

CEPC Gaseous Tracker

Huirong Qi and Linghui Wu On behalf of the gaseous tracker group

中國科學院為能物品補完施 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 21st, 2024, CEPC Detector Ref-TDR Review

- Motivation and physics requirements
- Technology survey and our choice
- Technical challenges and R&D efforts
- Detailed design including electronics, cooling and mechanics
- Performance from simulation
- Research team and working plan
- Summary

Motivation

This talk relates to the CEPC Physics and Detector Ref-TDR.

- Chapter 6: Gaseous tracker
- Draft of content listed \rightarrow

Chapter	6 Gas	eous Trackers	
6.1	Physics	s requirements and detection technology	
	6.1.1	Physics requirements of Higgs and Tera-Z	
	6.1.2	Technology choice and the baseline gaseous tracker .	
6.2	Pixelate	ated readout TPC detection	
	6.2.1	TPC detector and readout electronics	
	6.2.2	Mechanical and cooling design	
	6.2.3	Challenges and critical R&D	
	6.2.4	Detector modules toward the validation prototype	
6.3	Perform	nance of TPC tracker	
	6.3.1	Overall of the simulation framework	
	6.3.2	Spatial resolution and PID performance	
	6.3.3	Improvement using the machine learning algorithm .	
6.4	Alternative option of Drift Chamber in Tera-Z		
	6.4.1	PID for high luminosity Z pole at 2T	
	6.4.2	Performance and critical R&D	
6.5	Cost es	timation	

Physics requirement

- CEPC operation stages in TDR: 10-years Higgs → 2-years Z pole → 1-year W
- Physics Requirements of tracker
 - High momentum resolution for Higgs and Z
 - PID of charged hadrons for flavor physics and jet substructure

 $\sigma_{1/pT} = \sqrt{a^2 + (b/pT)^2}$

Technology survey and our choice

3D precise track reconstruction with Ultra light material budget

- High spatial resolution ($\sim 100 \ \mu m$) with thousands hits per track
- High precision tracking and High **Particle Identification** resolution (~3%)
- Operation at **Higgs (3T) and Tera-Z (2T)**; Modular design and easily installation
- Considering the technical challenges, performance, risk of the detector construction

Modular design

Time Projection Chamber

Baseline track detector: Pixelated TPC

- Tracking system: Silicon combined with gaseous chamber for the tracking and PID
 - Pixelated readout TPC as the **baseline gaseous detector** in CEPC ref-TDR.
 - Radius of TPC from 0.6m to 1.8m
 - DC as an **alternative** option at Tera-Z.

Technical challenges and R&D efforts

Main Technical Challenges

• Pixelated readout TPC (**Baseline**)

- Material budget at endcap/barrel $\sqrt{}$
- Occupancy and hit density at Tera-Z $\sqrt{}$
- Ion backflow suppression $~\sqrt{}~$
- Running at 2 Tesla √
 Improved PID √
- **Reasonable channels(ongoing)**
- **Reasonable power consumption (ongoing)**
- DC (Alternative at Tera-Z)

Critical key

issues

- dN/dx for PID $\sqrt{}$
- **Risk the 5.8m wires and tension (ongoing)**

TPC prototype R&D efforts and results

- CEPC TPC detector prototyping roadmap:
 - From TPC module to TPC prototype R&D for Higgs and Tera-Z
- Achievement by far:
 - **IBF \times Gain ~1 @ G=2000** validation with hybrid TPC module
 - Spatial resolution of $\sigma_{r_0} \leq 100 \ \mu m$ and dE/dx resolution of 3.6%
 - FEE chip: reach ~3.0mW/ch with ADC and the pixelated readout R&D

Ion suppression TPC module R&D

Track reconstruction ⁹

TPC prototype with integrated 266nm UV laser

Highlights of TPC prototype R&D

- Highlights of CEPC pad readout TPC R&D and toward the pixelated readout TPC
 - Massive production and assembly MPGD lab has been set up at IHEP.
 - TPC prototype integrated 266nm UV laser tracks has been studied and analyzed the UV laser signal, all are pretty good to Higgs run.
 - **Easy-to-install modular design** of Pixelated readout TPC for CEPC TDR

