

CEPC Muon Detector

Xiaolong Wang (for the Muon Detector Group) Fudan University

Oct. 21st, 2024, CEPC Detector Ref-TDR Review

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

Introduction

Muon detector, the outermost detector with the largest volume, clean environment.

- Production of Higgs: $e^+e^- \rightarrow ZH$, Higgs could be determined in the recoil of $Z \rightarrow \mu^+\mu^-$.
- Muons provide in many theoretical models a characteristic signature for new physics.
- Muon detector is designed for muon identification, but not limited to this. For example,
 - Could be used to detect the leakage of HCAL.
 - Can be used for trigger, like in ATLAS.
 - Can be used to search for Long-lived particles.
- Furthermore, it must be robust and low cost.

Key requirements:

- Muon ID
- Track reconstruction

Requirements

Technology survey and our choices

- Extruded plastic scintillator (PS) technology
 - Belle II, JUNO-TAO, MATHUSLA, LHAASO, sPHENIX, etc.
- **RPC technology**
 - Belle, BESIII, Dayabay, ATLAS, CMS
- μ -RWELL (MGPD) technology
 - IDEA
- **Experiments** @ LHC
 - ATLAS: Thin Gap Chamber, RPC, Monitored Drift Tube, Small-Strip Thin-Gap Chamber, and Micromegas
 - CMS: Drift tube, Cathode Strip Chamber, RPC
 - LHCb: MWPC, RPC

Summary of performance and technical requirements for different gaseous μ detectors

	MDT/DT	CSC	TGC	MRPC	RPC
Spatial resolution $[\mu m]$	150	100	5mm	$15 \mathrm{mm}$	$15 \mathrm{mm}$
Time resolution [ns]	40	7	4.3	0.075	2
Averaged efficiency [%]	98	98	99	95	95
Hit rate $[Hz/cm^2]$	200	500	1000	500	100
Eletronic dependence	Α	Α	в	Α	\mathbf{C}
Software dependence	В	Α	в	\mathbf{C}	\mathbf{C}
Technology requirement	Α	Α	в	в	\mathbf{C}
Cost per channel	Н	Н	М	Μ	\mathbf{L}

A-C are in descending order of the requirements,H-High,M-Middling,L-low.

Simple structure:

Comparisons

	Advantages	Disadvantage
PS(+SiPM)	Solid detector, structure simple, high rate capability, low operation voltage, use SiPM similar to HCAL, time resolution	DCR of SiPM
RPC	Cost, mature tech., time resolution	Fill gas, HV system
μ -RWELL	Spatial resolution, high rate capability	Structure, number of readout channels, time resolution, cost.

Rate capability: $5 \sim 10 \text{kHz}/cm^2$

Scintillator	base	$\begin{array}{c} \text{density } \varrho \\ [\text{g/cm}^3] \end{array}$	$ au_{ m D}$ [ns]	$L_{\rm ph}, N_{\rm ph}$ [per MeV]	$\lambda_{ m em} \ [m nm]$	$n(\lambda_{ m em})$
Anthracene BC-408 (BICRON) BC-418 (BICRON) UPS-89 (AMCRYS-H) UPS-91F (AMCRYS-H)	PVT PVT PS PS	$1.25 \\ 1.032 \\ 1.032 \\ 1.06 \\ 1.06$	$30 \\ 2.1 \\ 1.5 \\ 2.4 \\ 0.6$	$\begin{array}{c} 16000\\ 10000\\ 11000\\ 10000\\ 6500 \end{array}$	$\begin{array}{c} 440 \\ 425 \\ 391 \\ 418 \\ 390 \end{array}$	$1.62 \\ 1.58 \\ 1.58 \\ 1.60 \\ 1.60 \\ 1.60$

Our choice: PS(+SiPM) as the baseline option, RPC for comparison in R&D.

PS bar and RPC have similar cost.

Technical Challenges

- Long detector module: > 5m, due to the large size of the muon detector.
- How to achieve the required efficiency and the time resolution from a long PS bar?
 - Kuraray fiber has an attenuation length of > 3.5m.
 - We got the effective attenuation length of 2.63m from lab testing on WLS fiber.

