

# **CEPC HCAL Detector**

Haijun Yang (for the CEPC Calo Group)



Oct. 17th , 2024, CEPC Detector Ref-TDR Review



- **1. Introduction**
- 2. Requirement
- 3. Technology Survey and Our Choice
- 4. GS-HCAL Performance
- 5. GS-HCAL Mechanical Design
- 6. **GS-HCAL Electronics**
- 7. Cost Estimation
- 8. Technical Challenges
- 9. HCAL Research Group
- **10. Summary and Plan**

#### **Chapter 8 Hadron calorimeter**

- 8.1 Introduction
- 8.2 Requirements
- 8.3 Survey of HCAL technical options
  - 8.3.1 Semi-Digital HCAL based on RPC (SDHCAL)
  - 8.3.2 Analogue HCAL based on plastic scintillator (PS-HCAL)
  - 8.3.3 Analogue HCAL based on glass scintillator (GS-HCAL)
  - 8.3.4 HCAL option selection for the reference detector
- 8.4 Critical issues and technical challenges
- 8.5 R&D efforts and results
- 8.6 Designs including electronics, mechanics and cooling
- 8.7 Performance from simulation and beam test
- 8.8 Summary

# **1. Introduction**

#### **CEPC** as Higgs/W/Z boson factories

- H/W/Z decay into hadronic final states are dominant, it is crucial to design high performance calorimetry system
- Required Jet Energy Resolution σ/E ~ 3-4% at 100 GeV

| Physics<br>process                                                                              | Measurands                                   | Detector<br>subsystem | Performance<br>requirement                                                              |
|-------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------|
| $\begin{array}{c} ZH, Z \rightarrow e^+e^-, \mu^+\mu^- \\ H \rightarrow \mu^+\mu^- \end{array}$ | $m_H, \sigma(ZH)$<br>BR $(H 	o \mu^+ \mu^-)$ | Tracker               | $\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$ |
| $H  ightarrow b ar{b}/c ar{c}/gg$                                                               | ${ m BR}(H 	o b ar b / c ar c / g g)$        | Vertex                | $\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) 	imes \sin^{3/2}	heta}(\mu{ m m})$      |
| $H \rightarrow q \bar{q}, WW^*, ZZ^*$                                                           | $BR(H \to q\bar{q}, WW^*, ZZ^*)$             | ECAL<br>HCAL          | $\sigma^{	ext{jet}}_E/E = 3 \sim 4\%$ at 100 GeV                                        |
| $H \to \gamma \gamma$                                                                           | ${ m BR}(H	o \gamma\gamma)$                  | ECAL                  | $\Delta E/E = rac{0.20}{\sqrt{E({ m GeV})}} \oplus 0.01$                               |

CEPC CDR, <u>arXiv:1811.10545</u>



# **2. Requirement**

| Parameter                         | Conservative               | Ambitious                                      | Remarks                           |
|-----------------------------------|----------------------------|------------------------------------------------|-----------------------------------|
| Hadron Energy Resolution          | $60\%/\sqrt{E} \oplus 3\%$ | $40\%/\sqrt{E} \oplus 5\%$                     | Jet performance<br>flavor physics |
| Longitudinal Depth                | 48 layers, tot             | Containment most of jets                       |                                   |
| Transverse Granularity            | 40mm ×                     | H → gg (gluon jets)                            |                                   |
| Signal Dynamic Range              | 1 - 10                     | 0.1 MIP as trigger threshold                   |                                   |
| Time Resolution<br>(1-MIP signal) | 1                          | Bunch crossing ID<br>timing hadron performance |                                   |
| <b>Power Consumption</b>          | 15 m                       | O(5.6M) channels                               |                                   |

# 2. Requirement

→ The increase of sampling layers (40 → 48 layers) will improve the total nuclear interaction length (~5 $\lambda$  → 6 $\lambda$ ) and suppress hadronic shower leakage, which is beneficial to achieve better BMR and accuracy of benchmark physics processes.



