network	
12.6.6 Online Software	
12.7 Detector Control System	
12.8 Experiment Control System	
12.9 Summary	

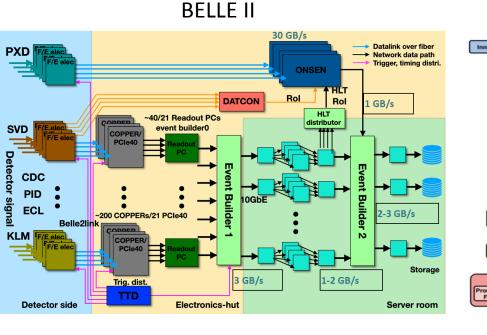
Requirements: Physical Event Rate

8 Hz @ Higgs 240GeV(50MW)

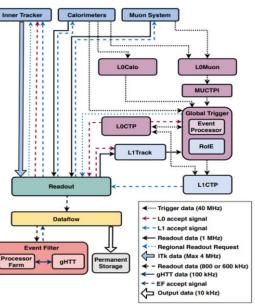
- Bunch crossing rate: 2.889 MHz
- Higgs: ~0.02Hz
- 82 kHz @ Z pole 91GeV(50MW)
- Bunch crossing rate: 43.3 MHz
 Physical event rates are sufficiently low relative to the bunch crossing rate.
- Keep physical events as more as possible
 - By a rough selection of the relevant objects (jet, e, muon, tau,v, ...) and their combinations.
 - Required detailed signal feature extraction and simulation studies.

	Higgs	Z	W	tť				
SR power per beam (MW)	50							
Bunch number	446	13104	2162	58				
Dunch maning (ng)	346.2	23.1	138.5	2700.0				
Bunch spacing (ns)	(×15)	(×1)	(×6)	(×117)				
Train gap (%)	54	9	10	53				
Luminosity per IP (10^{34} cm ⁻² s ⁻¹)	8.3	192	26.7	0.8				

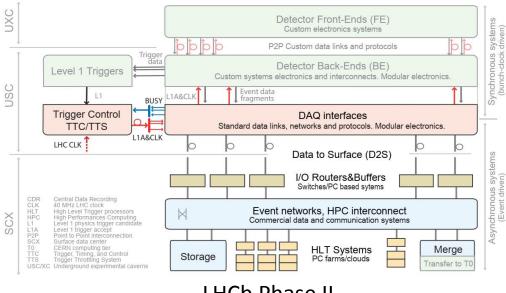
Requirements: Data Rate

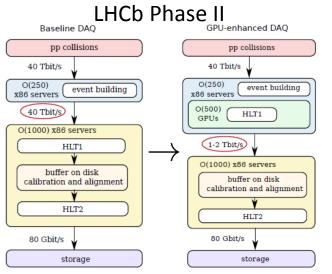

Data rate before trigger

- ~1 TB/s @ Higgs
- Several TB/s @Z
- L1 trigger rate
 - O(1k) Hz @ Higgs
 - O(100k) Hz @ Z
- Event size < 2 MB</p>
 - Related to occupancy and read out window
- Storage rate after HLT
 - <100 Hz(200 MB/s) @Higgs
 - 100 kHz (200 GB/s)
 @Z


