
Physics Performance

Plan to incorporate additional BSM benchmarks

- Long Lived Particles to motivate muon detector design: LLP, smuon
- MET-related processes: existing H->inv
- H->aa->4 γ to assess the separation power and resolution of Ecal
- Current status of full simulation/reconstruction in V240901
 - Ongoing work on implementing digi+reco of the endcap calo system in CEPCSW
 - Manageable computing time for full sim+digi+reco: ~1 minute/event, enabling processing of 1 million events for vvH(gg) with <1000 CPU*day
 - Reevaluation planned for 4-jet events and full detector, including the endcap
- First look at object performance with FULL simulation
 - Tracking: efficiency <95% for muons with pT<10 GeV
 - BMR dijets resolution > 5% in barrel ($|\cos\theta|$ <0.5)
 - PID efficiency and purity studied
 - Work closely with the software group to address and resolve issues
- Two task forces created for in-depth object performance studies
 - Tracking/PID, contact Chenguang Zhang
 - Jets/Clusters, contact Zebing Wang/Kaili Zhang

Plan to conduct analysis-oriented tutorials to engage more students

Preliminary Object Performances

2

Todo: Tracking/PID performance studies

- Differential tracking efficiency/resolution
 - Tracking efficiency/resolution vs pT and/or $\cos\theta$
 - @different level: Vertex+ITK+TPC+OTK, Vertex+ITK, TPC only, etc.
 - Tracking angular resolutions vs pT and/or $\cos\theta$
 - detector design requirements: pT>~100MeV, $|\cos(\theta)|<0.99$, $\delta(pT)^{\sim}0.1\%$ in barrel
- Differential resolution of track impact parameters
 - dx, dy, dz, $\delta(d0/z0)$ vs pT, etc.
 - detector design requirements: in the barrel $\delta(d0/z0)^{\sim}3$ micro meter at 20 GeV
- Differential PID capability: eff, mis-ID rates, purity
 - 1d/2d distributions on eff/mis-ID vs. pT/cos θ
 - and for different particles (π, k, p, e, μ)
 - with/without TOF
 - relative resolution of dE/dX
 - detector design requirements: eff*purity>90% for all charged Kaon with E>2GeV(@Z pole);
 ~relative resolution of dE/dX better than 3%.; ToF of 50ps; efficiency >99% for 3-prong tau
- vvH(μμ): H invariant mass resolutions in barrel and endcap
- **Z**(µµ)**H**: recoil mass resolutions in barrel and endcap

Todo: Jet/Clusters performance studies

- Differential efficiency, and energy/angular resolution for photon, neutron, charge hadrons
 - detector design requirements:
 - EM resolution: 3%/VE \otimes 0.5% (Ref:JHEP12(2022)135)
 - Had resolution: 50%/VE 2% (Ref:CDR baseline performance)
- Differential efficiency and energy/angular resolution for jet
 - and for different jet reconstruction algorithms
- H->diphoton mass resolutions for barrel and endcap
- π^0 eff and resolution vs. pT/cos θ
- **dijet** resolution for different flavors, versus pT/cos θ