		Emission		Abcorption	Λ ttlong 2)	
Description	Color	Spectra	Peak[nm]	Peak[nm] [m]	Characteristics	
Y-7(100)	green		490	439	>2.8	Blue to Green Shifter
Y-8(100)	green]	511	455	>3.0	Blue to Green Shifter
Y-11(200)	green	See the	476	430	>3.5	Blue to Green Shifter (K-27 formulation) Long Attenuation Length and High Light Yield
B-2(200)	blue	figure	437	375	>3.5	UV to Blue shifter
B-3(200)	blue		450	351	>4.0	UV to Blue shifter
0-2(100)	orange	1	550	535	>1.5	Green to orange shifter
R-3(100)	red	1	610	577	>2.0	Green to red shifter

Formulations¹⁾

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

R&D efforts and results

- Front-end electronics
- Performance of PS bars
- Prototype and CR testing

Published papers:

- 1. Design and performance of a high-speed and low-noise preamplifier for SiPM, Nucl. Sci. Tech. 34, 169(2023)
- 2. Design and test for the CEPC muon subdetector based on extruded scintillator and SiPM, JINST 19 P06020(2024)

R&D for front-end electronics

Many different kinds of preamps for SiPM have been designed and tested.

- Design high-speed and low-noise preamp for SiPM.
 - Baseline noise of 0.6 mV, bandwidth of 426 MHz, and time resolution of 20 ps.
 - Test with laser input at 20MHz.
 - Clear N_{pe} spectrum.

Performance of PS bars

PS bars made by GNKD company (Beijing)

- Increase the light yield;
- Develop/improve the reflection layer with Teflon;
- Strip production, with a width of 4cm.
- The quality of 1.5m bars has achieved the required performance, which will be described later.
- R&D on longer bar with hole has started

Prototype and CR test

Standalone simulation

- Improving the performance of a single channel is to the key for a long detector module.
 - Light yield and light collection
- Simulation for single channel
 - Light collection and compared to lab test
 - Fiber embedding: Groove \rightarrow hole, $N_{pe} \times 1.4$
 - Diameter: $1.2mm \rightarrow 2.0mm$, $N_{pe} \times (2 2.8)$

Simulation shows potential to increase the light yield by a factor of (2.8 - 3.9), which is helpful for building long detector module.

13

Improvements on the scint. strip

Use NDL EQR15 $3mm \times 3mm$ Very new R&D in the past months, like the production in Fermi Lab. Fiber embedding: Groove \rightarrow hole Diameter: no new fiber available yet, we use three 1.2mm fibers instead. Optical glue can increase the N_{pe} by 25-30%. 1.65m new scint with Without optical glue 2.5mm diameter hole Trigger at middle 3 WLS Fiber - 2 WLS Fiber ▲ 1 WLS Fiber $\sigma_T < 1ns$ $\epsilon = 95^{\circ}$ j Teflon# TiO2#2 Teflon#2 TiO2#3 Hit Position (cm) Scintillator NO. New scintillator Very positive to the design of long module (> 4m). Scintillator production provided by GNKD, 14 at Fermilab with our R&D!

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

Detailed design

- Geometry: barrel and endcaps
- Detector channel elements and module
- Consideration on readout electronics

Detailed design - geometry

Detailed design - geometry

Overall of the design

- Barrel: 144 modules, 23,976 ch
- Inner endcaps: 48 modules, 6,912 ch
- Outer endcaps: 48 modules, 12,288 ch
- Sensitive length: 119 km
 - Length for PS bar and WLS fiber
- Sensitive area: $4.8 \times 10^3 m^2$

Chimney for magnet system

Detection dead area: ~1.5%

0.04% due to chimneys in the barrel for magnet system, 0.07% from the cross in endcaps, and 1.4% due to the beampipe.