	Vertex	Pix(ITKB)	Strip (ITKE)	ОТКВ	ΟΤΚΕ	ТРС	ECAL-B	ECAL-E	HCAL-B	HCAL-E	Muon
Channels per chip	512*102 4	512*128	1024	128		128	8~16				
Data Width /hit	32bit	42bit	32bit	48bit		48bit	48bit				
Avg. data rate / chip	0.18Gbp s/chip, 1Gbps/c hip inner	3.53Mbp s/chip	21.5Mbps /chip	2.9Mb ps/chip	38.8Mb ps/chip	~70Mb ps/mod ule Inmost	10kHz/ch	100kHz /ch	3kHz/chan nel	25kHz/cha nnel	10kHz/c hannel, 20kHz/i ner endcap
Detector Channel/m odule	1882 chips @Stch &Ladder	30,856 chips 2204 modules	23008 chips 1696 modules	83160 chips 3780 module s	11520 chips 720 module s	492 Module	0.96M chn ~60000 chips 480 modules	0.39 M chn	3.38M chn 5536 aggregatio n board	2.24M chn 1536 Aggregatio n board	43,176 chn(iner end-cap 6912), 288 modules
Avg Data Vol before trigger	474.2G bps	101.7Gb ps	298.8Gb ps	249.1 Gbps	27.9Gb ps	34.4G bps	460.8Gbps	1.87Tb ps	811.2Gbps	2.688Tbps	24Gbps
Occupancy	0.22e-4	2.5e-4				2.8e-4	58e-4			19.5e-4	
Sum	7.1 Tbps										

Preliminary background and data rate estimation


Technology survey


ATLAS Phase II

CMS Phase II

- A few common backend boards (ATCA)
- Network or PCIe bus readout
- GPU/FPGA acceleration at HLT
 - GPU power has increased 1,000 times in the last decade
- Full software trigger @LHCb
 - Deal with higher occupancy and more accurate tracking.

6

Our choices

Fewer and cleaner physical processes @CEPC

Electronics framework schema

- Full data transmission from Front-End Elec.
- Connect trigger with Back-End Elec.

Trigger solutions

- Hardware trigger(L1) + high level trigger(HLT)
 - A single type of common hardware trigger board
 - Collect trigger primitives from BEE common boards
 - Send back trigger accept signal to BEE
 - Provide fast and normal trigger menu
 - Network readout

Main Technical Challenges

High efficiency algorithms in trigger and background compression

- 2.887MHz->O(1k)Hz @Higgs
- 43.3MHz->O(100k)Hz @Z
- Trigger primitive synchronization control with asynchronous data readout from electronics
 - Manage data disorder due to data transfer queuing and delay
 - Align sub-detector data of each bunch crossing within limited time and resource

Previous experience with TDAQ Hardware

Designed BESIII trigger system

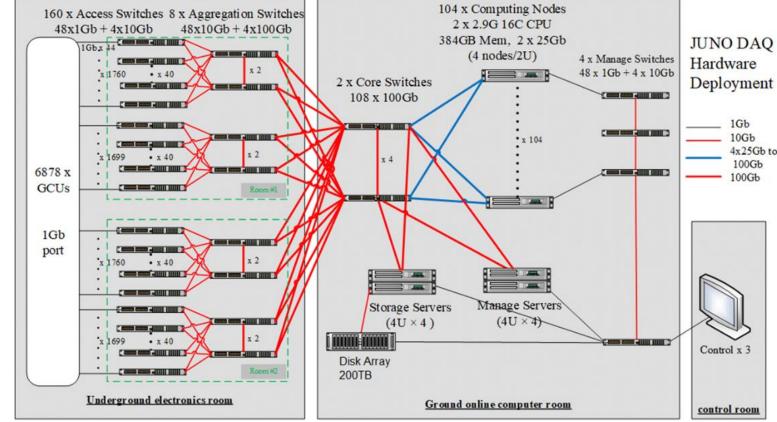
 Comprehensive trigger simulation/hardware design/core trigger firmware development
 GSI PANDA TDAQ R&D

Designed HPCN board for TDAQ

Designed Belle2Link and HPCN V3 as ONSEN for Belle II

- Designed CPPF system for CMS Phase-I
 - Design MTCA board, Cluster finding and fanout to EMTF/OMTF
- Designing iRPC/RPC Backend/Trigger for CMS Phase-II
 - ATCA common Backend and trigger board