# **3. Technology Survey and Our Choice**

#### Three major options for CEPC Hardronic Calorimeter

- ① RPC-DHCAL (SDHCAL, prototype): 48-layer
- ② Plastic Scintillator-AHCAL (PS-HCAL, prototype): 40-layer
- ③ Glass Scintillator-AHCAL (GS-HCAL): (new design for CEPC Ref-TDR)



**PFA calorimetry: extensively explored within the CALICE collab.** 6

## **3.1 RPC based SDHCAL (Prototype)**

#### Semi-digital HCAL (SDHCAL)

- High granularity (1cm x1cm)
- 48 layers (1m x 1m x 1.3m)
- Three thresholds readout
- Stainless-steel absorber with selfsupporting mechanical structure





## **3.2 Plastic Scintillator HCAL (Prototype)**

#### ■ We have developed a PS-HCAL prototype in 2022 and TB at CERN

| Calo    | Layers | material                | Absorber | Granularity               | Electronics           | Thickness          | Resolution         | Weight |
|---------|--------|-------------------------|----------|---------------------------|-----------------------|--------------------|--------------------|--------|
| PS-HCAL | 40     | PS+SiPM<br>\$14160-1315 | Fe       | $4 \times 4 \text{ cm}^2$ | SPIROC-2E<br>12960-ch | 4.6 λ <sub>I</sub> | 60%/√ <i>E</i> ⊕3% | 5.0 T  |



### **3.2 Plastic Scintillator HCAL (Prototype)**



### **3.3 Glass Scintillator R&D**

- ➤ The GS collaboration was established in 2021, it focuses on the large-area & high-performance glass scintillator for applications in nuclear and particle physics.
- The GS collaboration is organized by IHEP and the members include 4 Institutes of CAS, 6 Universities, 3 Factories currently.





### **3.3 Glass Scintillator R&D**



- ✓ The GS group did substantive research based on five glass scintillator types simultaneously and impressive progress has been achieved
- ✓ The performance of the best glass sample approach our initial goals, i.e. 6 g/cm<sup>3</sup> & 1000 ph/MeV & ~100 ns
- $\checkmark$  The GS group is leading R&D efforts on high density glass scintillator



## **3.3 Glass Scintillator (GS1) TB Performance**

#### **CERN Muon-beam (10 GeV muon)** 11 glass tiles tested at CERN (2023/5)



- **Typical Light Yield:** 500 - 600 ph/MeV
- > Typical MIP response: 60 – 70 p.e./MIP

**DESY Electron-beam (5 GeV electron)** 9 glass tiles tested at DESY (2023/10)



Typical Light Yield: 600 - 700 ph/MeV > Typical MIP response:

70 - 80 p.e./MIP





**Typical Light Yield:** 500 - 700 ph/MeV **Typical MIP response:** 60 - 80 p.e./MIP 12

### **4.1 GS-HCAL vs PS-HCAL**



### **4.2 GS-HCAL Energy Resolution**

#### A full detector geometry constructed with DD4hep in CEPCSW

- GS1 (Gd-AI-B-Si-Cs): density 6  $g/cm^3$ ,  $\lambda_I = 242.8$  mm, attenuation length ~ 23mm
- Geometry: follow the mechanics design, with simplified supporting structures.
- GS cell size  $4 \times 4 \times 1$  cm<sup>3</sup>, 2.7cm / layer, 48 layers,  $6\lambda_I$  in total



### **4.2 GS-HCAL Energy Resolution**



### **4.3 GS-HCAL Physics Performance**

- Hadron Energy Resolution (full sim + digi) :
- **PFA Reconstruction for**  $ee \rightarrow ZH \rightarrow \nu\nu gg$  events:
  - Tracker + crystal bar ECAL + GS-HCAL (barrel only)

$$\sigma_E/E = \frac{29.75\%}{\sqrt{E}} \oplus 6.46\%$$

16

- Improvements are expected with further optimizations (e.g. tracking, clustering, calibrations)
- BMR =  $3.95 \pm 0.10\%$  ( $m_{jj} = 123.81 \pm 4.89$  GeV).



# **5. GS-HCAL Design**

#### □ GS-HCAL: Barrel (16 sectors) and two Endcaps

- $\,\circ\,$  Thickness of the Barrel : 1315 mm
- $\circ$  Inner radius of the Barrel : 2140mm (D<sub>in</sub>=4280 mm)
- $\circ$  Barrel Length along beam direction : 6460 mm
- $\circ\,$  Number of Layers : 48 (~ 6  $\lambda_{\rm I})$





### **5.1 GS-HCAL Mechanical Design (Barrel)**



### **5.1 GS-HCAL Mechanical Design (Barrel)**

> Simulation of one active layer module (320mm × 646mm)



