

CEPC Electromagnetic Calorimeter

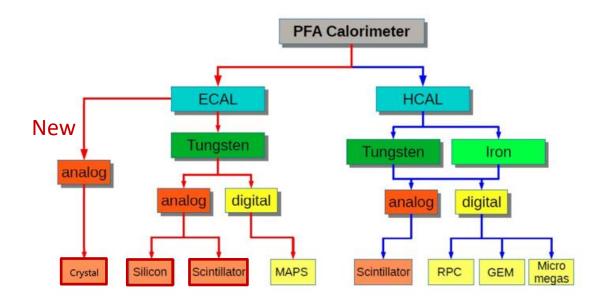
Yong Liu (IHEP), for the CEPC Ref-TDR ECAL team

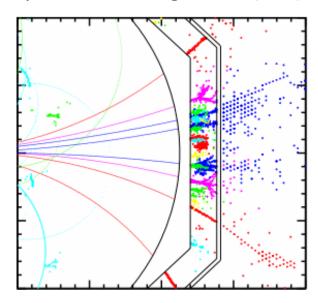
Content

- Introduction
- Requirements
- Technology survey and option selection
- Technical challenges
- Performance from simulation
- R&D efforts and results
- Detailed design including electronics, cooling and mechanics
- Readout electronics
- Research team and working plan
- Summary

Introduction

RefDet TDR Outline

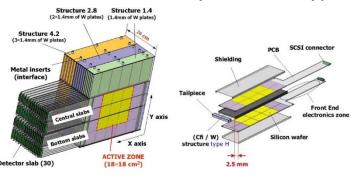

Why do we need to pursue BMR<4%?


- This talk is about the design and developments of the electromagnetic calorimetry system (related to the RefDet TDR Chapter 06)
- Requirements: CEPC calorimetry system in the reference detector will based on the particleflow paradigm \rightarrow high granularity in 3D
 - Aim to achieve an unprecedented Boson Mass Resolution (BMR) of 3-4%

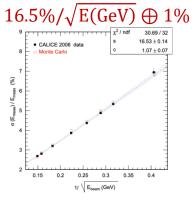
Technical option survey

- Three major options for CEPC electromagnetic calorimeter
 - Silicon-tungsten (SiW): sampling calorimeter
 - Scintillator-tungsten (ScW): sampling calorimeter
 - Crystal: homogeneous calorimeter

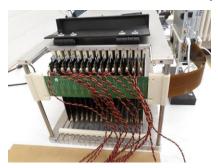
Highly granular (imaging) calorimetry+ particle flow algorithm (PFA)



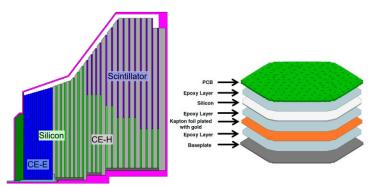
PFA calorimetry: various tech. options explored in the CALICE collaboration in past 20 years


SiW-ECAL option

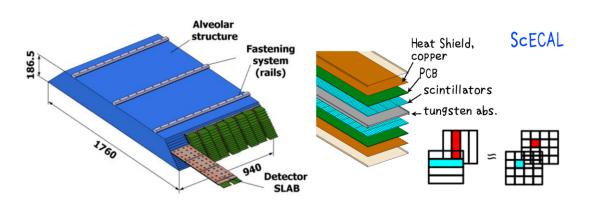
Silicon sensors+ CuW


CALICE SiW-ECAL Physics Prototype

EM resolution in beamtest:

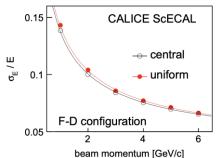


SiW-ECAL Tech. Prototype


Silicon-Tungsten option

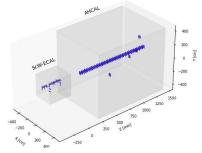
- Silicon sensors (pixelated) interleaved with CuW plates (compact showers)
- Baseline ECAL option in CEPC CDR: extensive Higgs physics studies
- Active hardware activities in CALICE collaboration: prototypes/beamtests
- Strong synergies with CMS-HGCAL: application in silicon sector
 - HGCAL taskforce successfully established two sites at IHEP
 - MAC (Module Assembly Center) Beijing Site (1/6 MACs)
 - SQC (Sensor Quality Control) Beijing Site (1/5 SQCs)

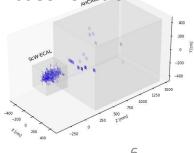




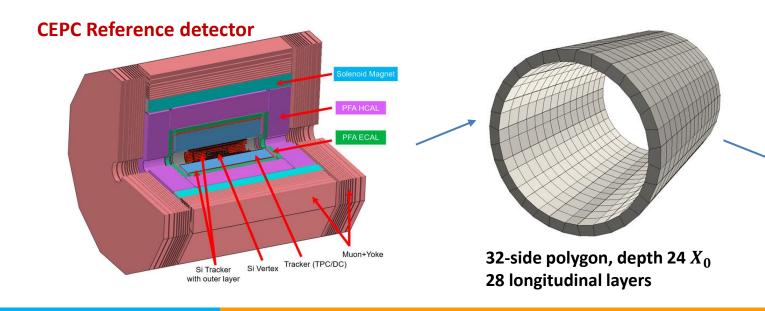
ScW-ECAL option

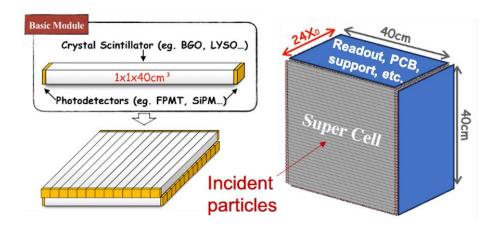
CALICE SiW-ECAL Physics Prototype

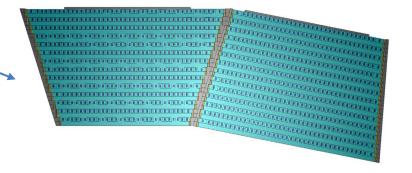

EM resolution in beamtest: $13.3\%/\sqrt{E(GeV)} \oplus 3.6\%$


CALICE ScW-ECAL Tech. Prototype

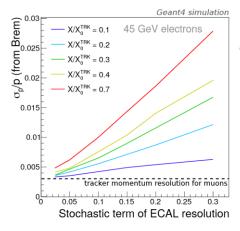
- Scintillator-Tungsten option
 - Scintillator strips + SiPMs as sensitive layers
 - Cost effective option for fine transverse granularity ($5 \times 5 \text{ mm}^2$)
- ScW-ECAL tech. prototype in 2016-2021
 - Developed by Chinese and Japanese groups in CALICE collaboration
 - Successful beamtests at CERN PS/SPS in 2022-2023
 - Collected data sets with various beam particles

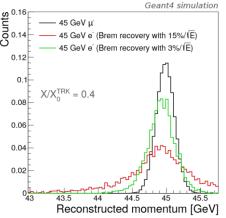

100GeV muon 60GeV electron

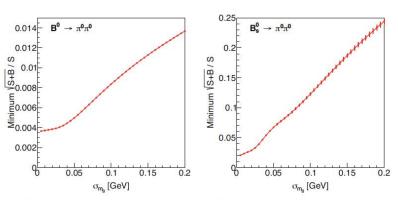


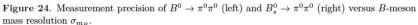

4D Crystal ECAL option

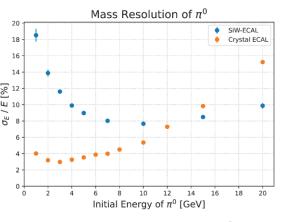
- A new option: development started since ~2020
- Compatible for PFA: Boson mass resolution (BMR) < 4%</p>
- Optimal EM performance: $\sigma_E/E = 3\%/\sqrt{E}$
- Minimal longitudinal dead material: orthogonal arranged bars
 - 3D positioning with two-sided readout for timing




- BGO bars in $1 \times 1 \times \sim 40 \ cm^3$
- Effective granularity $1 \times 1 \times 2 \ cm^3$
- Modules with cracks not pointing to IP (with an inclined angle of 12 degrees)




Crystal ECAL: physics motivations


- Crystal provides an energy resolution to photons and electrons at the level of $3\%/\sqrt{E}$
 - Significantly enhance EM performance with similar budget of SiW-ECAL
- Higgs and EW physics programs
 - Precision measurements of Higgs recoil mass: e.g. Bremsstrahlung energy corrections of electrons in ZH \rightarrow eeX
 - To further enhance jet performance by fine reconstruction of neutral pions ($\pi^0 \to \gamma \gamma$), esp. in 4-/6-jet scenarios
- Flavour physics programs: benefit from excellent performance for photons and neutral pions
- Searches for new physics beyond Standard Model
 - Using photons as a portal to search for new particles (e.g. Axion-Like Particles)

Technical options: comparison and option selection

Technical Option	Silicon-Tungsten ECAL	Scintillator-Tungsten ECAL	Crystal ECAL
EM energy resolution	$\sigma_E/E = 17\%/\sqrt{E(GeV)}$	$\sigma_E/E = 13\%/\sqrt{E(GeV)}$	$\sigma_E/E = 3\%/\sqrt{E(GeV)}$
Particle-Flow Algorithm(s)	Arbor; Pandora	Arbor; Pandora	New dedicated PFA (ongoing developments)
Jet Performance (with a full detector)	Boson Mass Resolution (BMR) <4%		
Technical Readiness Level (prototypes, beamtests)	Physics Prototype (2006-2010) Technological Prototype (2011- now)	Physics Prototype (2007) Technological Prototype (2016 - 2021)	First Physics Prototype (2022- 2024)
Novelty Level	ILD (proposed in <u>ILC TDR, 2013</u>), followed by several detector concepts: <u>CLICdp CDR (2012)</u> , <u>CEPC CDR</u> (2018), <u>FCC CDR</u> (2019)		A completely new concept proposed by the CEPC team

Technical options: comparison and option selection

Technical Option	Silicon-Tungsten ECAL	Scintillator-Tungsten ECAL	Crystal ECAL
EM energy resolution	$\sigma_E/E = 17\%/\sqrt{E(GeV)}$	$\sigma_E/E = 13\%/\sqrt{E(GeV)}$	$\sigma_E/E = 3\%/\sqrt{E(GeV)}$
Particle-Flow Algorithm(s)	Arbor; Pandora	Arbor; Pandora	New dedicated PFA (ongoing developments)
Jet Performance (with a full detector)	Boson Mass Resolution (BMR): 3-4%		6
Technical Readiness Level (prototypes, beamtests)	Physics Prototype (2006-2010) Technological Prototype (2011- now)	Physics Prototype (2007) Technological Prototype (2016 - 2021)	First Physics Prototype (2022- 2024)
Novelty Level	ILD (proposed in <u>ILC TDR, 2013</u>), followed by several detector concepts: <u>CLICdp CDR (2012)</u> , <u>CEPC CDR</u> (2018), <u>FCC CDR</u> (2019)		A completely new concept proposed by the CEPC team

