

Physics Benchmarks and Global Performance

Mingshui Chen for Physics & Performance group

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

October 21-23, 2024, CEPC Detector Ref-TDR Review

- Introduction to CEPC Physics
- Physics Benchmarks and Global Performance
 - Key Detector Requirements
 - Algorithm Development: Jet Origin ID & Its Application
- Physics Benchmarks Reach with the CDR detector for reference
- Global Performance of the Ref-TDR detector
- Physics Benchmarks Prospects at the Ref-TDR
- Challenges, Plans, and Team
- Summary

Operation Plan from Acc. TDR

	Operation mode	ZH	Z	W+M-	tī
	\sqrt{s} [GeV]	~240	~91	~160	~360
I	Run Time [years]	10	2	1	5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
30 MW	<i>∫L dt</i> [ab ⁻¹ , 2 IPs]	13	60	4.2	0.65
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
50 MW	<i>∫L dt</i> [ab ⁻¹ , 2 IPs]	21.6	100	6.9	1
	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

CEPC accelerator TDR (Xiv:2312.14363)

While aiming to meet the needs of the whole energy range, emphasizes more on the Higgs operation mode.

CEPC physics

CEPC physics

CEPC physics

CEPC Detector Requirements

Physics Benchmarks and Requirements

		-
Process @ c.m.e	Domain	Relevant Det. Performance
vvH @ 240 GeV	Higgs	PFA + Jet Origin ID (JOI)
qqH	Higgs/NP	PFA, MET
WW→ℓvqq @ 240/160 GeV	Flavor	JOI + PID (lepton, tau)
vvH @ 360 GeV	Higgs	PFA + JOI
Ζ→ττ @ 91.2 GeV	QCD	PFA, tau ID
Z→bb, B→DK @ 91.2 GeV	Flavor	PFA + JOI + PID (kaon)
Z @ 91.2 GeV	EW	IOL
ℓℓH	Higgs	Lepton ID, track dP/P
vvH + qqH	Higgs	PFA + JOI
qqH	Higgs	PFA, lepton ID, tracking
qqH	Higgs	PFA, photon ID, EM resolution
Threshold scan @ 160 GeV	EW	Beam energy
Threshold scan @ 360 GeV	EW	Beam energy
91.2 GeV	Flavor	Object (ϕ) in jets; MET
91.2 GeV	Flavor	Object (τ) in jets; MET
91.2 GeV	Flavor	π^0 in jets; EM resolution
qqH	NP	Tracking in calo/muon detector
qqH	NP	EM resolution
	Process @ c.m.e vvH @ 240 GeV qqH $WW \rightarrow \ell vqq$ @ 240/160 GeV vvH @ 360 GeV $Z \rightarrow \tau \tau$ @ 91.2 GeV $Z \rightarrow bb, B \rightarrow DK$ @ 91.2 GeV $\ell \ell H$ vvH + qqH qqH qqH Threshold scan @ 160 GeV Threshold scan @ 360 GeV 91.2 GeV 91.2 GeV 91.2 GeV qqH qqH	Process @ c.m.eDomain vvH @ 240 GeVHiggsqqHHiggs/NPWW→ℓvqq @ 240/160 GeVFlavor vvH @ 360 GeVHiggsZ→tt @ 91.2 GeVQCDZ→bb, B→DK @ 91.2 GeVFlavorZ @ 91.2 GeVEWℓℓHHiggsqqHHiggsqqHHiggsqqHHiggs91.2 GeVEWThreshold scan @ 160 GeVEW91.2 GeVFlavor91.2 GeVFlavor91.2 GeVFlavor91.2 GeVFlavorqqHNPqqHNPqqHNP

PFA is essential for the majority of benchmarks, emphasizing **global reconstruction performance**

- BMR < 4% required, with a target to achieve
 3% for optimal resolution
- PID: crucial to efficiently reconstruct and accurately identify final state particles with a one-to-one correspondence
 - Kaon ID with eff and purity > 95%
- Capable to find composited objects in jets