Extensive experience in TDAQ system design, algorithm and hardware development

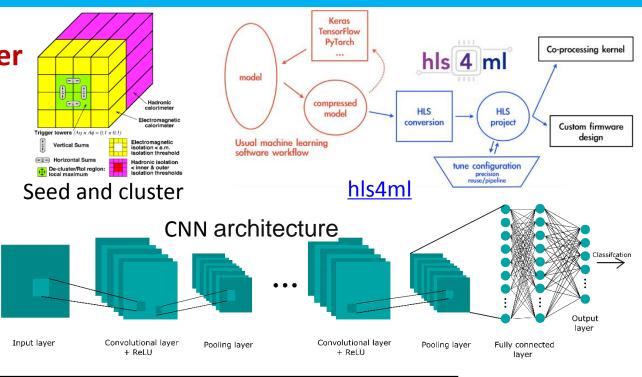


9

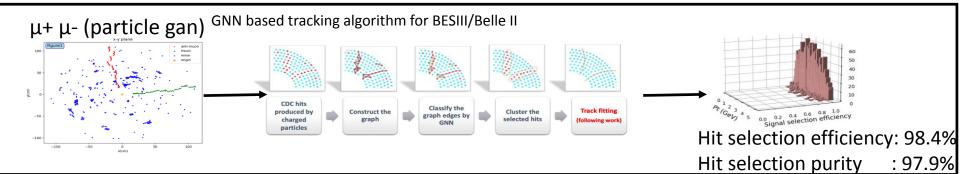
Previous experience with DAQ&DCS

BESIII DAQ & DCS

- Running since 2008
- Dayabay experiment DAQ&DCS
- Operated from 2011 to 2020LHAASO DAQ
 - Operated since 2019
 - Full software trigger
- JUNO DAQ&DCS
 - Two types of data stream
 - HW trigger for waveform
 - Software trigger for TQ hits
 - Online event classification



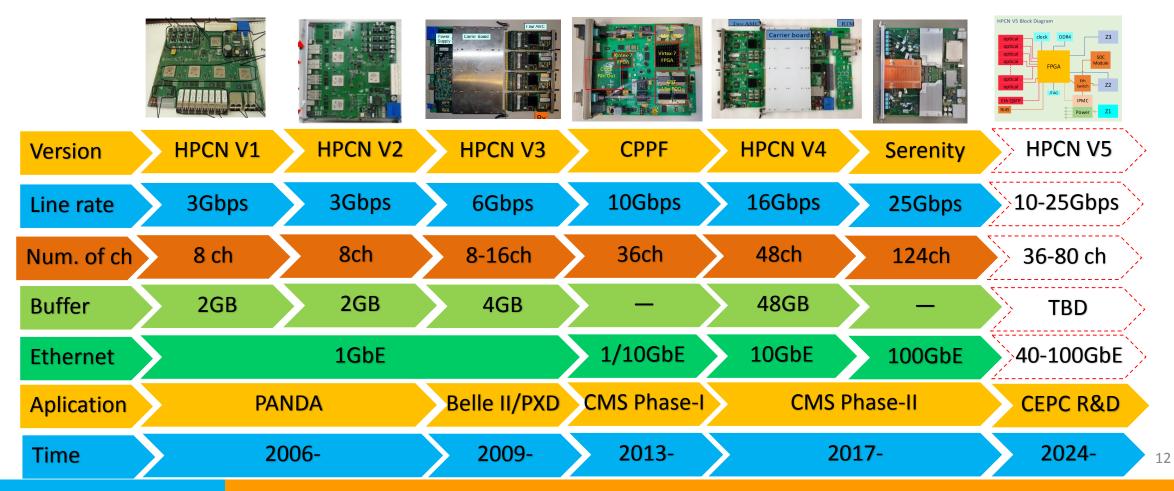
Extensive experience in DAQ&DCS development and operation, including software trigger


Previous experience with ML algorithm

Neural network used in ATLAS global trigger

- Example: tau reconstruction at the hardware trigger level
- Train the neural network (NN) with ROI
- Use hls4ml to convert NN model to hls project