Baseline ECAL option for the CEPC reference detector

• Crystal ECAL, as a novel option of PFA calorimetry, provides optimal EM resolution

Selected as a baseline option

Crystal ECAL: Main Technical Challenges

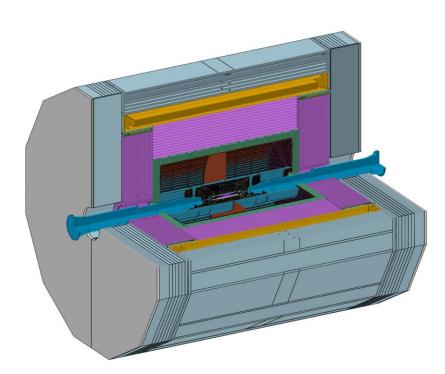
- Particle-flow algorithm: pattern recognition and ambiguity issue for long bars
- High granularity: at the level of 1 million channels
 - Multi-channel ASIC embedded in readout boards
 - Hermetic design: minimum space for mechanics and services (cooling, cabling)
 - Low power consumption, given material budget and hermicity
 - Mass production capability and scalability to a final detector
- Beam-induced backgrounds
 - Data throughput, pile-ups (events + backgrounds)
- Irradiation damages
 - SiPM, crystal: monitoring, calibration, annealing
 - ASIC, FPGA: radiation tolerant
- In-situ calibration system (on-detector)
 - SiPMs, crystals due to irradiation (instantaneous, long-term) and temperature

Crystal ECAL: specifications

Key Parameters	Value	Remarks
MIP light yield	~200 p.e./MIP	Ensure EM resolution $\sim 3\%/\sqrt{E}$
Energy threshold	0.1 MIP	Balance between S/N and dynamic range
Crystal non-uniformity	< 1%	Along the crystal length and between crystals
Dynamic range	0.1~3000 MIPs / channel	Maximum energy deposition with 360 GeV Bhabha
Timing resolution	~500 ps @ 1 MIP	Bunch Crossing ID; clustering and hadron performance

Detector requirements

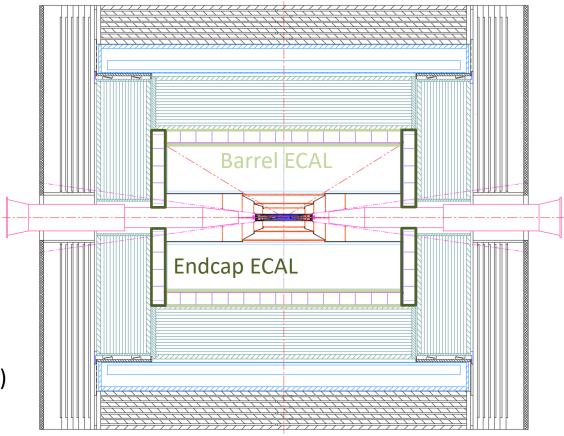
- PFA compatibility and BMR<4%
- Moderate MIP light yield
- Good uniformity
- Optimal time resolution
- Large dynamic range
- Moderate S/N ratio



R&D activities: addressing crucial issues

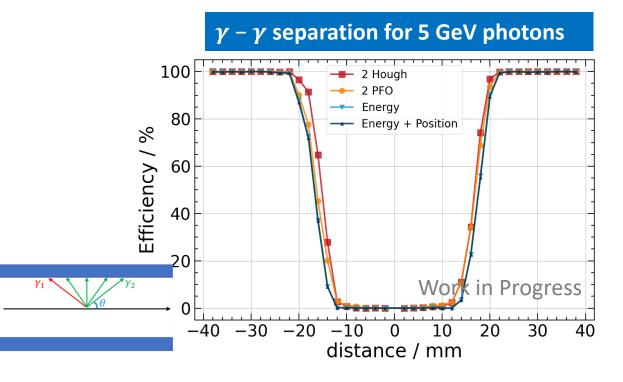
- New PFA to address pattern recognition issues
- SiPM response linearity
- Uniformity of long crystal bar
- Time resolution: different crystal dimensions
- Dynamic range of electronics
- Energy response of crystal module

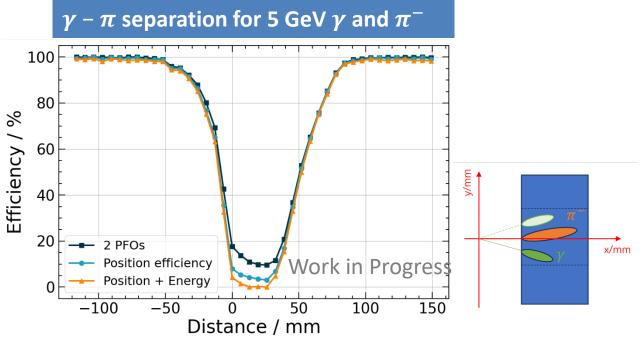
Crystal ECAL: mechanics and software


- Physics performance studies in CEPC software (CEPCSW)
 - Implemented with geometry of mechanics design and digitistation (prototyping and beamtests)

Depth: 24X0 with scintillating crystals (BGO or BSO)

Barrel ECAL: 5800 mm in length

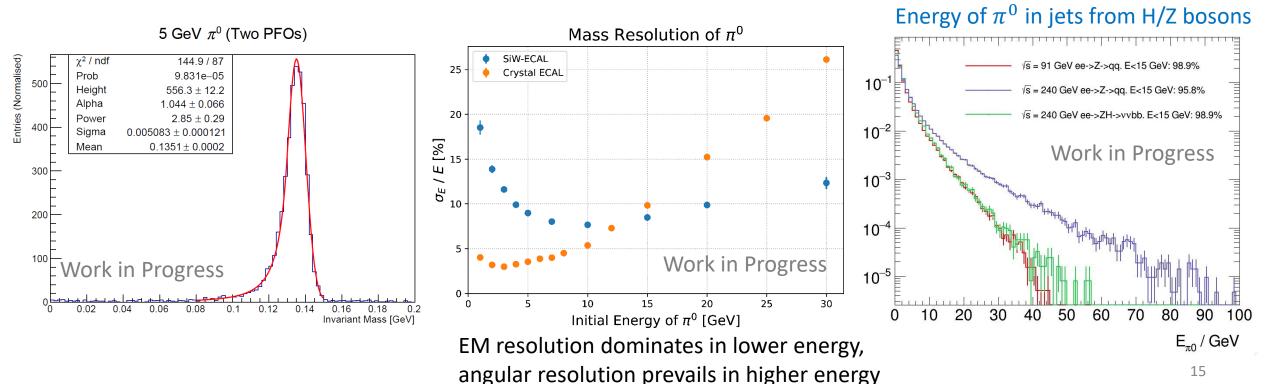

Endcap ECAL: 4260 mm in outer diameter



Performance in simulation: separation power

- New PFA reconstruction software developed for the design of long crystal bars
- Separation power of close-by particles: key performance in particle flow
 - $-\gamma \gamma$ separation: 100% efficiency for distance > 20mm
 - $-\gamma \pi$ separation : 100% efficiency for distance > 50~100mm

Details in the "Software and Computing" talk

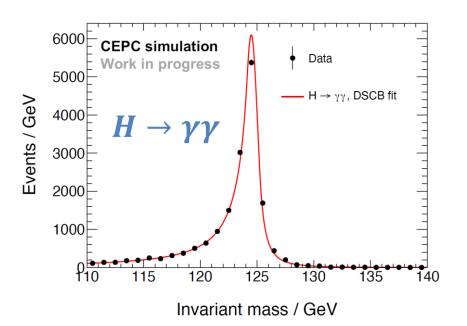


*Asymmetry pattern is due to the magnetic field

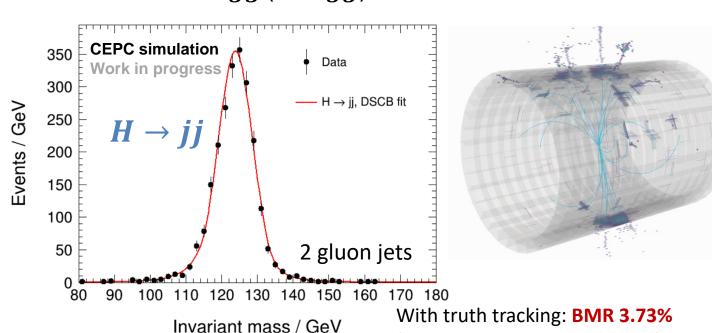
Performance in simulation: neutral pions

Using **CyberPFA** for long crystal bars

- ullet Crystal ECAL shows excellent performance for single π^0 in 1-10 GeV
 - More than 95% of π^0 with energy <15 GeV in jets from Higgs and Z
 - Ongoing crosschecks to further improve π^0 performance in higher energy

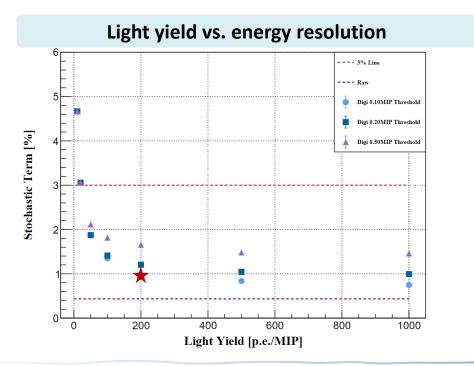

Physics performance in simulation: Higgs boson

Using CyberPFA for long crystal bars

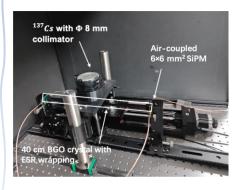

(comparable to CEPC CDR performance)

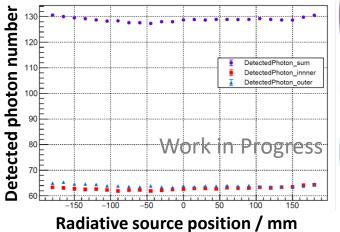
- Higgs benchmark studies at CEPC 240 GeV
 - Higgs decays to 2 photons (EM performance) and 2 gluon jets (PFA performance)

$$ZH \rightarrow \nu\nu\gamma\gamma$$
 ($H \rightarrow \gamma\gamma$): $\sigma(m_{\gamma\gamma})$ = 0.57 GeV

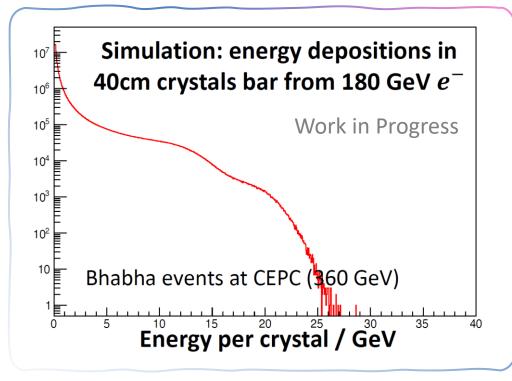

 $ZH
ightarrow
u
u g g \ (H
ightarrow g g)$ at 240GeV : BMR = 3.95%

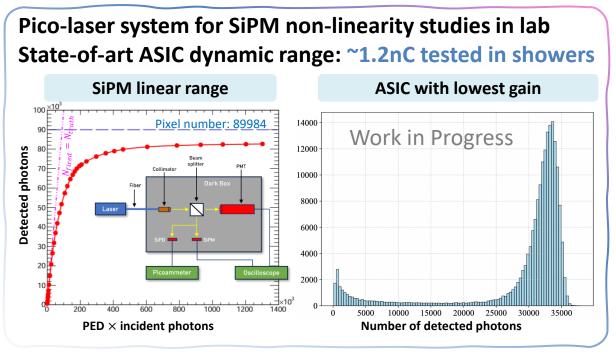
- Tracker + crystal bar ECAL + GS-HCAL, barrel only
- Improvements are expected with further optimizations (tracking, clustering...)