Sub-Det level performance

- **Tracking: ~0.1%** momentum resolution
- **EM resolution: ~1% level**
- **VTX:** position resolution ~ 5 μm

Reliance on both sub-detector performance and advanced global reconstruction algorithms is essential

- **CyberPFA** being developed to address the challenges of Crystal Bar ECal
 - Relying heavily on full simulation of the detector
- New concepts emerge, such as Jet Origin ID and Color Singlet ID

Jet Origin ID

Jet Origin ID: 11 categories (5 quarks + 5 antiquarks, + gluon)

- ◆ Jet flavor (b, c, **s, gluon, u & d)** tagging and **charge**
- Input: PID & 4-momentum of all reconstructed particles + impact parameters for charged ones (~o(50) particles)

Jet flavor tagging efficiencies and charge flip rates with perfect identifications

JOI concept successfully demonstrated using CEPC CDR baseline detector and Arbor PFA, along with perfect PID (di-jet events ($vvH(qq) \& Z \rightarrow qq$) simulated)

Physics Benchmarks: H→ss

Physics Benchmarks: H→cc & Vcb

PRL 132, 221802 (2024)

From Jet Flavor Tagging to Jet Origin ID:

- vvH, H→cc: 3% → 1.7%
- Vcb: 0.75% \rightarrow 0.45% ($\mu\nu$ qq channel, $e\nu$ qq: 0.6%, combined 0.4%)

Physics Benchmarks using CDR detector and TDR lumi

	Process @ c.m.e	Domain	Sensitivities using CDR baseline detector + TDR lumi., with JOI	
Н→сс	vvH @ 240 GeV	Higgs	1.7%	
H→ss [1]			95% UL of 0.75E-3	
H→sb [1]			95% UL of 0.22E-3	
H→inv [2]	qqH	Higgs/BSM	95% UL of 0.13%	
Vcb [3]	WW→ℓvqq @ 240/160 GeV	Flavor	0.4%	
W fusion Xsec [2]	vvH @ 360 GeV	Higgs	1.1%	
α_{S}	Ζ→ττ @ 91.2 GeV	QCD	NAN	
CKM angle γ –2 β	Z→bb, B→DK @ 91.2 GeV	Flavor	NAN	
Weak mixing angle [4]	Z @ 91.2 GeV	EW	2.4E-6 using 1 month of Z pole data (~2E11 Z)	
	<i>ℓℓ</i> н	Higgs	δm = 2.5 MeV;	
			δσ/σ = 0.25%/0.4% (wi/wo qqH)	
H→bb, gg [2]	vvH + qqH	Higgs	bb: 013%; gg: 0.65%	
Н→µµ [2]	qqH	Higgs	6.4%	
Н→үү [2]	qqH	Higgs	3%	
W mass & width [6]	Threshold scan @ 160 GeV	EW	0.7 MeV & 2.4 MeV @ 6 iab	
Top mass & width [7]	Threshold scan @ 360 GeV	EW	9 MeV & 26 MeV @ 100 ifb	
Bs→ $\nu\nu\phi$ [8]	91.2 GeV	Flavor	0.9% (1.8%@Tera-Z)	
$Bc \rightarrow \tau \nu$ [9]	91.2 GeV	Flavor	0.35% (0.7%@Tera-Z)	
$B_0 \rightarrow 2 \pi^0 [10]$	91.2 GeV	Flavor	NAN	
H→LLP	qqH	BSM	NAN	
H→aa→4γ	qqH	BSM	NAN	

- 1. H. Liang, et al, PHYSICAL REVIEW LETTERS 132, 221802 (2024)
- 2. CEPC Phy-Det Snowmass White Paper, arXiv:2205.08553v1
- 3. H. Liang, Ph.D thesis
- 4. Z. Zhao, et al., Chinese Physics C Vol. 47, No. 12 (2023) 123002
- 5. Z. Yang, et al., Chinese Physics C Vol. 41, No. 2 (2017) 023003
- 6. P. Shen, et al., Eur. Phys. J. C (2020) 80:66
- 7. Z. Li, et al., arXiv:2207.12177
- 8. Y. Wang, et al., PHYSICAL REVIEW D 105, 114036 (2022)
- 9. T. Zheng, et al., Chinese Physics C Vol. 45, No. 2 (2021) 023001
- 10. Y. Wang, et al., JHEP12(2022)135