Publications by CEPC TPC group in 2018-2024:

- https://doi.org/10.1088/1748-0221/18/08/E08002
- https://doi.org/10.22323/1.449.0553
- https://doi.org/10.1016/j.nima.2022.167241
- https://doi.org/10.1109/NSS/MIC44867.2021.9875566
- https://doi.org/10.1109/NSS/MIC44845.2022.10399097
- https://doi.org/10.1088/1748-0221/15/09/C09065
- https://doi.org/10.1088/1748-0221/15/05/P05005
- <u>https://dx.doi.org/10.1142/S0217751X20410146</u>
 <u>https://doi.org/10.1088/1674-1137/41/5/056003</u>
- https://doi.org/10.1088/1748-0221/15/02/T02001
- https://doi.org/10.1088/1748-0221/12/07/P07005

Activity international collaboration

- Activity collaboration: Pixelated readout and Pad readout from IHEP and LCTPC collaboration
 - Large Prototype setup have been built to compare different detector readouts for Tera-Z
 - PCMAG: B < 1.0T, bore Ø: 85cm, Spatial resolution of $\sigma_{r\phi} \le 100 \ \mu m$
 - Collaboration implement improvements in **a pixelated readout TPC for CEPC TDR**

ArXiv. (2023)2006.08562 NIM A (2022) 167241 ArXiv (2022)2006.085 JINST 16 (2021) P10023 JINST 5 (2010) P10011 NIM A608 (2009) 390-396

Detailed design and performance of Baseline: TPC

Detailed design of mechanics

TPC detector	Key Parameters		
Modules per endcap	248 modules /endcap		
Module size	206mm×224mm×161mm		
Geometry of layout	Inner: 1.2m Outer: 3.6m Length: 5.9m		
Potential at cathode	- 62,000 V		
Gas mixture	T2K: Ar/CF4/iC4H10=95/3/2		
Maximum drift time	34μs @ 2.75m		
Detector modules	Pixelated Micromegas		
3.6m	5.8m Total mass 1500Ks		

Ultra-light barrel and FEA analysis

- Consideration of new Carbon Fiber barrel instead of the honeycomb barrel (~2% X₀)
- Ultra-light material of the TPC barrel (QM55 CF) : 0.59% X₀ in total, including
 - FEA preliminary calculation: 0.2mm carbon fibber barrel can tolerant of OTK (~200Kg)
- Optimization of the connection back frame of the endcap (on going)

Material	budget	of TPC	barrel	
·iacei iai	Dudget		builter	•

Layer of the barrels	D[cm]	X ₀ [cm]	d/X ₀ [%]
Copper shielding	0.001	1.45	0.07
CF outer barrel	0.020	25.28	0.08
Mirror strips	0.003	1.35	0.19
Polyimide substrate	0.005	32.65	0.02
Field strips	0.003	1.35	0.19
CF inner barrel	0.010	25.28	0.04
Sum of the material budget			0.59

• Low material of the TPC endcap

15%X ₀	in total, including
Readout plane, front-end-electronics	5 4%
Cooling	2%
Power cables	9%

Optimization of Gas flow in Chamber

- Requirement: Gas uniformity of **99% or more** in large TPC chamber
 - 8 Ø10mm gas inlets + 8 Ø10mm gas outlets (opposite, 90°/endcap)
 - Working Gas Flow: 0.3 0.5 L/min
 - Eco-friendly gas and the **gas recycling system** also considered.
 - Online monitoring system: O_2 (ppm) and H_2O (ppm)

Optimized inlet and outlet in Chamber

Simulation of gas flow and uniformity distribution in TPC Chamber

Full Simulation of Pixelated readout TPC

Simulation:

- Full geometry TPC
- Ionization simulated by Garfield++
- Drift and diffusion from parameterized model based on Garfield++ simulation

Digitization (Refer to the TPC module and prototype):

- Electronic noise: 100 e-
- Amplification:
 - Number of electrons: 2000
 - Signal size in space: 100 μm

readout pads

DOI: 10.22323/1.449.0553 EPS-HEP 2023 talk by Yue Chang

Simulation of TPC detector under 3T/2T and T2K mixture gas

Performance of Pixelated readout TPC

Reconstruction:

- Reconstruction by counting the number of fired pixels over threshold
- Reconstruction with good linearity and reliability

Preliminary PID performance:

• π/k separation power simulation with the

different momentum

Separation power:
$$\frac{|\mu_A - \mu_B|}{\frac{\sigma_A + \sigma_B}{2}}$$

Optimization of the readout size

- Timepix (55μm×55μm) readout TPC prototype has been validated four times using DESY beam.
 - Power consumption: 2W/cm²; Low power mode: 1W/cm² (Too high power consumption.)
- Simulation results showed that readout size can be optimized at 500µm×500µm.
 - Readout channels and power consumption need to be studied.
 - Focused on 100mW/cm^2 and $500 \mu \text{m}$ readout for CEPC ref-TDR (2-phase CO₂ cooling OK!)

Detailed design of electronics and BEC

Pixelated Readout Electronics: TEPix development

- Multi-ROIC chips + Interposer PCB as RDL
- Four-side bootable
- TEPix: Low power Energy/Timing measurement
 - Low power consumption: 0.5mW/ch@2nd Chip
 - Timing: 1 LSB(<10ns)</p>
 - Noise: 300e- (high gain)

FEE ASIC: TEPIX—Test Results in May ¹⁹

Validation and commissioning of TPC prototype

Cnts

4140

- R&D on Pixelated TPC readout for CEPC TDR.
 - ASIC chip developed and 2nd prototype wafer has been done and tested.
 - The TOA and TOT can be selected as the initiation function in the ASIC chip
- Beam test of the pixelated readout TPC prototype in preparation. (November, 2024 and January, 2025)

Photos TPC modules assembled for the beam test

Amplitude (left) and Uniformity/ch (right)²⁰

Performance of pixelated readout TPC

Parameters	Higgs run	Z pole run
B-field	3.0 T	2.0 T
Readout size (mm)/All channels	0.5mm×0.5mm/2×3×10 ⁷	0.5mm×0.5mm/2×3×10 ⁷
Layers per track in rφ	2300	2300
Material budget barrel (X ₀)	0.59 %	0.59% ith Full
Material budget endcap (X ₀)	15 %	15%
$\sigma_{r\phi}$ (cluster level)	120μm (full drift)	400mm (full drift) w. distortion
σ _z (cluster level)	$\simeq 0.6 - 1.0 \text{ mmpdale} \text{ simulation}$ (for zero – iull drift)	$\simeq 0.6 - 1.0 \text{ mm}$ (for zero – full drift)
2-hit separation in rφ	0.5 mm	0.5 mm
K/ π separation power @20GeV	2.6 σ	2.6 σ
dE/dx	< 3.0 %	< 3.0 %
Momentum resolution normalized:	a = 1.9 e -5	a = 3.3 e -5
$\sigma_{1/pT} = \sqrt{a^2 + (b/pT)^2}$	b = 0.8 e -3	b = 1.5 e -3 21

Detailed design of DC for Tera-Z

- CF frame structure
- Length: 5800 mm; Outer diameter: 3600 mm; Inner diameter: 1200 mm
- Thickness of each end plate: 20 mm, Weight: 880 kg
- Gas mixture: He + iC₄H₁₀ (90/10)
- Cell size: 18mm x 18mm, number of cells: 26483
- Material: 0.16% X₀ for Gas+Wires, 0.21%X₀ for inner and outer cylinders
- Finite element analysis: Endplate deformation 2.7mm, CF frame deformation 1.1mm

International collaboration of DC

- Beam tests at CERN organized by the IDEA DC group (led by Franco Grancagnolo and Nicola De Filippis) :
- Cooperation on
 - Data taking
 - Data analysis
 - Reconstruction algorithm study