R&D efforts and results: MIP response, uniformity


- Geant4 full simulation with digitization: shower studies, requirements
- Dedicated setup with radioactive sources for energy resolution, response uniformity
- MIP response: >200 p.e./MIP $\rightarrow \sigma_E/E < 3\%/\sqrt{E}$
- Energy threshold: 0.1 MIP

- Uniformity along 40 cm crystal bar: ~2.5%
- Can be further improved after calibration

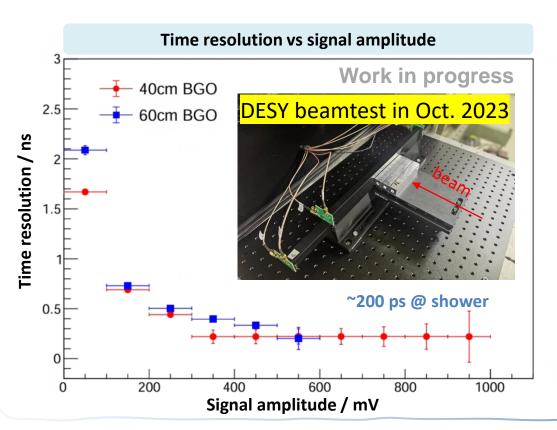

Response uniformity along bar



R&D efforts and results: dynamic range

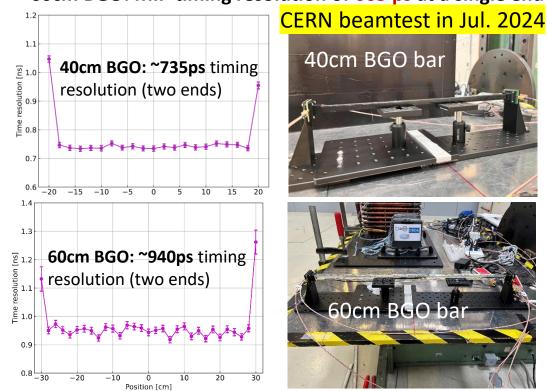
- Simulation of high energy electrons: maximum energy per crystal
- Test-stand with pico-second laser: SiPM non-linearity effects (target for $6\mu m$ pixel pitch)
- Beamtest of crystal-SiPM units with a state-of-art chip: dynamic range of SiPM and ASIC

~30 GeV as max. energy deposition per crystal bar

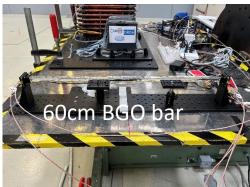

2023 DESY beamtest: crystal-SiPM units and a state-of-art front-end chip with EM showers induced by 5 GeV electrons

R&D efforts and results: timing studies

Dedicated beamtests for timing studies with MIP and EM showers

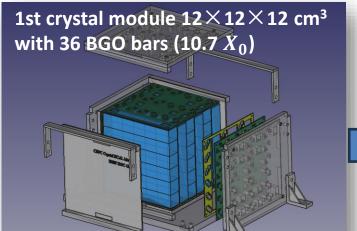

Timing performance within EM showers

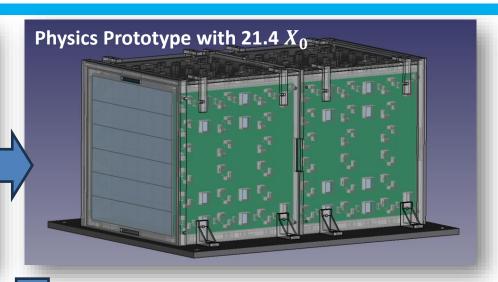
- Tested 40cm/60cm BGO bars with 5GeV electron beam
- ~200 ps around EM shower maximum (>12 MIPs)

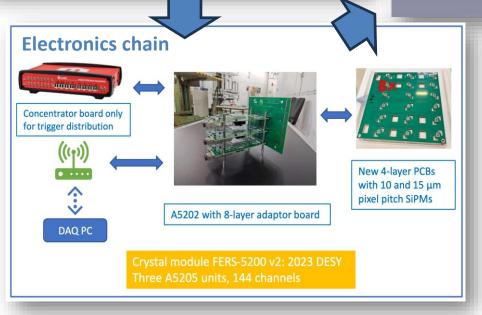


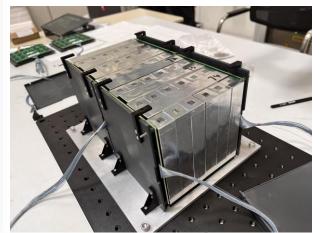
Timing performance with MIP-like particles

- 10 GeV π^- beam to scan 40cm and 60cm BGO bars
- 40cm BGO: MIP timing resolution of 520 ps at a single end
- 60cm BGO: MIP timing resolution of 665 ps at a single end



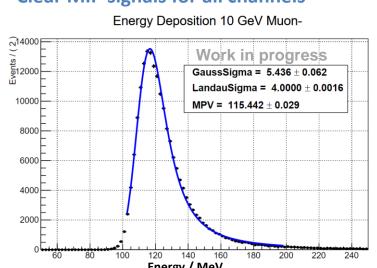


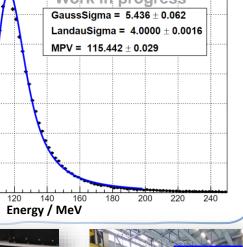


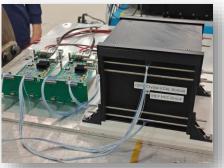

4D Crystal Calorimeter: First Physics Prototype

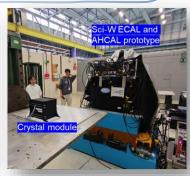
First crystal calorimeter prototype

- Successfully developed in 2021-23
- With commercial ASICs

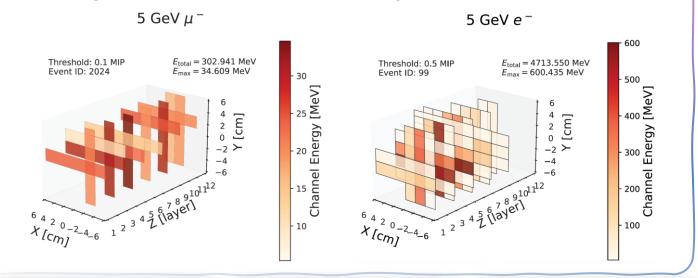

Major motivations


- Critical issues at system integration
- EM performance in system level
- Validation of simulation and digitization with beamtest data


Beam tests: 4D Crystal Calorimeter Prototype

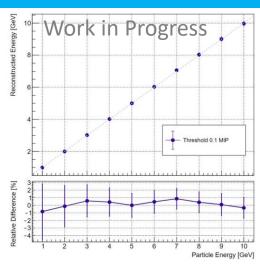

2023 CERN beam test at PS-T9

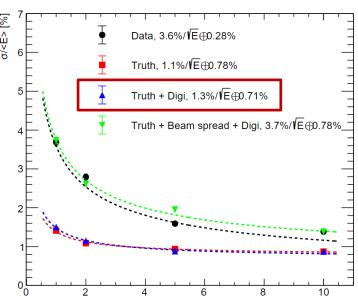
- Successful system commissioning
- Clear MIP signals for all channels



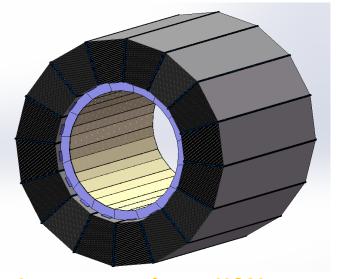
2024 CERN beam test at PS-T9 (June 24 – July 10)

- Promising EM resolution with 1-10 GeV/c e^- beam
- Data analysis: detailed calibrations, shower profiles

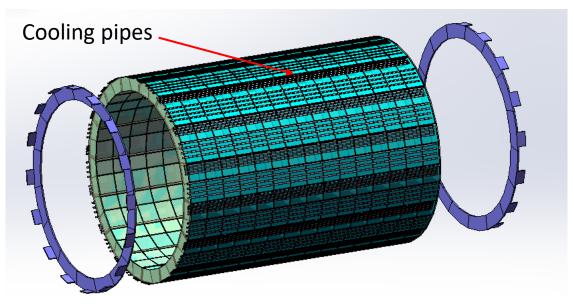




Crystal Calorimeter Prototype: 2024 CERN beamtest

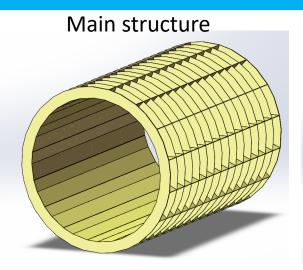


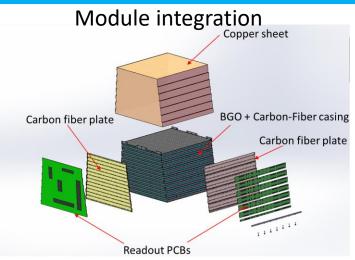
- Studies based on electron beam data in 1 10 GeV
 - Data taken with ALL beam instrumentation in upstream: Cherenkov detectors (XCET), SciFi trackers for beam profiles
- EM response linearity within $\pm 1\%$
 - Better understanding of calibration precision (~0.5%) and corrections of crosstalk in ASIC neighbouring channels
- EM energy resolution
 - CERN expert confirmed our observation: larger beam momentum spread in data than expected from beamline lattice (~1%)
 - Calorimeter EM performance majorly dominated by beam spread in lower energy (typically ~3% at 1GeV)
 - Extensive studies on PS-T9 beamline (with kind help of CERN expert) to quantify momentum spread due to beam instrumentation
 - Crystal prototype EM performance (preliminary): $1.3\%/\sqrt{E} \oplus 0.7\%$