HLT Acceleration on FPGA platform

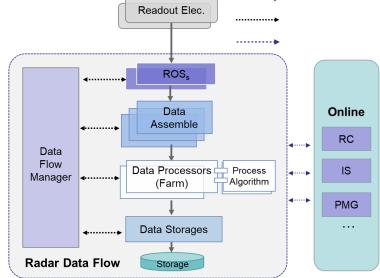


Some experience in ML algorithm development on FPGA for L1 and HLT

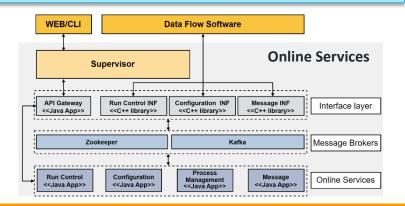
R&D efforts and results

Started the design of an ATCA common trigger board for CEPC

- Based on a series of designed xTCA boards



Streaming Software Framework – RADAR

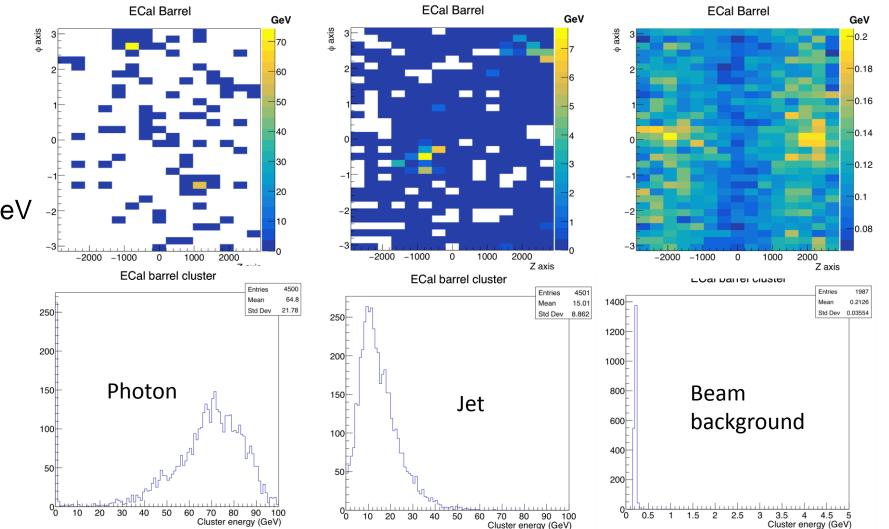

heteRogeneous Architecture of Data Acquisition and pRocessing

- **V1:** deployed in LHAASO (3.5 GB/s data rate), *software trigger mode* V2: upgraded for JUNO (40 GB/s data rate), mixed trigger mode ROS. Containerized running Data Assemble V3: CEPC-oriented (~ TB/s data rate), under development Data Flow Manager (Farm) Data Storages **Motivation:** Radar Data Flow Storage High-throughput data acquisition and processing **Current Status:**
 - Over a decade of work led to significant progress, validated through experiments
 - **Recent Focus:**
 - Heterogeneous online processing platforms with GPU
 - **Real-time data processing acceleration solutions**
 - **Expansion**:
 - Application across various domains (DAQ, triggering, control, etc.) —
 - Integration of AI technologies (ML, NLP, expert systems, etc.)

Start to develop new version with GPU acceleration.

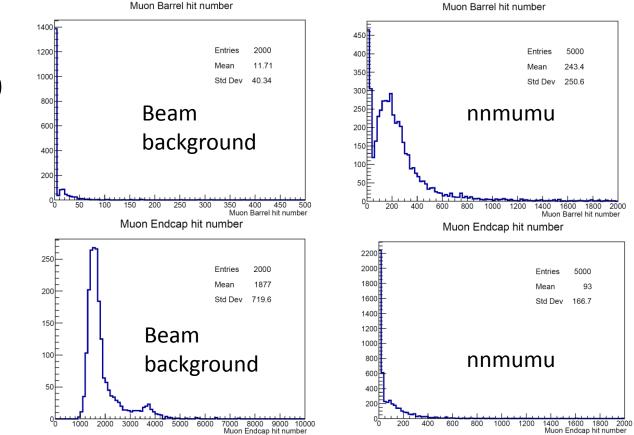
- **General-purpose distributed framework**
- **Lightweight structure**
- **Plug-in modules design**
- **Microservices architecture**

R&D efforts and results



Acceleration progress for waveform reconstruction and software trigger algorithm.