Detailed design of the channel and module

Detector module

Detector channel

Baseline for SiPM readout

- Readout design for ECAL and HCAL covers the requirements of Muon detector: $N_{pe} < 100$, $\sigma_T < 0.5 ns$
- Use the ASIC scheme from ECAL or HCAL, and customize the FEE based on ASIC.
- Revise according to the constraints from cooling and mechanical structure of the detector

Stage scheme (M x N x O)

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

Geant4 simulation for performance

- Geometry and Geant4 simulation is implemented in CEPCSW, reconstruction and performance studies are ongoing:
 - Study of the Molière radius of muons originating at the interaction point and traversing the ECAL and HCAL. → Spatial resolution

Spatial resolution

Spatial resolution due to the multiple scattering:

$$\Theta_{rms}^{proj.} = \sqrt{\langle \Theta^2 \rangle} = \frac{13.6 \text{ MeV}}{\beta cp} z \frac{x}{X_0} [1 + 0.038 \ln(x/X_0)]$$

- From the calculation: ~1.3*cm*
- Reference to Belle II (1cm):

 $L \times 2$, $p_{th} \times 4 \rightarrow \sigma_{scat} \sim 1 cm$

The higher momentum, the smaller σ_{scat}

Spatial resolution of 1 cm is required, i.e., keep the width of 4 cm for a PS bar.

Detector Simulation

Everything based on CEPCSW framework.

1k muons at 10 GeV muons

Detector Simulation

Muon ID from simulation

Muon ID efficiency vs. momentum

Define Muon ID:

If a muon candidate has 3 or more hits reconstructed in the muon detector, it is identified as a muon.

Muon ID efficiency of the barrel

The efficiency threshold is due to the large size of the detector and the magnet field.

About track reconstruction

- Tracking in the muon detector may be used to rescue some energy leakage of HCAL:
 - Magnet field in the iron layers can be simulated; -
 - Most charged particles in the tail of a hadronic shower are π^{\pm} and μ^{\pm} .
 - If we can reconstruct the momentum of these charged particles, or add their masses, at least.
- Tracking in the Muon detector can extend the search of LLP from L < 3.5 m to L < 4.9m.</p>

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

For the backup option

RPC technology used in China

	MUC@BESIII	CR veto@DYB
Bare RPCs	1,272 m^2	3,200 m ²
Box	136	195
Readout strip & insulation materials	636 m ²	3,200 <i>m</i> ²
Electronics	9,152ch	6,000 ch

Ongoing R&D at SJTU

- A prototype from ATLAS (upgrade).
- Use R134a gas, 1.2 mm gas gap.
- Gain of preamp: 16
- Efficiency curve and time resolution determined from CR testing.

For the backup option, we will perform the R&D focusing on glass with low resistance $(10^{10}\Omega m)$, which is available in China.

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

Research Team

Institutions (7) and faculties/staff (13)

- Fudan University:
- Shanghai Jiaotong University:
- IHEP:
- South China Normal University:
- Nankai University:
- LPI:
- BINP:
- Graduate students: ~20
- Task board:
 - Overall:
 - Software and simulation:
 - R&D on PS scheme:
 - R&D on PRC scheme:
 - Production and testing:
 - Electronics:
 - Radiation hardness test:
 - LLP search:

Xiaolong Wang, Wanbing He, Weihu Ma Jun Guo, Liang Li Zhi Wu, Yuguang Xie, Jie Zhang Hengne Li Minggang Zhao, Junhao Yin Pasha Pakhalov Alexander Barnyakov

X.L. Wang H.N. Li, J.H. Yin, M.G. Zhao X.L. Wang, Z. Wu, W.B. He, W.H. Ma J. Guo, Y.G. Xie Z. Wu, Y.G. Xie J. Zhang W.H. Ma L. Li

Working plan

- Improvement and optimization of PS bars
- Build a prototype module and testing
 - The performance of a module with a length of 5m: efficiency, time resolution
- Optimization of structure design
- Software and simulation
- Radiation hardness studies.