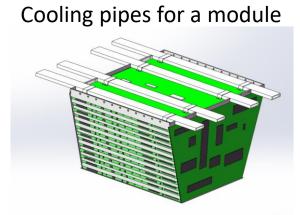

ECAL mechanics design

Crystal ECAL mechanics integrated with active cooling

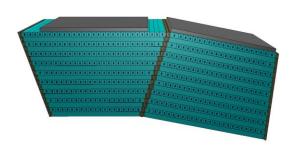
Barrel ECAL design


Inter-connection to HCAL

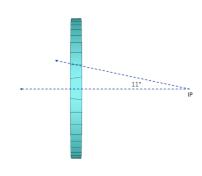


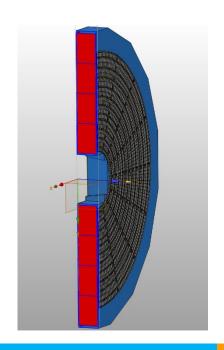

Endcap ECAL design

Carbon-Fiber structure for crystal modules

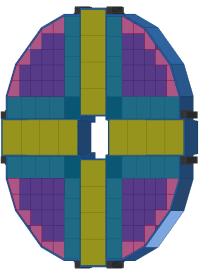

ECAL mechanics: main structure and barrel modules

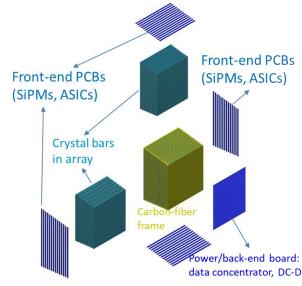
Two crystal modules in one phi/z segment

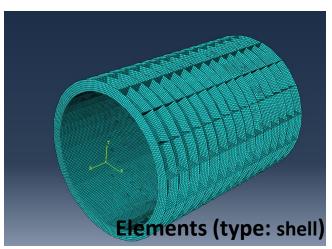

Barrel ECAL parameters

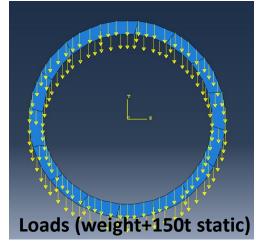

2 0 C. 2 0 p 0 0 C. C.		
Value		
1830 mm		
2130 mm		
5800 mm		
400 mm		
32		
15		
12 degrees		
28		

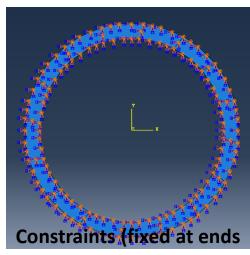
- Main structure is based on carbon fibers
 - Ensure mechanical strength/stability and lowest possible materials
- Barrel ECAL modularity
 - 16 segments in phi, 15 segments along Z-axis
 - In each segment: two crystal modules in trapezoid-shape
 - Optimised module boundaries (in R-phi): not projectile to IP


ECAL mechanics: endcap structure and modules

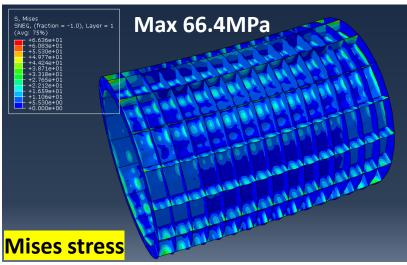

- Endcap crystal modules
 - Optimised module boundaries to avoid projectile cracks to IP
 - 6 different types, trapezoid modules in blue and yellow
- Supporting frame to hold both endcap ECAL and OTK
- Planning: FEA simulation for stability, deformation and cooling

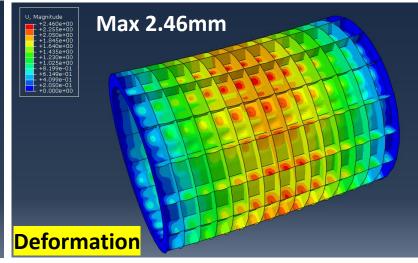


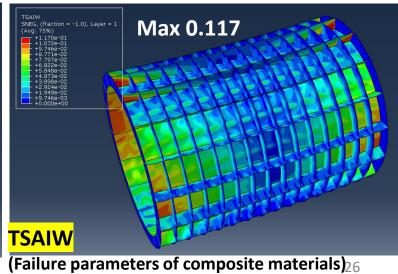




Barrel ECAL mechanics: FEA simulation


FEA simulation studies on ECAL mechanics (ongoing): optimization + validation



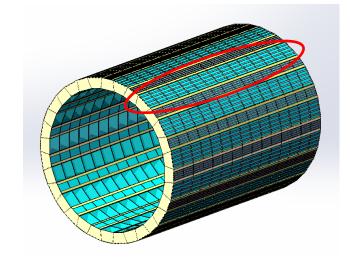


• Material :T700 reinforced epoxy resin

Barrel ECAL cooling system

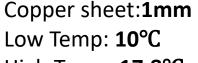
FEA simulation studies on ECAL cooling

10.78


11.56

- Preliminary result: temperature gradient of ~8 degrees
- Ongoing studies in calorimeter simulation to quantify its possible impacts to EM performance

15.45


16.23

17.01

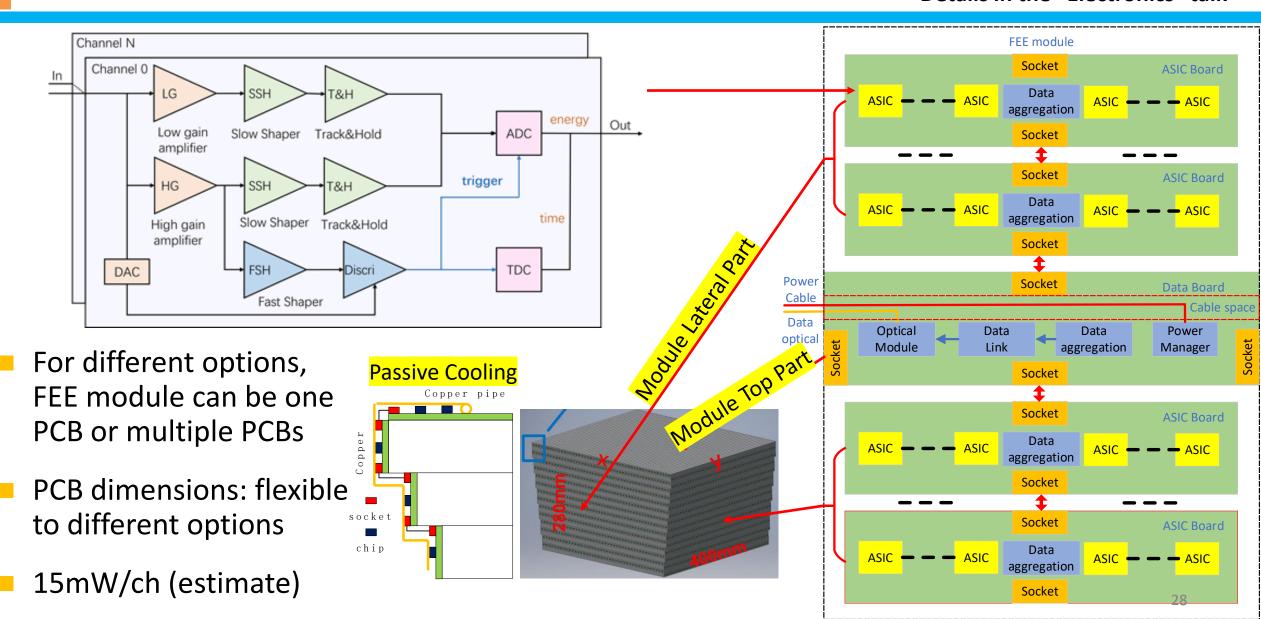
Cooling for 1/32 barrel slice:

42W for each slice (15mW/ch)

High Temp: **17.8°C**

Plan to investigate cooling with future low-power ASIC (expected < 10mW/ch)

12.34

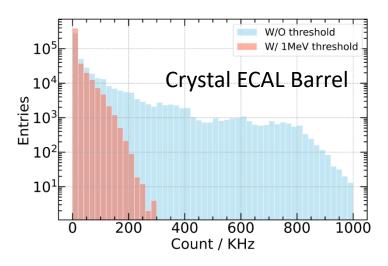

13.11

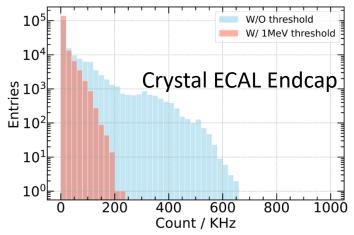
13.89

14.67

Readout electronics for ECAL

Details in the "Electronics" talk

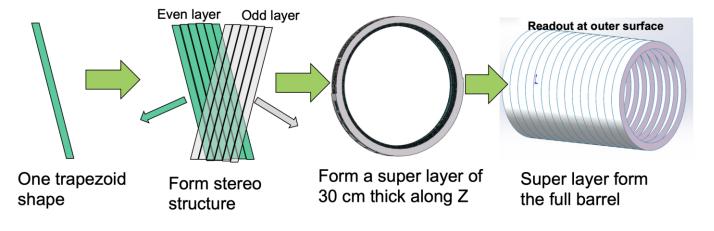

Beam-induced backgrounds: simulation studies

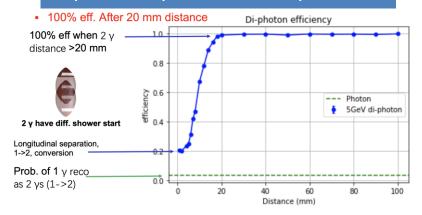

- **50MW** Higgs runs: 355ns bunch spacing
 - Hit rate 200-300 kHz with 0.1 MIP threshold
 - Barrel: maximum rate¹ (230 kHz) vs. mean rate² (13 kHz)

Beam Backgrounds		50MW Higgs (355 ns)
Luminosity dependent	Pair Production	1300/BX
Single Beam	Beam-Thermal Photon	359kHz *2
	Beam-Gas Bremsstrahlung	41kHz *2
	Beam-Gas Coulomb	238kHz *2
	Touschek Scattering	/