Preliminary Trigger Simulation with Cal.


Physical events signature at ECal&HCal

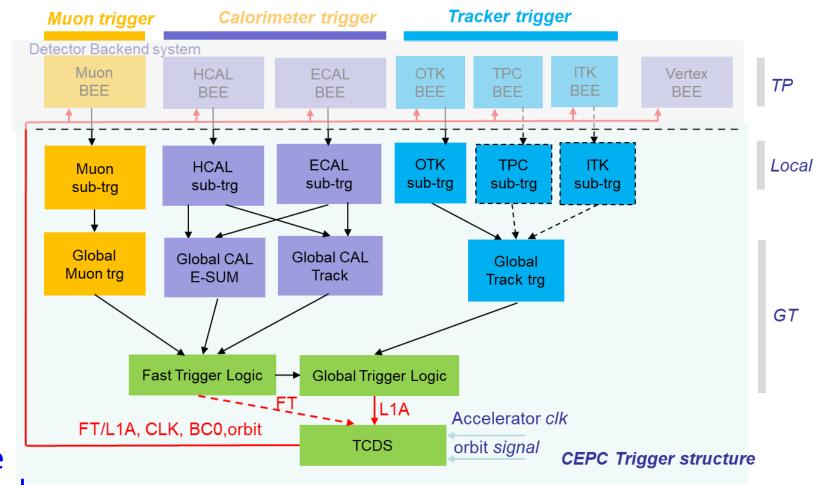
- Energy deposition is relatively large and concentrated
- Trigger primitive and condition
 - Two clusters with the highest energy
 - Ecal/HCal barrel >0.5GeV
 - ECal end-cap >5GeV
 - Hcal end-cap >50Gev
 Trigger efficiency
 - nnaa:100%
 - nnbb:100%
 - nnaZ:99.7%
 - nntautau:96.7%
 - nnWW:99.1%
 - nnZZ:95.8%
 - Beambkg:4.8%

Preliminary Trigger Simulation with Muon

- Left: 2000 background events(10BX), Right: 1000 ZH→nnµµ events
- Up : Barrel
 - Number of hits(Barrel) > 10
 - nnµµ efficiency:100%
 - Background: 19%
- Down : Endcap
 - Higher background hits

A lot of simulation and research need to be done

Design of Hardware Trigger Structure


Trigger primitive(TP)

– Extracted by BEELocal detector trigger

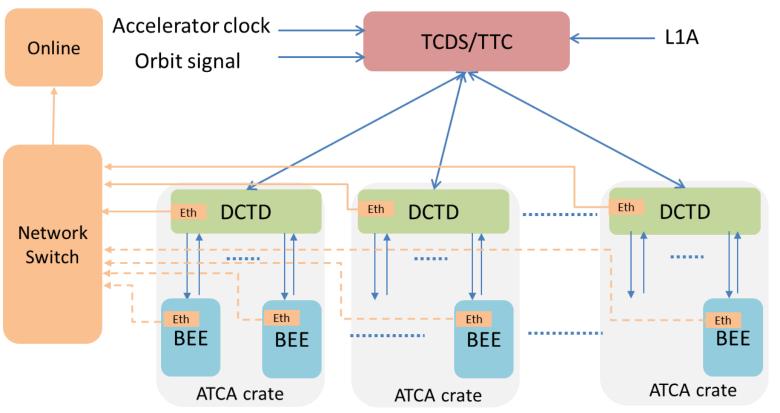
- Sub energy and tracking...
 Global trigger
 - E-sum and tracking
 - Fast trigger(FT) and L1A generation on demand

TCDS (Trigger Clock Distribution System)

 Distribute clock and fast control signals to BEE
 Which detectors participate in trigger needs to be studied