Summary

- Muon detector will be designed for muon ID, but not limited to this.
- Many R&D efforts have been performed: FEE, prototype, simulation, etc.
 - Performance of a 1.5*m* prototype: $\epsilon > 98\%$, $\sigma_T < 1.5 ns$
 - R&D on new scintillator with hole shows very good performance.
- Detailed design:
 - Barrel: 6 layers, 2 long modules per layer, helix dodecagon
 - Endcaps: 6 layers, 4 sectors per layer, two modules (inner and outer) per sector
 - Large area modules with long PS bars.
 - 43k channels, $4.8 \times 10^3 m^2$ area, and 119 km long fiber, in total.
- Work plan will focus on software and simulation for performance, prototype modules with long bars, and electronics.

Thank you for your attention!

Oct. 21st, 2024, CEPC Detector Ref-TDR Review

Add chimneys

Input the chimneys of the magnet system.

It contributes a dead zone of <0.4%.</p>

New PS bar with optical glue

Alternative: discrete device scheme

Pulsewidth--InputQ(Edgetime=20ns)

100 150 200 250 300 350 400 450

CH₂

____ 0

- Commercial chips with radiation tolerance based on past studies for particle physics experiments
- FPGA based TDC for TOA and TOT measurement with ~1 ns time resolution
- ADC for charge measurement or TOT calibration
- DAC for threshold setting or SiPM bias voltage adjustment

Near-term test environment

FEB (Front-end Electronics Board)

- Commercial chips with radiation tolerance based on past studies for particle physics experiments
- FPGA based TDC for TOA and TOT measurement with ~1 ns time resolution
- ADC for charge measurement or TOT calibration
- DAC for threshold setting or SiPM bias voltage adjustment
- Reuse JUNO-TAO electronics for readout, clock synchronization and TDAQ
 - To accelerate the development schedule

Test for TOT

Readout electronics: Time-over-threshold (TOT) scheme

Front-end electronics ready:

- High time resolution preamp: $\sigma_T \approx 20 \ ps$
- High-speed discriminator shows $\sigma_T \approx 0.2 \ ns$
- Implementation of TOT: operational amplifier + high-speed discriminator + TDC.
- **FEE** integrated DAC to adjust threshold and SiPM bias voltage.
- It's possible to get N_{pe} according to TOT.
- Investigating the possibility of integrating the BEE into the detector module: only power cable and signal fiber.

300 350 400 450

Input(m)

SiPM – ASIC MPT2321

MPT2321, made in China 32CH ADC (12bit) + TDC(50ps)

SiPM mini power

Study on mini power to be integrated into the FEE.

SiPM POWER	BIAS-2-14/70 @NDL	C14156 @Hamamatsu	MAX5026 @Fudan
Voltage (V) Output Range	14~70	0~80	0~71
Current (mA) Output Range	0.5	2	2
Number of SiPMs driven	100	400	400
Power consumption (mW)	250	100	200
Ripple noise (mV/Vpp)	5.2	0.1	2
Price (¥)	~2000	500	30
1\$ = 7¥	6110	CHA:2:300 CHB:2:300 CHA:2:300 CHB:2:300 CHA:9:0.082 I:1.06 CHB V:31:535 I:0.00 A:0 0.067 B:0	

Considerations of the backgrounds

- Very low level of the CR backgrounds, with the earth shield of > 50m.
- Reference to the beam backgrounds in Belle II.

	Expected	Expected	Bad-case	Bad-case	Worst-case	Worst-case
Barrel	Hit Rate	RPC	Hit Rate	\mathbf{RPC}	Hit Rate	RPC
Layer	(Hz/cm^2)	Efficiency	(Hz/cm^2)	Efficiency	(Hz/cm^2)	Efficiency
0	—scir	ntillators-	—scin	tillators—	-scinti	illators—
1	—scir	ntillators—	scin	tillators—	scinti	illators—
2	2.6	0.86	26	0.00	260	0.00
3	1.7	0.91	17	0.14	170	0.00
4	0.9	0.95	9	0.54	90	0.00
5	0.5	0.97	5	0.54	50	0.00
6	0.5	0.97	5	0.54	50	0.00
7	0.3	0.98	3	0.84	30	0.00
8	0.5	0.97	5	0.54	50	0.00
9	0.2	0.98	2	0.89	20	0.00
10	0.2	0.98	2	0.89	20	0.00
11	0.1	0.99	1	0.94	10	0.49
12	0.1	0.99	1	0.94	10	0.49
13	0.1	0.99	1	0.94	10	0.49
14	0.2	0.98	1	0.94	10	0.49