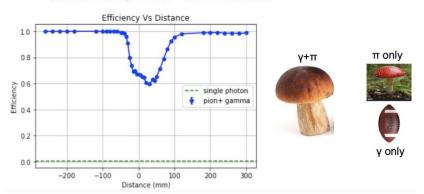
Maximum rate¹: max. rate in a crystal bar per module

Mean rate²: average over all crystal bars over threshold per module



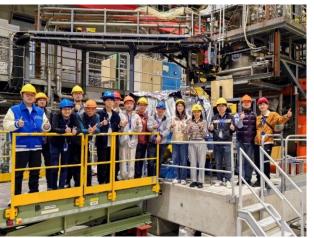

Alternative ECAL design: stereo crystals

- Stereo design with long crystal bars inclined
 - Longitudinal segmentation by tilting crystal bars
 - Single-end readout: 50% less readout channels than crossed bars (two-sided readout)


Only one freedom left, α or longitudinal sampling N_R

Separation power of two particles

- Applied to separate 5 GeV photon and 10 GeV π +
 - ~100% efficiency when > 100 mm distance



- Simulation studies on reconstruction: promising separation power of two particles
- Ongoing designs on mechanics, cooling and integration

Taskforce and collaborations

- Taskforce working on CEPC ECAL
 - Detector (hardware/software): physicists (9), postdocs (3), students (8)
 - Engineers in electronics (3) and mechanics (2)
- Many members deeply involved in large-scale experiments/projects
 - BES-III Experiment: Electromagnetic Calorimeter with 6,240 CsI(Tl) crystals
 - JUNO Experiment: 20,000 ton ultra-pure liquid scintillator
 - CMS HGCAL project for HL-LHC: ~5,000 silicon modules (8-inch) at MAC-Beijing
- Institutions as working groups in CALICE and DRD6 collaborations
 - China: IHEP, SIC-CAS, SJTU/TDLI, USTC, SCNU
 - Japan: Shinshu U. and U. Tokyo (on ScW-ECAL option)

CEPC calorimeter team in beamtests

Working plan


- Near future planning: towards reference detector TDR
 - Beam-induced backgrounds: impacts to physics performance, data throughput
 - Mechanics and cooling: FEA simulations, validation by dedicated tests
 - Detector: fully exploit beamtest data on EM performance and validation studies
 - Software: geometry updates (interplay with mechanics/cooling), digitisation
 - Calibration: sensitive units (SiPM, crystal, ASIC) versus temperature, irradiation
 - Particle flow performance: further optimizations

- Long-term planning beyond TDR (in next 3-4 years)
 - R&D on crystal detector units: joint efforts on BSO crystal, new SiPM and readout chip
 - Full-scale calorimeter prototype integrated with mechanics and cooling
 - Radiation damages in crystal and SiPM and possible solutions

Summary

- Overview of CEPC ECAL options and dedicated R&D activities in past 8 years
- Crystal selected as a baseline option for the CEPC reference detector
 - Extensive studies on simulation performance and specifications
 - Steady progress with prototyping/beamtests, and dedicated PFA developments
 - First designs of general design, mechanics, cooling and readout electronics
- More efforts in planning to address critical issues for reference detector TDR
 - Beam-induced backgrounds and data throughput
 - System integration issues with mechanics, cooling and readout electronics
 - Calibration schemes for SiPM-crystal units and ASIC

Thank you for your attention!

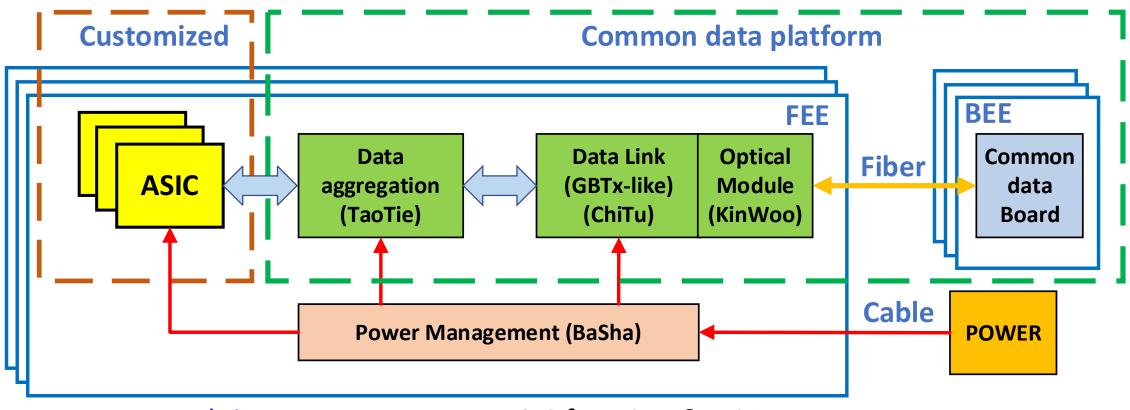
References

- The CALICE Collaboration, Response of the CALICE Si-W electromagnetic calorimeter physics prototype to electrons, <u>Nuclear Instruments and Methods in Physics Research A 608 (2009) 372–383</u>
- The CALICE Collaboration, Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter, <u>Nuclear Instruments and Methods in Physics Research A 763 (2014) 278–289</u>
- CEPC Conceptual Design Report Volume II Physics & Detector, <u>IHEP-CEPC-DR-2018-02</u>
- New perspectives on segmented crystal calorimeters for future colliders: M.T. Lucchini et al 2020 JINST 15 P11005
- Prospects for $B^0_{(s)} \to \pi^0 \pi^0$ and $B^0_{(s)} \to \eta \eta$ modes and corresponding *CP* asymmetries at Tera-*Z*, JHEP12(2022)135
- Crystal calorimeter R&D: contributions at CALOR 2024
 - Development of high-granularity crystal calorimeter
 - SiPM dynamic range studies
 - Particle-flow software and performance of crystal ECAL
 - Stereo Crystal ECAL
- High-granularity crystal calorimeter talk at ICHEP2024

ECAL requirements

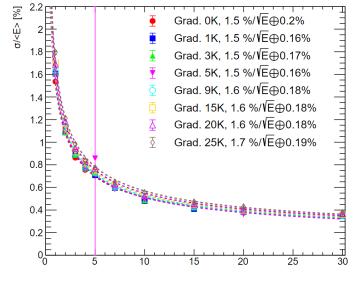
Parameter	Conservative	Ambitious	Remarks
EM energy resolution	$\frac{\sigma_E}{E} = 15\%/\sqrt{E(GeV)} \oplus 1\%$	$\sigma_E/E = 3\%/\sqrt{E(GeV)} \oplus 1\%$	Jet performance; flavor physics
Longitudinal Depth	$24X_0$ (with longitudinal segmentations)		Full containment of EM showers
Transverse Granularity	$10 imes 10~mm^2$		H ightarrow gg (gluon jets); $Z ightarrow au au$
Signal Dynamic Range	0.1 MIP - 3000 MIPs		0.1 MIP as trigger threshold; Bhabha electrons at 360 GeV
Time Resolution (1-MIP signal)	1 ns	0.5 ns	Bunch crossing ID; timing to improve clustering and hadron performance
Power Consumption (per channel)	15 mW/ch		o(1M) channels in final detector

Summary: crystal ECAL with long bars

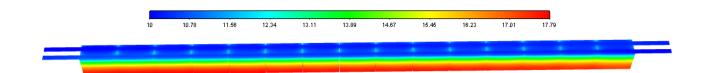

Parameter Name	Barrel	Endcaps (x2)	Sum
Inner Radius for ECAL	1830 mm	350 mm	NA
Length for barrel; Outer radius for endcap	5900 mm	1900 mm + 24X ₀	NA
Longitudinal Depth	24X ₀ (2	NA	
Modularity	28 modules in phi, 15 rings along Z	6 types of modules	NA
Material Volume (m³)	17.8	6.5	24.3
Readout channels	0.96 M	0.39 M	1.35 M
Power dissipation	14.4 kW	5.9 kW	20.3 kW

Crystal ECAL digitistation

A summary table on digitisation: ongoing validation studies


Process	Parameters	Value	Note	Prototype value
	Intrinsic light yield	8200 ph/MeV	BGO properties (8000~10000 ph/MeV)	8200 ph/MeV
	Effective light yield	200 p.e./MIP	$LY_{Int}*LCE*PDE$, $40 \times 1 \times 1cm^3$ BGO	760/1340 p.e./MIP (module-1/2, $12 \times 2 \times 2cm^3$ BGO)
	MIP energy	8.9 MeV	5 GeV muon pass through 1cm BGO	17.8MeV (2cm BG0)
Scintillation	Non-uniformity along bar	0.03%	$[(Ch1+2)_{max}-(Ch1+2)_{min}]/(Ch1+2)_{min}$	No this parameter (<1% in measurement)
	Difference between 2-ends	5%	$(Ch1_{max}-Ch2_{min})/Ch2_{min}$	No this parameter (<1% in measurement)
	Light collection efficiency	1.1%	Ensure the effective light yield	3.1%/5.4%
	Photon detection efficiency	25%	SiPM NDL-EQR06	17%/30% (<u>HAMAMATSU S14160-3010/15PS</u>)
	Active area	$3 \times 3 mm^2$	SiPM NDL-EQR06	$3 \times 3 \ mm^2 \ (HAMAMATSU \ S14160-3010/15PS)$
	Pixel pitch	6 μm	SiPM NDL-EQR06	10 μm/15 μm
	Pixel number	244719	SiPM NDL-EQR06	89984/57600
SiPM	DCR	2,500,000 Hz	SiPM NDL-EQR06	700,000 Hz
	Gain fluctuation	8%	SiPM NDL-EQR06	5%
	Crosstalk	12%	SiPM NDL-EQR06	0.5%
	Time window	150 ns	Assumption	87.5 ns
	Number of gains	3	Assumption	2 (CAEN A5202, Citiroc-1A)
	Dynamic range	0.1~4885 MIP	Accurately meas. within 30 GeV	0.1~80 MIP
ADC	Vertical accuracy	13-bit, 8192 ADC	Citiroc-1A	13-bit, 8192 ADC
	Switching point	8000 ADC	Citiroc-1A	7900 ADC
	Pedestal position	50 ADC	Citiroc-1A	40~80 ADC
	ASIC noise	4 ADC	Don't varies with gain	
	FEE noise	15 ADC	Varies with gain	