Total Deformation Type: Total Deformation Unit: mm Time: 1 2024/10/6 4**:**50

0.70112 Max

0.62322

0.54531

0.46741

0.38951

0.31161

0.23371

0.1558

0 Min

0.077902

Max. deformation 0.7mm - One layer with absorber





14.349

10.906

7.4634 4.0203 0.57729 -**2.8658 Min**  Max. stress 28.1MPa of GS



### **5.2 GS-HCAL Mechanical Design (Endcap)**



Schematic of one layer 20

### **5.2 GS-HCAL Mechanical Design (Endcap)**



### **5.3 GS-HCAL Cooling Simulation**

#### > Cooling simulation of 1 active layer module (320mm × 646mm)

- Heat source (chip): 15 mW/ch
- coefficient of heat conduction: 5000W/m<sup>2</sup> K;
- Inlet water 25°C, environment temperature is 25°C
- Thermal contact resistance:  $500W/m^2$



**Temperature** distribution: **25** °C ~ **32** °C



#### Temperature difference (GS vs SiPM): 2.8 °C

### **6. GS-HCAL Readout Electronics**

- Thickness: 3.2mm
  - PCB 1.2mm
  - ASIC Chip 2mm
- Aggregation board at the end of barrel





Aggregation board at the end of barrel, cable connection <sup>23</sup>

### 7. Cost Estimation: GS-HCAL vs PS-HCAL

| Parameter Name                                       | Barrel                     | Endcaps (x2)                | GS-HCAL                                      | PS-HCAL                                               |
|------------------------------------------------------|----------------------------|-----------------------------|----------------------------------------------|-------------------------------------------------------|
| Inner Radius for HCAL                                | 2140 mm                    | 400 mm                      | -                                            | -                                                     |
| Length for barrel or Radius                          | 6460 mm                    | 3455 mm (R <sub>out</sub> ) | -                                            | -                                                     |
| Longitudinal Depth                                   | 1315 mm ( $6\lambda_I$ )   |                             | -                                            | -                                                     |
| Glass Scintillator (\$1/cc)<br>Granularity 4cm x 4cm | 54.6 m <sup>3</sup>        | 35.6 m <sup>3</sup>         | GS (90.2 m <sup>3</sup> )<br>\$1/cc, \$90.2M |                                                       |
| Material Volume (m³)<br>Fe (tons, \$8/kg)            | 75.3 m <sup>3</sup>        | 49.2 m <sup>3</sup>         | 124.5<br>983.6 t <mark>(\$7.9M)</mark>       | 188.3 m <sup>3</sup><br>1488 t <mark>(\$11.9M)</mark> |
| Readout channels                                     | 3.4M (5450m <sup>2</sup> ) | 2.2M (3552m <sup>2</sup> )  | 5.6M                                         | 5.6M                                                  |
| Power (15mW/ch)                                      | 51 kW                      | 33 kW                       | 84 kW                                        | 84 kW                                                 |
| SiPM (\$1.5/ch)                                      | \$5.1M                     | \$3.3M                      | \$33.6M                                      | \$8.4M                                                |
| Electronics: \$2.5/ch                                | \$8.5M                     | \$5.5M                      | \$14M                                        | \$14M                                                 |
| Total                                                |                            |                             | \$145.7M (x7)<br>~1020M RMB                  | \$42.7M (x7)<br>~ 299M RMB                            |

### **8. Technical Challenges**

#### The main technical challenges

- R&D of the high performance Glass Scintillator
  - e.g. high density, high light yield, large attenuation length, short decay time;
- Mass production of high quality GS title and SiPM in cost effective way;
  - Cost of GS title (40x40x10 mm<sup>3</sup>) ~  $\frac{1}{c} \rightarrow \frac{1}{c}$  further cost reduction ?
  - Hamamatsu HPK / NDL SiPM (3x3 mm<sup>2</sup>) ~ \$1.5/ch with O(5M) pieces
  - Optimizing granularity, GS and SiPM couplings to reduce cost
- Highly integrated, fully embedded and scalable electronics with a parallel readout;
- Design and installation of the big size and heavy weight detector structure.

#### **9. HCAL Research Group**

- CEPC-HCAL team: IHEP, USTC, SJTU, XJTU, SCNU, SCU, HEU, ZZU
  - **Detector for PS/GS-HCAL:** Staff(9) + Student(5)
  - Electronics: Staff(5)
  - Mechanics: Staff(3)
  - **GS Collaboration:** 13 institutes, Staffs (26) + Students (10)

Convener: Sen Qian (IHEP), Jianbei Liu (USTC)

**Physics:** Manqi Ruan(IHEP), Haijun Yang (SJTU)

Software: Sengsen Sun(IHEP)