We need to demonstrate this table using RefTDR design

Detector Concepts: from CDR to refTDR

	CDR	Ref-TDR	
	Inner radius of 16 mm	Inner radius of 11 mm	
VTX	Material Budget: 0.15%*6+0.14%(beampipe)= 1.05% X0	Material Budget: 0.06%*4(inner)+0.25%*2(outer)+0.16%(beampipe)= 0.9% X0	
Gaseous Tracker	TPC with 1 mm* 6 mm readout	TPC with 0.5 mm* 0.5 mm readout To have dE/dx or dN/dx resolution 3% (Drift Chamber with the capability of dN/dx as alternative)	
ToF	-	AC-LGAD, with <mark>50 ps</mark> per MIP	
ECAL	Si-W-ECAL: 17%/ √E ⊕ 1%	Crystal Bar-ECAL: 1.5%/VE 🕀 1%	
HCAL	RPC-Iron: 60%/ VE	Glass-Iron: <mark>30%/VE 🕀 6%</mark>	

Tracking @ simulation

To be updated with full tracking system, and also versus costheta

~0.1% achievable for the majority of tracking resolution

VTX and Jet Flavor/Charge measurement

Eur. Phys. J. C (2024) 84:152 https://doi.org/10.1140/epjc/s10052-024-12475-5 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

ParticleNet and its application on CEPC jet flavor tagging

Yongfeng Zhu^{1,a}, Hao Liang^{2,3}, Yuexin Wang^{2,3}, Huilin Qu⁴, Chen Zhou^{1,b}, Manqi Ruan^{2,3,c} ¹ State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China ² Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ³ University of Chinese Academy of Sciences (UCAS), Beijing 100049, China ⁴ EP Department, CERN, 1211 Geneva 23, Switzerland

R⁰_{material} $Tr_{mig} = 2.30 + 0.06 \cdot \log_2$ **K**material $R_{resolution}^{0} + 0.10$. R⁰_{radius} radius resolution (1)Rmaterial $Tr_{mig} = 2.64 + 0.03 \cdot \log_2$ Kmaterial $R_{resolution}^{0} + 0.06 \cdot \log_2$ R⁰_{radius} $+0.02 \cdot \log_{2}$ radius (2)

- Compared to the CDR, the VTX at TDR has:
 - Inner radius reduced by 40% (16 mm \rightarrow 11 mm)
 - Material reduced by 10% (1.05% \rightarrow 0.9% X0)
- Trace(Migration Matrix) increased from 2.64 → 2.68
 - H \rightarrow cc accuracy improved by ~5%
 - ◆ Vcb accuracy improved by ~10%

PID: dE/dx or dN/dx + TOF

Nucl.Instrum.Meth.A 1047 (2023) 167835

Table 3

The K^{\pm} identification performance with different factors, $\sigma_{actual} = factor \cdot \sigma_{intrinsic}$, with/without combination of TOF information at the Z-pole.

	Factor	1.	1.2	1.5	2.
	ε_{K} (%)	95.97	94.09	91.19	87.09
dE/dx	purity _K (%)	81.56	78.17	71.85	61.28
dE /da a TOE	ε _K (%)	98.43	97.41	95.52	92.3
dE/dx & IOF	purity _{K} (%)	97.89	96.31	93.25	87.33

dE/dx or dN/dx with resolution of
 3% + TOF of 50 ps:
 eff & purity of Kaon ID > 95%

dE/dx or dN/dx @ ref-TDR goal

A major goal for the Ref-TDR Gaseous Tracker is the PID: to achieve 3% dE/dx or dN/dx performance

- Initial results are promising, and will be confirmed through further studies, especially test beam
- Gaseous Tracker inner radius: to be optimized for endcap performance