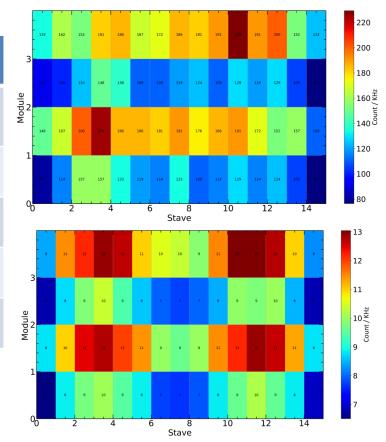
Electronics diagram for ECAL & HCAL



- Energy and time measurements: ASIC for ECAL & HCAL
- Data transmission: common data platform (refer to the "Electronics TDR Report")
- Trigger mode: trigger-less readout in Front-End Electronics (FEE)

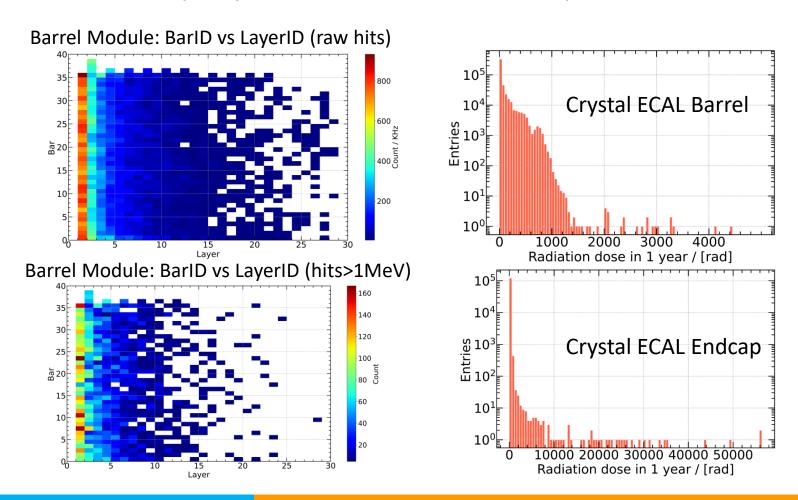
Temperature impacts to crystal-SiPM

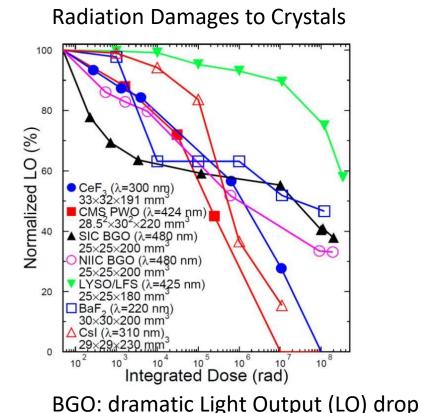
- Linear modeling of temperature gradient
 - The same temperature change for a given distance
- Assuming temperature difference can not be corrected, which is especially true for crystals
- Check EM performance by varying temperature gradient (Tmax Tmin)
- Preliminary result: temperature gradient of 5 degrees seems to introduce no significant impact


- 100p.e./MIP, 0.1MIP threshold per channel, 12-bit ADC
- 150ns time window, 2,500,000 Hz DCR
- Temperature dependence of BGO light yield: -1.38%/K, doi:10.1007/s11433-014-5548-4
- Temperature dependence of SiPM(HAMAMATSU S13360-3050CS) gain: -3%/K, doi:10.1016/j.nima.2016.09.053
- Temperature dependence of SiPM(HAMAMATSU S13360-3050CS) DCR vs temperature, doi:10.1016/j.nima.2016.09.053

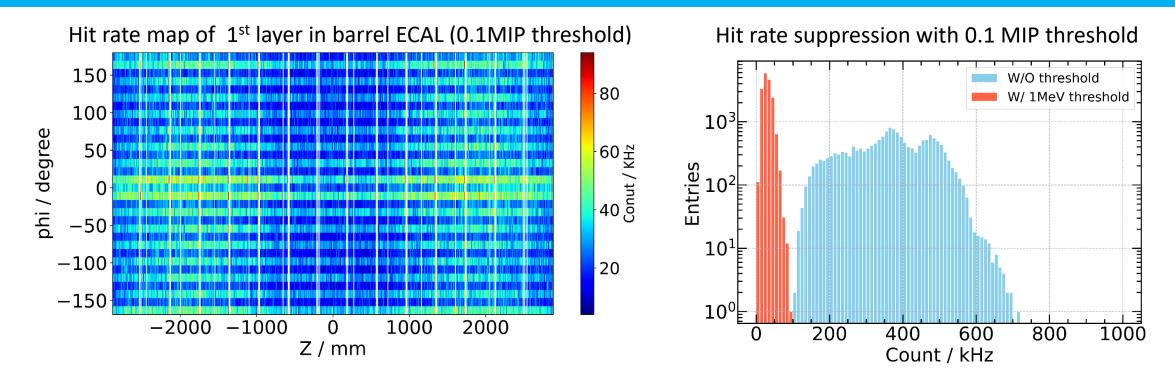
Beam-induced backgrounds: simulation studies

- **50MW** Higgs runs (355ns bunch spacing): updates from 30MW
 - Barrel module: maximum rate¹ (230 kHz) vs. mean rate² (13 kHz)
 - Patterns in even/odd staves: different crystal lengths in the first layer (300mm/400mm)

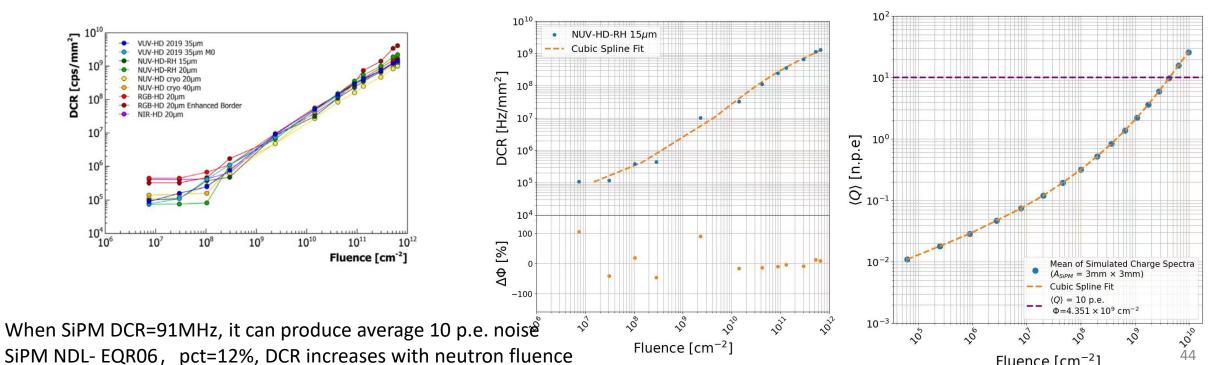

Ве	50MW Higgs (355 ns)	
Luminosity dependent	Pair Production	1300/BX
	Beam-Thermal Photon	359kHz *2
Cinalo Doom	Beam-Gas Bremsstrahlung	41kHz *2
Single Beam	Beam-Gas Coulomb	238kHz *2
	Touschek Scattering	/


Maximum rate¹: max. rate in a crystal bar per module Mean rate²: average over all crystal bars over threshold per module

Beam-induced backgrounds at CEPC: TID

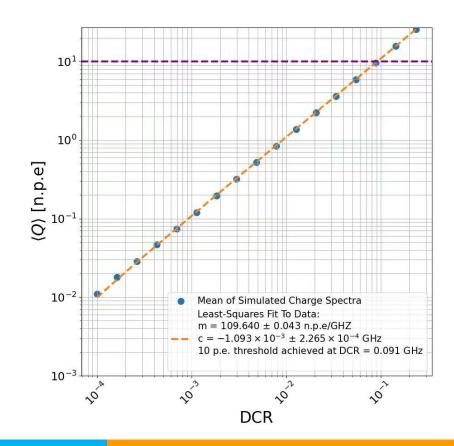

- 50MW Higgs runs (355ns bunch spacing): updates from 30MW
 - TID per year: ~4k rad for barrel crystals; 50k rad for endcap crystals

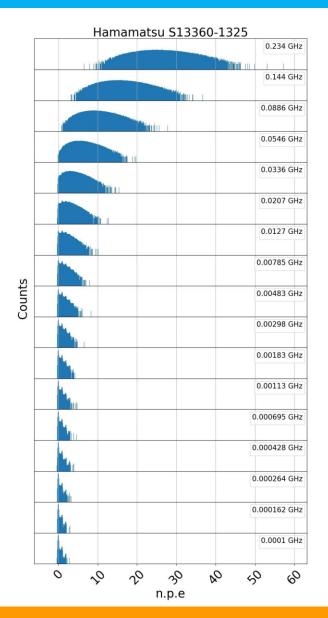
at TID<1kRad and TID>10Mrad


Beam-induced backgrounds: simulation studies

- Simulation studies on beam background in Higgs mode: crystal ECAL barrel
 - Including physics events + backgrounds (major contributions from pair production)
 - With threshold, rate can be significantly reduced: 100kHz (0.1 MIP threshold) from 700kHz (0 threshold)
 - Ongoing simulation studies to investigate impacts of pile-ups, and endcap regions

SiPM irradiation damage: neutron fluence

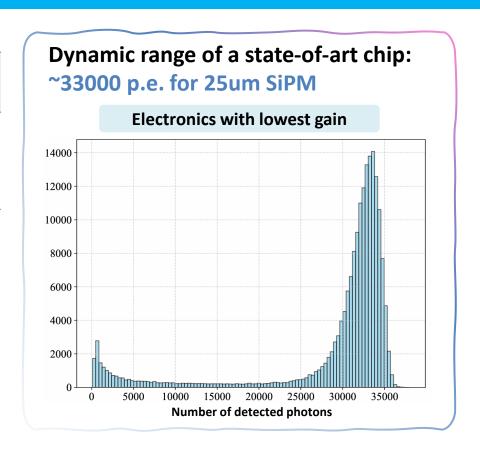

- Simulation based on measurements: SiPM DCR vs. neutron fluence
- Estimate noise-only events above 0.1MIP trigger threshold (10 p.e.) for ECAL
- Preliminary conclusion: $4.3 imes 10^9 n_{eq} (1 MeV)/cm^2$ is likely the limit for SiPM operated at room temperature; beyond this limit, SiPM needs specific cooling



Fluence [cm⁻²]