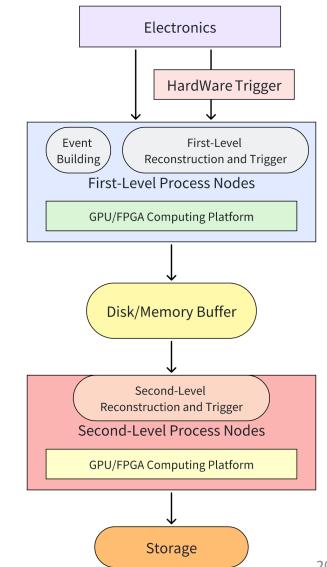
Preliminary design of the common Trigger Board

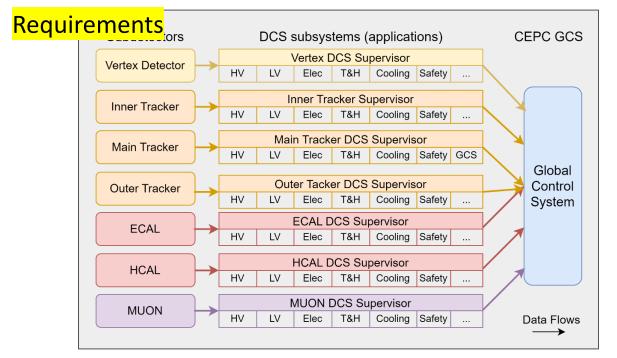
Common Trigger board function list

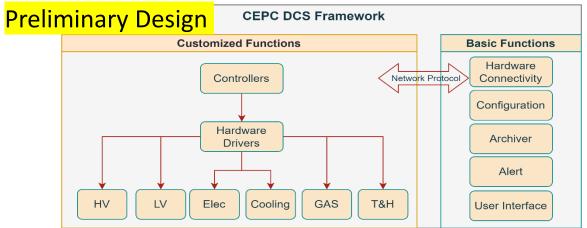

- ATCA standard
- Virtex-7 FPGA
- Optical channel: 10-25 Gbps/ch
- Channel number:36-80 channels
- Optical Ethernet port: 40-100GbE
- DDR4 for mass data buffering
- SoC module for board management
- IPMC module for Power management

Preliminary design of TCDS and Readout

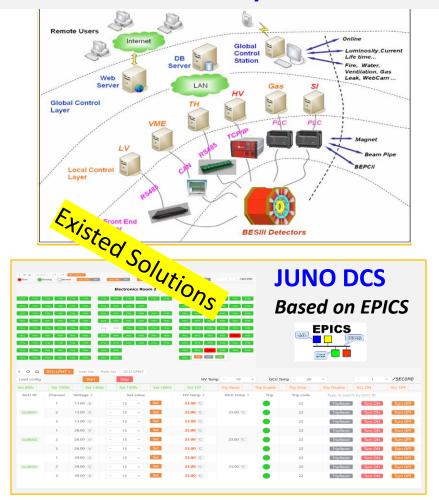
TCDS/TTC


- Clock, BC0, Trigger, orbit start signal distribution
- Full, ERR signal feed back to TCDS/TTC and mask or stop L1A
- Data readout from BEE
 - Read out directly or concentrated by DCTD board
 - Depending on the size of the data volume
 - TCDS-Trigger Clock Distribution System
 - TTC- Trigger, Timing and Control
 - DCTD-Data Concentrator and Timing Distribution
 - BEE-Backend board Electronic