Design: Fangyi Guo(IHEP), Hengne Li(SCNU), Qingming Zhang(XJTU), Weizheng Song(IHEP), Peng Hu(261) Dejing Du(IHEP), Hongbing Diao(SUTC), Jiyuan Chen(SJTU), to design the GS-HCAL based on CEPCSW;
Glass Scintillator: Sen Qian(IHEP), Jing Ren(HEU), the GS collaboration (13 institutes, 26 staffs +10 students);
SiPM: Yuguang Xie(IHEP), Jifeng Han(SCU), Guang Luo(SYSU), SiPM and electronics for the GS performance test;
Electronics: Jingfan Chang(IHEP), to design the ASIC and FEE, power supply, cables etc.;
DAQ: Chen Boping(IHEP)
Mechanics and cooling system: Yatian Pei(IHEP), Junsong Zhang(IHEP), Shang Bofeng(ZZU)
Detector: Boxiang Yu(IHEP), Yunlong Zhang (USTC), Yong Liu (IHEP), GS-HCAL module, TB and cosmic test;

## **10. Summary and Plan**

#### Detector

- R&D of high quality GS and develop technique for mass production
- Optimize GS title granularity (cell size), GS and SiPM coupling
- GS-HCAL prototype for beam test

#### Electronics

- Optimization of readout electronics design

#### Mechanics

- Optimization of the mechanic design
- Optimization of the cooling design

#### Simulation and Performance with CEPCSW

- Optimization of GS-HCAL design
- GS-HCAL full simulation and reconstruction for benchmark physics



# **Thanks for your attention !**

Oct. 17<sup>th</sup>, 2024, CEPC Detector Ref-TDR Review

### **7. Cost Estimation: PS-HCAL**

| Parameter Name                                     | Barrel                     | Endcaps (x2)               | Sum                                                   |  |
|----------------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------|--|
| Inner Radius for HCAL                              | 2140 mm                    | 400 mm                     | NA                                                    |  |
| Length for barrel;<br>Outer radius for endcap*     | 6460 mm                    | 3455 mm                    | NA                                                    |  |
| Longitudinal Depth                                 | 131                        | $5 mm (6\lambda_I)$        | NA                                                    |  |
| Plastic Scint. (\$1.5/ch)<br>Granularity 4cm x 4cm | 5450 m <sup>2</sup>        | 3552 m <sup>2</sup>        | 9002 m²<br>(\$8.4M)                                   |  |
| Material Volume (m³)<br>Fe (tons, \$8/kg)          | 114 m <sup>3</sup>         | 74.3 m <sup>3</sup>        | 188.3 m <sup>3</sup><br>1488 t <mark>(\$11.9M)</mark> |  |
| Readout channels                                   | 3.4M (5450m <sup>2</sup> ) | 2.2M (3552m <sup>2</sup> ) | 5.6M                                                  |  |
| Power (15mW/ch)                                    | 51 kW                      | 33 kW                      | 84 kW                                                 |  |
| SiPM (\$1.5/ch)                                    | \$5.1M                     | \$3.3M                     | \$8.4M                                                |  |
| Electronics: \$2.5/ch                              | \$8.5M                     | \$5.5M                     | \$14M                                                 |  |
| Total                                              |                            | \$42.7M (x 7) ~ 299M (RM   | 1B)                                                   |  |

### 7. Cost Estimation: RPC-SDHCAL

| Parameter Name                                                  | Barrel                         | Endcaps (x2)               | Sum                                              |  |
|-----------------------------------------------------------------|--------------------------------|----------------------------|--------------------------------------------------|--|
| Inner Radius for HCAL                                           | 2140 mm                        | 400 mm                     | NA                                               |  |
| Length for barrel;<br>Outer radius for endcap*                  | 6460 mm                        | 3455 mm                    | NA                                               |  |
| Longitudinal Depth                                              | <mark>6λ</mark> / (Thickness o | depends on each option)    | NA                                               |  |
| RPC + Casette (\$1425/m <sup>2</sup> )<br>Granularity 2cm x 2cm | 5450 m <sup>2</sup>            | 3552 m²                    | 9002 m²<br>(\$12.9M)                             |  |
| Material Volume (m <sup>3</sup> )<br>Fe (tons, \$8/kg)          | 86 m <sup>3</sup>              | 56 m <sup>3</sup>          | 142 m <sup>3</sup><br>1122 t <mark>(\$9M)</mark> |  |
| Readout channels                                                | 13.6M (5450m <sup>2</sup> )    | 8.9M (3552m <sup>2</sup> ) | 22.5M                                            |  |
| Power (kW)<br>1.4mW/ch, 5.4W/DIF/m²                             | 48.5 kW                        | 31.6 kW                    | 80.1 kW                                          |  |
| Electronics: \$1/ch                                             | \$13.6M                        | \$8.9M                     | \$22.5M                                          |  |
| Total                                                           |                                | \$44.4M (x 7) ~ 311M (RMI  | 3)                                               |  |