SiPM irradiation damage: neutron fluence

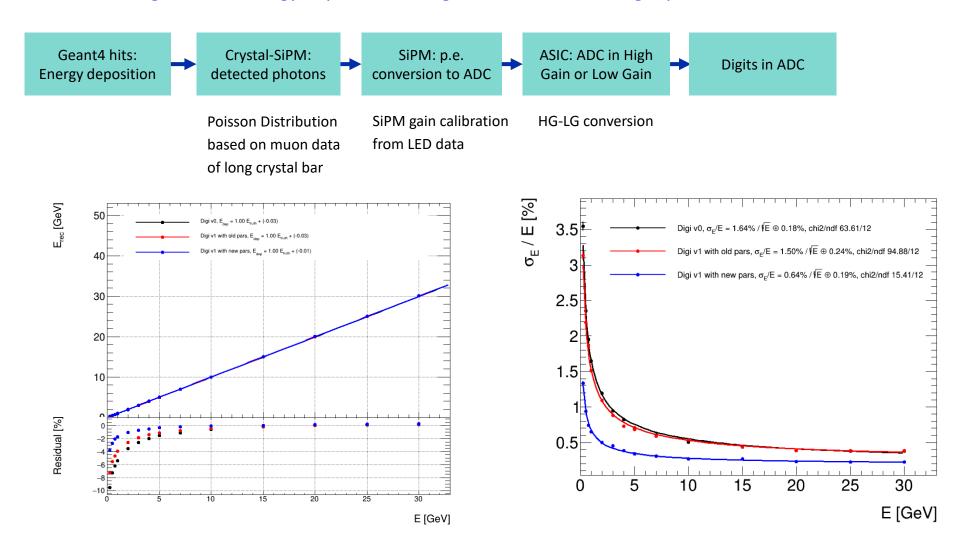
- Estimate noise-only events above 0.1MIP trigger threshold (10 p.e.) for ECAL
 - Based on the Hamburg SiPM simulation model


R&D efforts and results: dynamic range

SiPM with 10um/15um pixel pitch

Type no.	Dark cou DO	int rate*5 CR	Direct crosstalk probability	Terminal capacitance at Vop*6	Gain	Temperature coefficient of Vop
туре по.	typ. (kcps)	max. (kcps)	Pct (%)	Ct (pF)	М	ΔTVop (mV/°C)
S14160-1310PS	120	360		100		
S14160-3010PS	700	2100		530	1.8×10^{5}	
S14160-6010PS NEW	3000	10000	<1	2200		34
S14160-1315PS	120	360		100		34
S14160-3015PS	700	2100		530	3.6×10^{5}	
S14160-6015PS NEW	3000	10000		2200		

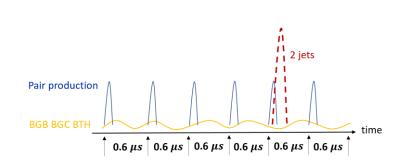
SiPM with 25um pixel pitch

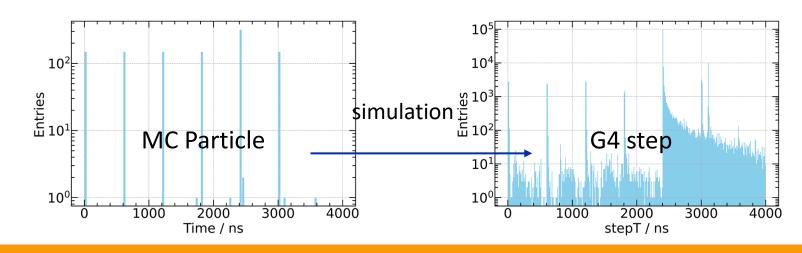

					Dark o	count*5						
Type no.	Measurement conditions	Spectral response range λ	Peak sensitivity wavelength \(\lambda\)p	Photon detection efficiency PDE* ⁴ λ=λp	Тур.	Max.	Terminal capacitance		Breakdown voltage VBR	Crosstalk probability	Recommended operating voltage Vop	Temperature coefficient at recommended operating voltage Δ TVop
		(nm)	(nm)	(%)	(kcps)	(kcps)	(pF)		(V)	(%)	(V)	(mV/°C)
S13360-1325PE		320 to 900			70	210	60					
S13360-3025CS	l	270 to 900			400	1200	220]				
S13360-3025PE	Vover =5 V	320 to 900		25	400	1200	320	7.0 × 10 ⁵		1	VBR + 5	54
S13360-6025CS	_5 v	270 to 900			1600	F000	1200	1]
S13360-6025PE		320 to 900			1000	5000	1280					

- State-of-art ASIC dynamic range
 - Expected to reach ~128k p.e. for SiPM with 10um pixel pitch

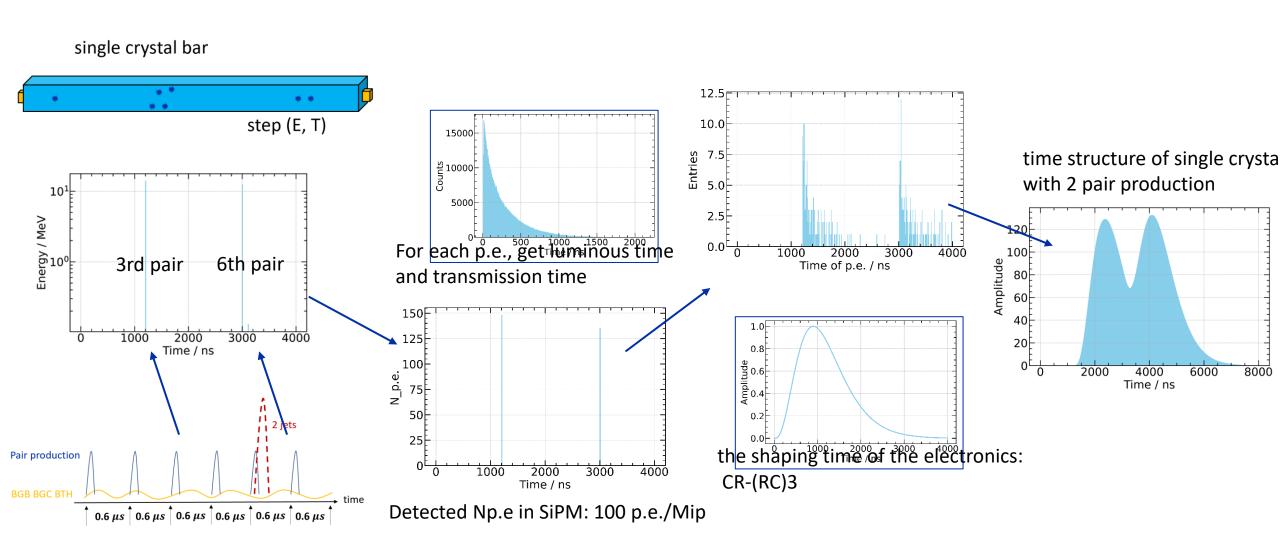
Digitization and single photons energy resolution

■ Digitization: energy deposition \rightarrow digits in ADC, considering crystal scintillation and electronic design.



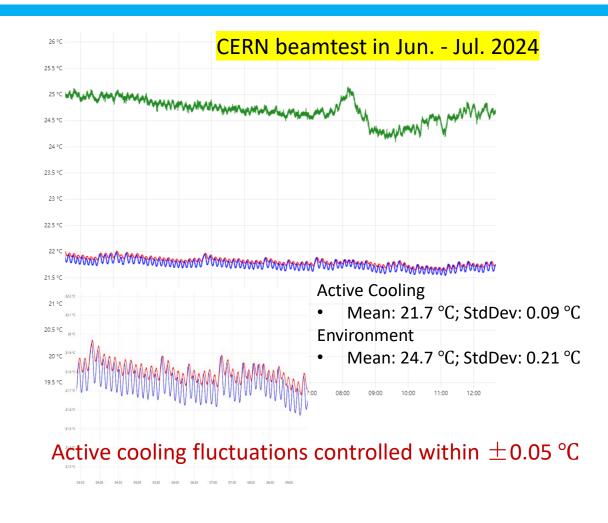

Beam-induced backgrounds: simulation studies

Background	Rate/Hz	N _{MCParticle} / 3.6 μs time window
Pair production		~ 7800
Beam-Gas Bremsstrahlung (BGB)	83,280.65	~ 0.30
Beam-Gas Coulomb (BGC)	884,002.12	~ 3.18
Beam Thermal Photon Scattering (BTH)	623,520.09	~ 2.24
Synchrotron Radiation		
Radiative Bhabha		
Touschek		

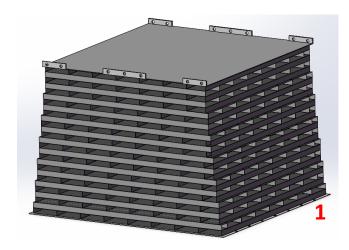

Higgs mode:

- pair production: double beams, e+-
- BG: single beam
- Using 4 types of beam backgrounds.
- Simulation Time Window: 3.6 us (6 collisions and 6 bunch spacing)
 - Considering physics events and beam background events.
 - Taking into account the scintillation decay time of the crystal and the shaping time of the electronics.

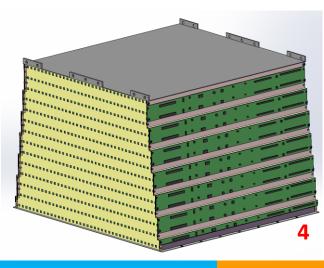
Beam-induced backgrounds: time structures



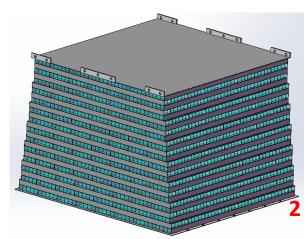
Crystal ECAL: impacts of temperature stability

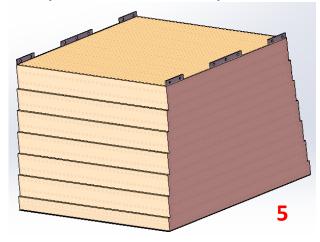


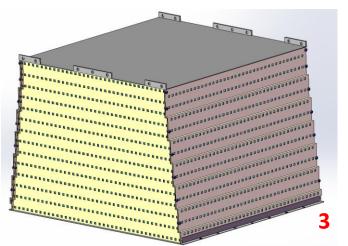
- Significant impact to constant term of EM resolution
- Stability of ±0.05 °C in beamtest data