PFA Goal: BMR < 4% & pursue 3%

BMR used to quantify jet reconstruction: 4% will well separate W/Z and Higgs, and separate ZH from the ZZ

- Accuracies of different physics benchmarks as a function of the BMR show a turning point at roughly BMR of 4%
- $H \rightarrow inv$ as an example:
 - BMR from 4% to 8% (typical LHC experiment performance), one need to double the luminosity to reach same accuracy
 - BMR from 4% to 3%, save roughly one year of operation

BMR Decomposition

(for BMR of 3.7% at CDR)

- ~50% from confusion
- ~25% from detector resolution
- ~25% from acceptance

- HCAL resolution dominates among the uncertainties from detector resolutions:
 - Using Glass Scintillator (TDR HCAL) Iron with thickness of 6 lambda (compared to GRPC - Iron of 5 lambda) → BMR of 3.4%

BMR of ~ 4% at refTDR

Physics performance in simulation: Higgs boson

- Higgs benchmark studies at CEPC 240 GeV
 - Higgs decays to 2 photons (EM performance) and 2 gluon jets (PFA performance)

Preliminary BMR at ref-TDR: 4.1%, close to the CDR value of 3.7%

Effective control of confusion (such as fake particles) is crucial, necessitating optimization and further development in reconstruction techniques

Physics Benchmarks at CDR & refTDR

	Process @ c.m.e	Domain	Sensitivities using CDR det. + TDR lumi., with JOI	Prospects @ Ref-TDR	
Н→сс			1.7%	1.6%	
H→ss [1] vvH @ 240 GeV		Higgs	95% UL of 0.75E-3	95% UL of 0.70E-3	
H→sb [1]			95% UL of 0.22E-3	95% UL of 0.20E-3	
H→inv [2]	qqH	Higgs/BSM	95% UL of 0.13%	Same	
Vcb [3]	WW→ℓvqq @ 240/160 GeV	Flavor	0.4%	0.36%	
W fusion Xsec [2]	vvH @ 360 GeV	Higgs	1.1%	Same	
α_s	Z→ττ @ 91.2 GeV	QCD	NAN	Theory Unc. Dominant	
CKM angle $\gamma - 2\beta$	Z→bb, B→DK @ 91.2 GeV	Flavor	NAN	~0.1-1 degree	
	-		-		
Weak mixing angle [4]	Z @ 91.2 GeV	EW	2.4E-6 using 1 month of Z data	tiny improvement due to VTX	
Lines receil [7]	<i>ℓℓ</i> н	Higgs	δm = 2.5 MeV;	Course a	
Higgs recoil [5]			$\delta\sigma/\sigma$ = 0.25%/0.4% (wi/wo qqH)	Same	
H→bb, gg [2]	vvH + qqH	Higgs	bb: 013%; gg: 0.65%	bb: 012%; gg: 0.62%	
H→µµ [2]	qqH	Higgs	6.4%	Same	
Н→үү [2]	qqH	Higgs	3%	1.8%	
W mass & width [6]	Threshold scan @ 160 GeV	EW	0.7 MeV & 2.4 MeV @ 6 iab	Same	
Top mass & width [7]	Threshold scan @ 360 GeV	EW	9 MeV & 26 MeV @ 100 ifb	Same	
Bs→ $\nu\nu\phi$ [8]	91.2 GeV	Flavor	0.9% (1.8%@Tera-Z)	Same, if object recon. ~ CDR	
$Bc \rightarrow \tau \nu [9]$	91.2 GeV	Flavor	0.35% (0.7%@Tera-Z)	Same, if object recon. ~ CDR	
P 3 - ⁰ [10]		El	ΝΑΝ	0.3% (need to validate	
$B_0 \rightarrow 2\pi [10]$	91.2 Gev	Flavor	INAN	photons finding)	
H→LLP	qqH	BSM	NAN	Work in progress	
H→aa→4γ	qqH	BSM	NAN	Work in progress	