#### **SiPM**

#### NIMA 980 (2020) 164481

- \* HPK-SiPM
  - Low PDE, dark rate and crosstalk
  - High breakdown voltage
  - Better quality control





- \* NDL-SiPM
  - High PDE, dark rate and crosstalk
  - Low breakdown voltage
  - $_{\circ}$  Low price



| Company             | HP           | νК           |              | NDL         |
|---------------------|--------------|--------------|--------------|-------------|
| Туре                | 13360-1325PE | 14160-1315PS | 14160-3015PS | 22-1313-15S |
| Light output [p.e.] | 13           | 17           |              | 20          |
| Crosstalk[%]        | 1.59         | 1.17         |              | 4.4         |
| Dark Counts [kHz]   | 120          | 290          | 700          | 550         |
| Breakdown[V]        | 53           | 38           | 38           | 27.5        |

#### **SiPM**

#### SiPM Options:

- HPK S13360-6025PE, 57600 pixels
- NDL EQR06 11-3030D-S, 244760 pixels
- HPK S14160-3015PS, 39984 pixels
- HPK S14160-3025PS, 14440 pixels







# Key parameters to energy resolution

#### Dynamic range: 0 ~ 100 MIP can cover >99.99% cases

- For SiPM: 8000 p.e. can be controlled in linear range (suppose LY ~ 80 p.e./MIP).
- For electronics: 1~1k can be achieved.
- Considering the common electronics design for ECAL, HCAL and Muon, HCAL's demands can be covered by ECAL.



### **4.4 GS-HCAL Background Estimation**

#### Simulation of beam background processes:

- 50 MW(H), bunch spacing 355 ns, with pair production, single beam processes
- Event rate with 0.1 MIP threshold: barrel < 5 kHz, endcap < 50 kHz



### **5.2 GS-HCAL Mechanical Design (Endcap)**



- Max. deformation in one active layer: 3mm (due to gravity)
- Horizontal extrusion deformation: 0.037mm
- > Max. principal stress at narrow end: 37MPa





### **3.3 Comparison of Scintillators**



**Plastic Scintillator** 



**Glass Scintillator** 



**Crystal Scintillator** 

Large density High light yield Energy resolution 🛨 Low cost **Fast decay** Large size

Large density High light yield Energy resolution 📩 📩 Low cost **Fast decay** Large size

Large density High light yield Low cost **Fast decay** Large size



#### **1. GS-HCAL: Sample test**

| Parameters            | Unit              | BGO     | GS1     | GS1+     | GS5     |
|-----------------------|-------------------|---------|---------|----------|---------|
| Cost                  |                   | 1       | 0.1 ?   |          |         |
| Density               | g/cm <sup>3</sup> | 7.13    | 6.0     | 6.0      | 5.9     |
| Transmittance         | %                 | 82      | 70      | 80       | 80      |
| Refractive Index      |                   | 2.1     | 1.74    | 1.71     | 1.75    |
| Emission peak         | nm                | 480     | 400     | 390      | 390     |
| Light yield, LY       | ph/MeV            | 8000    | 985     | 2445     | 1154    |
| Energy resolution, ER | %                 | 9.5     | 30.3    | 25.8     | 25.4    |
| Decay time            | ns                | 60, 300 | 36, 105 | 101,1456 | 90, 300 |



The samples (called AS glass) post to EIC for the test.





#### **1. GS-HCAL: Sample test**

tino 1800

1600

1400

1200

1000

800

200

10000

15000

20000

25000

30000

35000 400 ADC channel

#### **Small-Size Sample**

- **Size=5\*5\*5 mm<sup>3</sup>**
- Density~6.0 g/cm<sup>3</sup>
- LY~2445 ph/MeV
- ER=25.8%
- LO in 1 $\mu$ s=1074 ph/MeV
- Decay=**101** (2%), 1456 ns

#### Large-Size Sample

- Size=40\*40\*10 mm<sup>3</sup>
- Density=6.0 g/cm<sup>3</sup>
- LY ~1200 ph/MeV
- ER=33.0%
- LO in 1µs=607 (51%)
- Decay=117 (3%), 1368 ns



SIOM-56 SIOM-57

SIOM-58

BGO







- Energy Measurement: ASIC for ECAL & HCAL
- Data transmission: common data platform (see electronics report)
- Trigger mode: FEE trigger-less readout

### **5.1 GS-HCAL Mechanical Design (Barrel)**



### **3. GS-HCAL Mechanical Design**