Research Team

- Core of the research team (10 staffs + TPC group)
 - IHEP: Huirong Qi, Linghui Wu, Guang Zhao, Mingyi Dong, Yue Chang, Xin She, Jinxian Zhang, Junsong Zhang
 - Tsinghua: Zhi Deng, Canwen Liu, Guanghua Gong, Feng He, Jianmeng Dong, Yanxiao Yang
- Collaboration of the research team (6 staffs +10 students + 5 LCTPC members)
 - **TPC:** CIAE, Shandong University, Nankai University, Zhengzhou University and Liaoning University
 - **DC:** Wuhan University, Jilin University
 - **TPC and DC**: DRD1 collaboration and LCTPC collaboration
- Organization of team
 - Regular weekly meeting from April 2024
 - Collaboration regular meeting with some international groups

Working plan

- Short term working plan (before June, 2025)
 - Optimization of TPC detector for CEPC ref-TDR
 - Prototyping R&D and validation with the test beam
 - mechanics, manufacturing, beam test, full drift length prototype
 - Performance of the simulation and Machine Learning algorithm
- Long term working plan (next 3-5 years)
 - Development of pixelated TPC prototype with low power consumption FEE
 - Beam test collaborated with LCTPC collaboration
 - Development of the full drift length prototype
 - Drift velocity. Attachment coefficient, T/L Diffusion, etc.

Milestones achieved	Before June, 2025	Beyond TDR
Ion backflow suppression	IBF×Gain<1 (Gain=2000)	Graphene technology
Pixelated readout prototype	Validation with beam test	Prototype with Multi-modules
Power consumption ASIC	~100mW/cm ² (60nm ASIC)	Optimization 330µm - 500µm
Improved PID	3% (dN/dx) and $\pi/k S_p$	<3% (dN/dx) and $\pi/k S_p$
Material budget (barrel)	Carbon Fiber	Full size prototype

Summary

- TPC detector prototype R&D using pad readout towards pixelated readout for Higgs and Z pole run at the future e⁺e⁻ collider. DC will be as the alternative detector at Tera-Z.
- Pixelated TPC is chosen as the baseline gaseous tracker in CEPC ref-TDR. The simulation results show that both of PID performance and the momentum resolution are good. Validation with TPC prototype in preparation before TDR.
- Synergies with CEPC/FCCee/EIC/LCTPC allow us to continue R&D and ongoing with the significant international collaboration. All will input to CEPC ref-TDR in next few months.

Thank you for your attention!

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 21st, 2024, CEPC Detector Ref-TDR Review

Backup of TPC R&D

TPC software updated in CEPCSW

TPC software updated in CEPCSW to simulate the performance

- **Geometry** implementation based on CEPC Ref-TDR ____
 - Cathode, Micromegas readout and endplate, barrel, gas volume
- **PID** using dN/dx implementation with a parameterized model ____
 - Track-level dN/dx by parameterization from Garfield++-based full simulation

dN/dx simulation in CEPCSW

Entries = 1135

Mean

Prob

Mean

Sigma

Constant

pion

5GeV

theta=6(

51.71

0.0001564

 118.1 ± 4.9

 51.36 ± 0.04

 1.396 ± 0.038

Ion back flow R&D and results

- Achievement by far from TPC module and prototype:
 - Supression ions hybrid TPC module
 - IBF × Gain ~1 at Gain=2000 validation with TPC module
 - Spatial resolution of $\sigma_{r_0} \leq 100 \ \mu m$ by TPC prototype
 - dE/dx for PID: <3.6% (as expected for CEPC baseline detector concept)
 - Graphene foil suppression (on going @ Shangdong University)

PA Voltage = 650V

2000

15000

Total gain

10000

IBF of double mesh MM @USTC/Jianbei Liu

30

25000

IBF*Gain=2

BF*Gain=15

30000

Updated of the hits density & occupancy at Tera-Z with BK

 $\rho_{sc}(r)$ (single BX) distribution Left & $\rho_{sc}(r)$ (steady state) Right

#7. Beamstrahlung and distortion √

- Maximum distortion with e+e- to qq at Z pole (Physics events only)
- Maximum distortion under the different Beamstrahlung background $(\times 10, \times 50, \times 100$ times Physics events)
 - MDI design at Z need carefully optimized with MDI group in CEPC

Huirong Oi

Momentum resolution

Backup of DC R&D

Waveform-based full simulation