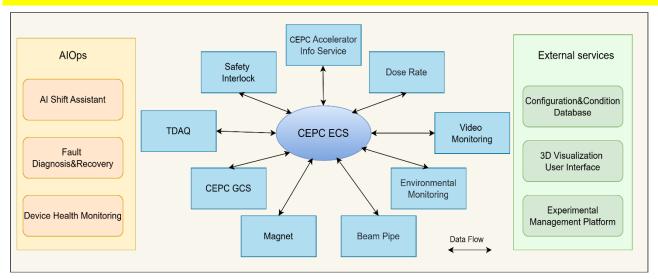

Architecture Design of DAQ



- Full COTS(commercial-off-the-shelf) hardware
- Readout interface and protocol
 - Ethernet 100Gbps
 - TCP or RDMA
- RADAR software framework
- Heterogeneous computing
 GPU/FPGA acceleration for HLT
- Disk or memory buffer
 - Decouple computing environments
 - Complete offline algorithm can be run online



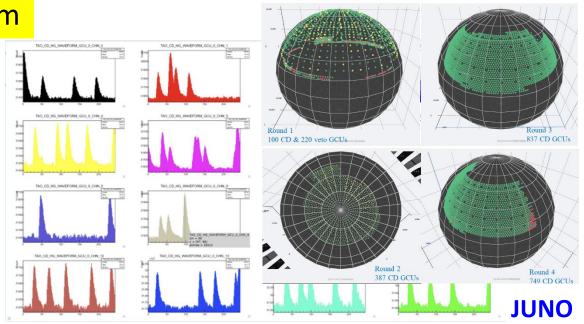
Preliminary design of DCS

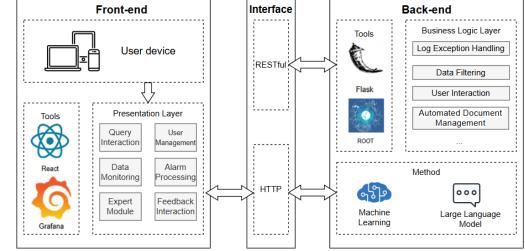

BESIII Detector Control System Based on LabVIEW

Designed framework based on existed solutions

Preliminary design of ECS

Main components of the Experiment Control System




R&D progress from JUNO and BESIII

- 3D Visualization Monitoring
- AI shift assistant based on LLM+RAG (TAOChat)
- ROOT-based Online Visualization System

Unified control and monitoring for all system

- TDAQ, DCS, electronics, accelerator and others

Research Team

15 staff of IHEP TDAQ group DAQ

- Fei Li (DAQ, team leader)
- Hongyu Zhang (readout)
- Xiaolu Ji (online processing)
- Minhao Gu (software architecture)
- Trigger
 - Zhenan Liu (trigger schema)
 - Jingzhou Zhao (hardware trigger)
 - Boping Chen (simulation/algorithm)
 - Sheng Dong (firmware/DCS)
- DCS/ECS

– Si Ma

IHEP Students(20 totally)

- 2 PhD and 3 master
- New member planned
 - 1 staff next year
 - 2 postdoc
- Collaborators
 - Qidong Zhou (HLT, SDU)
 - Yi Liu (HLT, ZZU)
 - Junhao Yin(HLT, NKU)
 - 3 students planned
- We're looking for more collaborators

Gathering manpower for R&D, 9 staff and 5 students involved part of the time

Working plan

TDR related

- Basic trigger simulation and algorithm study
 - Background event study and basic algorithm scheme for each detector
- Detailed hardware trigger and interface design
- Finalize TDAQ and online design scheme
- R&D directions
 - Trigger hardware, fast control and clock distribution
 - TB/s level high throughput software framework(RADAR)
 - FPGA/GPU acceleration and heterogeneous computing
 - Memory-based distributed buffer
 - Detailed trigger simulation and algorithm
 - ML/AI algorithm application
 - Trigger/data compression/ AI operation and maintenance
 - ROCE/RDMA readout protocol and smart NIC

Joined DRD WP7.5(Backend systems and COTS components) as an observer.

Summary

Following sub detectors design and simulation

Completed architecture design of TDAQ and online

Hardware and high level trigger – default choice
 No show-stopper found for TDAQ and online scheme

Challenges: efficient trigger algorithm and handling TB/s level data rate at manageable hardware scale
 More R&D efforts needed to move forward

Thank you for your attention!

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 21th, 2024, CEPC Detector Ref-TDR Review