Precision of H → γγ could be improved significantly when the low mass is controlled

Physics measurements using JOI, benefit from better VTX and have 5-10% improvements, and assuming that the TDR BMR could eventually reach 3.7%

- If BMR of 3% achieved, precisions of most benchmarks could be further improved by 5-10%
- Further development required for the pattern recognition capability of Crystal Bar ECAL

Physics Benchmarks at CDR & refTDR

	Sensitivities using CDR det. + TDR lumi., with JOI	Prospects @ Ref-TDR	
H→cc	1.7%	1.6%	
H→ss [1]	95% UL of 0.75E-3	95% UL of 0.70E-3	
H→sb [1]	95% UL of 0.22E-3	95% UL of 0.20E-3	
H→inv [2]	95% UL of 0.13%	Same	
Vcb [3]	0.4%	0.36%	
W fusion Xsec [2]	1.1%	Same	
α_{S}	NAN	Theory Unc. Dominant	
CKM angle $\gamma - 2\beta$	NAN	~0.1-1 degree	
Weak mixing angle [4]	2.4E-6 using 1 month of Z data	tiny improvement due to VTX	
Higgs result [5]	δm = 2.5 MeV;	Same	
Higgs recoil [5]	$\delta\sigma/\sigma$ = 0.25%/0.4% (wi/wo qqH)		
H→bb, gg [2]	bb: 013%; gg: 0.65%	bb: 012%; gg: 0.62%	
H→μμ [2]	6.4%	Same	
Н→үү [2]	3%	1.8%	

Precision of H → γγ could be improved significantly when the low mass is controlled

Physics measurements using JOI, benefit from better VTX and have 5-10% improvements, and assuming that the TDR BMR could eventually reach 3.7%

- If BMR of 3% achieved, precisions of most benchmarks could be further improved by 5-10%
- Further development required for the pattern recognition capability of Crystal Bar ECAL

Challenges & Plans

Challenges:

- Impact of beam induced background
- ◆ High data rate @ Z pole: need to reconstruct in Space time (PFA in space time)
- New CyberPFA development: rely on full simulation, as it significantly impacts the final resolution on hadronic objects

Plans:

- Quantify the impact of beam induced background, the readout, especially at Z pole (~ Nov. 2024)
- Further develop reconstruction algorithms, and validate with full simulation (Dec. 2024)
 - PFA, smarter algorithm with AI tools
- Physics benchmarks analyses with full simulation (H measurements) + fast simulation
- Involve more efforts from theory community to ensure that theoretical uncertainties will be under control

Team

Physics and performance team:

- ♦ ~ 10 staff members + 4 postdocs + ~10 students, more joining
- Synergizing efforts with sub-detector teams
- Collaboration with PKU, LLR & CERN on Machine Learning algorithms
- Physics white paper efforts: IHEP team + ~ > 20 staffs from ~ 10 Universities
 - ◆ Flavor Physics: Tao Liu (HKUST), Lorenzo (NKU), Shanzhen Chen(IHEP) etc
 - New Physics: Xuai Zhuang (IHEP), Mengchao Zhang (JNU)
 - EW: Zhijun Liang (IHEP), Jiayin Gu (FuDan U), Siqi Yang (USTC)
 - QCD: Zhao Li (IHEP), Meng Xiao (ZJU), Huaxing Zhu (PKU)

Physics studies in pace with ECFA physics focus studies

Summary

Intensive CEPC Physics studies

- ♦ Well quantified Physics Merits
- Iterates with Detector R&D
- CEPC Ref-TDR detector provides
 - ◆ PID: critical for Higgs/Flavor physics
 - ◆ Better VTX: improves precisions on benchmark analysis by 10-20%
 - ◆ PFA Compatible Calorimeter with larger sampling:
 - HCAL improves the BMR by ~10%
 - Crystal Bar ECAL: improve EM resolution by an order of magnitude, but pattern recognition is challenging

Thank you for your attention!

Oct. 21-23, 2024, CEPC Detector Ref-TDR Review