Table 2: Neutron flux, hit rate per unit area, and instantaneous efficiency in each layer of the barrel KLM from the late-2020 simulations of beam-induced neutron backgrounds at the SuperKEKB design luminosity of $6 \times 10^{35} \,\mathrm{cm^{-2}s^{-1}}$. Here, the Belle II hybrid configuration replaces the RPCs in the two innermost layers with scintillators and neutron-absorbing polyethylene sheets.

For a 4m long bar, the hit rate might be 160Hz. For the 'bad-case', it would be 1.6kHz!

Bandwidth requirement

Muon	Readout Channel	Hit rate/Hz (preliminary worst case)	Data format	Raw data rate / Gbps
Barrel	23976	10 k	48bit	11.51
Inner endcaps	6912	10k~100 k, Average 20 k	(8b BX + 10b ADC + 2b) range + 9b TOT + 7b	6.64
Outer endcaps	12288	10 k	chip ID)	5.90
Total	~43.2 k			~24.04

- Very preliminary, conservative estimation according to data from Belle II experiment.
- We assigning a faculty to take care of this issue.

Reference for endcaps

Structure of a module

Installation

Cables

Detector Optimization

The muon tracker hit vs. energy threshold:

Assuming pedestal : signal = 1:1

Detector Optimization

Muon ID efficiency vs efficiency of single channel

What we learn from the simulations:

- 1. Efficiency of a single channel should $\geq 95\%$,
- 2. Number of superlayers should ≥ 6 ,

while, layers #7,8 are not very helpful for the muon ID, due to the short ϕ -length

3. Threshold of momentum > 4 GeV/c, need help from HCAL for the lower momentum muon track.

RPC technology – BESIII

- Homemade Oil-free Bakelite RPC;
- Gas mixture: Ar:R134a:ISO-B=50:42:8
- First time successful mass production in China, bare chamber pass rate > 90%;
- Good performance and keep running even now (>15years)!

Bare RPCs	$1,272 m^2$
Box	136
Readout strip & insulation materials	636 m ²
Electronics	9,152ch

Parameters		Dosign Targot	Real Performance			
			Cosmic Ray	Double μ	$\pi\pi J/\psi(\mu\mu)$	Total
Average Effic	iency	95	94.7	95.11	95.17	93.6
Counting Rat	te	$< 0.1 Hz/cm^2$		0.04 (F	Random Trigger)	
Spatial	$\sigma_{R\Phi}$	< 20mm	19	18	19	17.6
Resolution	σ_Z	< 30mm	23	21	22	22.5
$P(\pi \rightarrow \mu)$	1GeV/c	< 5%		5.5%	(MC)	

Table 2-4 BESIII Detector Performance

50

RPC technology – Dayabay

Super module:

- Two layers of 2-D readout
- 4-layer RPCs
- Module size: $2.17m \times 2.20m \times 0.08m$
- Number of modules: 194
- Bare RPC sizes: $1.0m \times 2.10m$, $1.1m \times 2.1m$
- Bakelite plate size limitation: $2.4m \times 1.2m!$

	Contraction of the	and the second s	100
STAR BURNESS STAR			
		the state	-
		+ +	- AR
Contraction of the second	C	The hast	N
	ARE CONT		1
118	2460		C 71
			all'
2		Par al	18
			-
		1111 21	201
	20.000/		91
	2 1707	· 201	1
	A ME - LALLAL	STP ST	7
	9.11	2012	

" Direction

Bare RPCs	$3,200 m^2$
Box	195
Readout strip & insulation materials	3,200 <i>m</i> ²
Electronics	6,000 ch

ction	We have the tech. based
ction	on Bakelite ready.