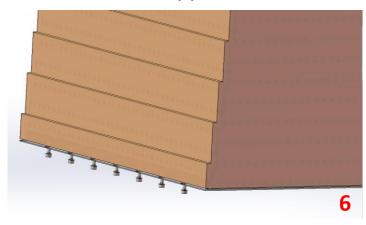


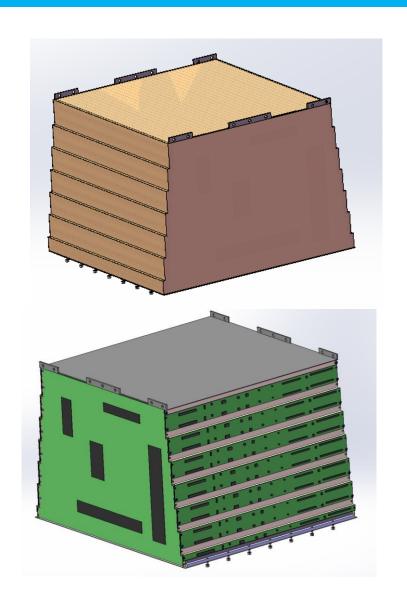
Barrel ECAL: module integration

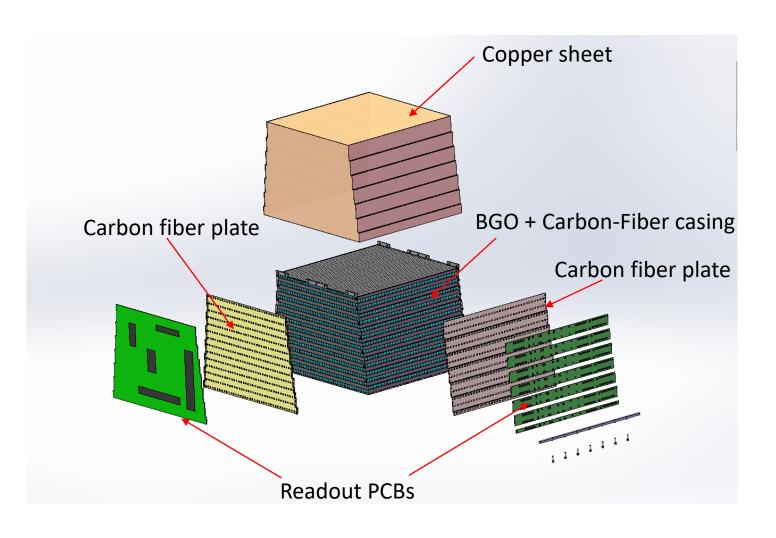

CF structure to protect BGO bars


Install front-end readout PCBs

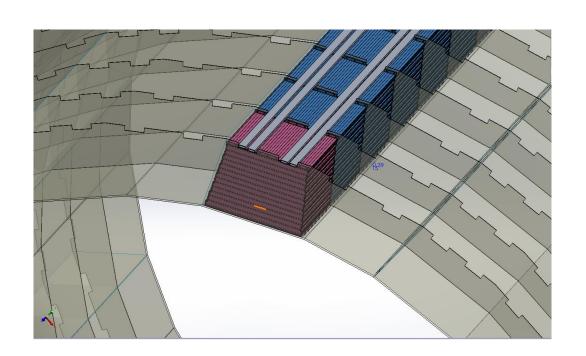

Install BGO crystal bars (grouping 5 BGO bars per casing)

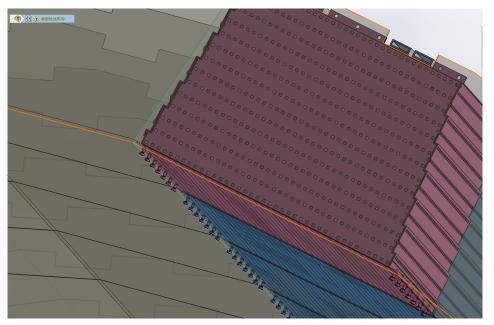

Install copper sheets for passive heat dissipation


Install plates to "seal" and fix BGO bars, with holes for couplings with SiPM

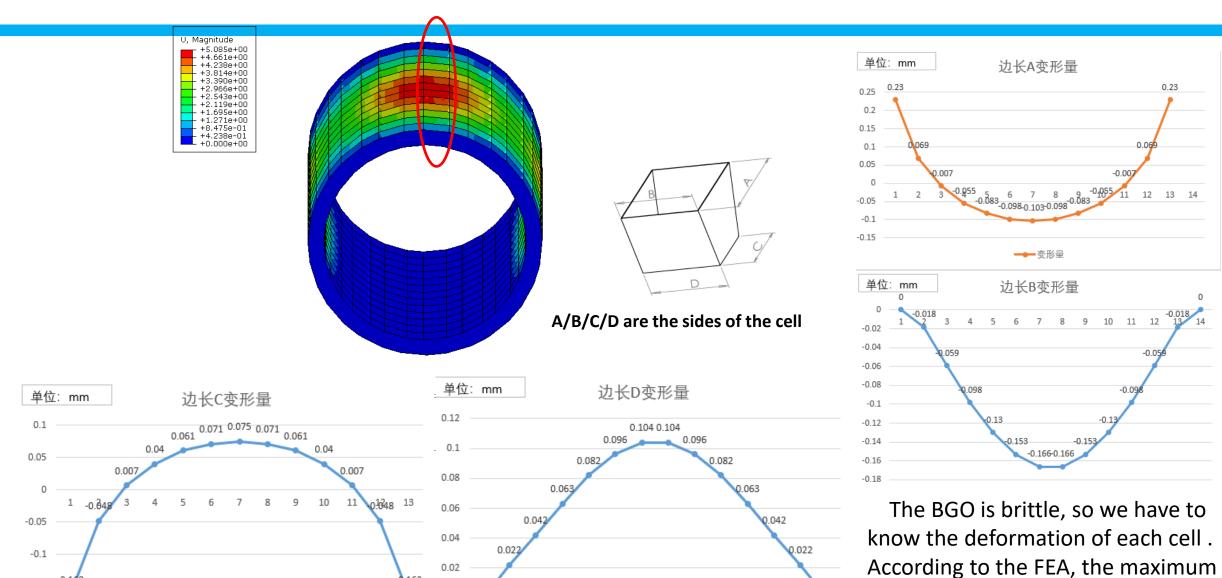


Assemble the module into the main support structure




Barrel ECAL: module integration

Barrel ECAL: integrate modules in main structure

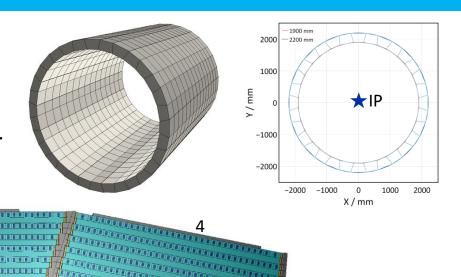

- Each module is fixed in the main support structure by bottom bolts
- Four active cooling pipes are installed at the top of each row of modules

Mechanics: FEA studies on deformation

-0,163

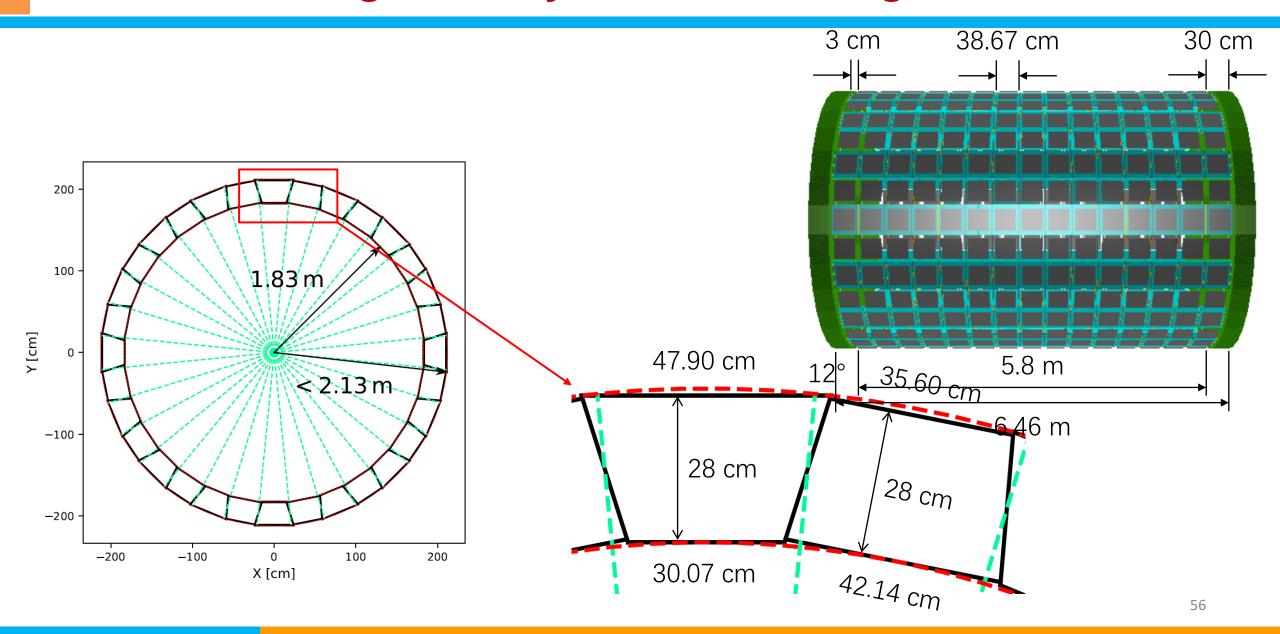
-0.15

-0.2


deformation of the cells is 0.23mm.

ECAL barrel: geometry and materials

- Design of 32-side crystal ECAL geometry.
 - Invert trapezoid module with minimized crack angle: reduce energy leakage.
 - Correspondence of layers between adjacent modules: clear shower structure.
- A realistic crystal ECAL geometry has been implemented with DD4HEP and released at CEPCSW MR !9.
- Summary of all crystal ECAL parameters.
- Fine geometry and material description.


Parameter	Value / mm
Inner radius	1900
Outer radius	2200
Length	5900
Crystal length	~ 400
# Modules in $r - \phi$	32
# Modules in Z	15
ϕ Projectivity tilt	12°
# Layers	28

Parameter / mm	Anti-Trapezoidal	Trapezoidal
Bottom length	314.598	435.106
Top length	492.657	369.809
Module height	280.232	292.216
Layer height	9.651	10.079
Crystal height	9.451	9.879
Radiation length	$23.628 X_0$	$24.698 X_0$

Geometry	Size / mm	Material
Supporting ¹	5	carbon fiber
$Cooling^2$	1	copper
Electronics front end ³	1.2 + 1	PCB+ASIC
Electronic back board ⁴	10	PCB
Electro-optical device ⁵	3*3*0.8	SiPM
$Wrapping^6$	0.1	ESR
$Crystal^6$	$\sim 10*10*400$	$_{\mathrm{BGO}}$

Barrel ECAL geometry: detailed design

