

Progress of CEPC ref-TDR TDAQ Fei Li

On behalf of CEPC TDAQ Group

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 15th, 2024, CEPC Detector Ref-TDR Meeting

Progress of TDAQ

Ref TDR meeting

- Oct. 11th (Fri. morning)
- Review talk and TDR discussion
 - Merge HW option 1 and 3 together
 - Cancelling software trigger option
- Boping Chen
 - Trigger simulation progress
- Confirmed schedule for workshop

14:00	CEPC trigger simulation study Room 289	<i>Boping Chen</i> 14:00 - 14:20
	Allen design and development for HLT1 at LHCb Room 289	<i>Peilian Li</i> 14:20 - 14:45
15:00	FPGA acceleration for Hit1 at LHCb Room 289	<i>Ao Xu</i> 14:45 - 15:10
	DAQ System Development for CEPC Room 289	<i>筱璐 季</i> 15:10 - 15:30

6:00	Introduction on ATLAS Phase-II Global Trigger and GCM design Room 289	Weiming Qian 16:00 - 16:25
	FELIX design and development at ATLAS Room 289	<i>Mehgqing WU</i> 16:25 - 16:50
	Versal FPGA based development for HEP Room 289	<i>Yuh-Tsuhg Lai</i> 16:50 - 17:15
	Hardware trigger design for CEPC ref-TDR Room 289	<i>Jihgzhou ZHAO</i> 17:15 - 17:35
	Discussion Room 289	17:35 - 18:00

Requirements: Physical Event Rate

8 Hz @ Higgs 240GeV(50MW)

- Bunch crossing rate: 2.889 MHz
- Higgs: ~0.02Hz
- 82 kHz @ Z pole 91GeV(50MW)
 - Bunch crossing rate: 43.3 MHz
- Physical event rates are sufficiently low relative to the bunch crossing rate.
- Keep as more physical events as possible
 - Through a rough selection of the relevant objects (jet, e, muon, tau,v, ...) and combinations.
 - Detailed signal feature extraction and simulation studies are required.

	Higgs	Z	W	tť				
SR power per beam (MW)	50							
Bunch number	446	13104	2162	58				
Dunch massing (mg)	346.2	23.1	138.5	2700.0				
Bunch spacing (ns)	(×15)	(×1)	(×6)	(×117)				
Train gap (%)	54	9	10	53				
Luminosity per IP (10^{34} cm ⁻² s ⁻¹)	8.3	192	26.7	0.8				

Requirements: Data Rate

- Data rate before trigger
 - < 1 TB/s @ Higgs</p>
 - Several TB/s @Z
- Expect event rate after HLT rat
 - O(1k) Hz @ Higgs
 - O(100k) Hz @ Z
- Event size < 2 MB</p>
- Data storage rate
 - Higgs: 2 GB/s
 - Z: 200 GB/s

		Vertex	Pix(ITKB)	Strip (ITKE)	ОТКВ	ΟΤΚΕ	ТРС	ECAL-B	ECAL-E	HCAL-B	HCAL-E	Muon
	Channels per chip	512*102 4	512*128	1024	128 48bit		128	8~16				
	Data Width /hit	32bit	42bit	32bit			48bit	48bit				
Т	Max Data rate / chip	2Gbps/c hip	Avg. 3.53Mbp s/chip	Avg. 21.5Mbps /chip	Avg: 2.9Mb ps/chip	Avg: 38.8Mb ps/chip	~70Mb ps/mod ule Inmost	~9.6Gbps/ module @dual-end readout	Needs bkgrd rate	Needs bkgrd rate	Needs bkgrd rate	Needs bkgrd rate
	Detector Channel/m odule	1882 chips @Stch &Ladder	30,856 chips 2204 modules	23008 chips 1696 modules	83160 chips 3780 module s	11520 chips 720 module s	492 Module	0.96M chn ~60000 chips 480 modules	Needs detecto r finalizat ion	3.38M chn 5536 aggregatio n board	2.24M chn 1536 Aggregatio n board	Needs detector finalizati on
	Avg Data Vol before trigger	474.2G bps	101.7Gb ps	298.8Gb ps	249.1 Gbps	27.9Gb ps	34.4G bps	4.6Tbps (needs finalizatio n)	Needs finaliza tion	Needs finalizatio n	Needs finalizatio n	Needs finalizat ion
	Occupancy	0.22e-4	2.5e-4				2.8e-4	0.58e-2			1.95e-5	
	Sum	5.8Tbps										

Preliminary background and data rate estimation

Our choices

Fewer physical processes and lower backgrounds @CEPC

Electronics framework schema

- Readout full data from Front-end Elec.
- Back-end Elec. connect with trigger

Trigger solutions

- Hardware trigger(L1) + HLT
 - Common hardware trigger board
 - Collect trigger primitives from BEE(Back-end electronics)
 - Send back trigger accept signal to BEE
 - Provide fast and normal trigger menu
 - Network readout

Main Technical Challenges

High efficiency in trigger and background compression

- 2.887MHz->O(100)Hz @Higgs
- 43.3MHz->O(100k)Hz @Z
- Trigger primitive synchronization control with asynchronous data readout from electronics
 - Manage data disorder due to data transfer queuing and delay
 - Align sub-detector data of each bunch crossing within limited time and resource

Design of Hardware Trigger Structure

Trigger primitive(TP)

- Generated by BEE
- Local detector trigger information(energy, track...)
 - Generated by sub-trigger
- Fast trigger(FT) and L1A
 - Generated by global trigger according to physical requirement
- TCDS (Trigger Clock Distribution System)
 - Distribute clock and fast control signals to BEE
- Which detectors participate in trigger needs to be studied

Designing a single type of common trigger board

7

Preliminary Trigger Simulation with ECal

GeV

Physical events signature at Ecal ECal Barrel

- Energy deposition is relatively large and concentrated
- Trigger primitive and condition
 - Two clusters with the highest energy
 - ECal energy>0.5GeV
 - HCal energy>0.5GeV
- Trigger efficiency
 - nnaa:100%
 - nnbb:100%
 - nnaZ:99.7%
 - nntautau:96.7%
 - nnWW:99.1%
 - nnZZ:95.8%
 - Beambkg:4.8%

Backup

触发系统结构设计与规模估算

- 触发三层结构设计
- 一分区、探测器、全局
 触发板数量计算因素
 - 触发板input: 16x10Gb
 - BEE连接数
 - 920 BEE/16=58
 - 传输数据量
 - 未定
 - 35@Higgs
 - 4.42Tbps/8Gbps/16
 - 35*5=173@Z
 - 算法复杂度
 - 未知
 - CMS 210块触发板
 - 初步估算:触发板160块,ATCA机箱20个,机柜10个

CMS二期触发板数

Preliminary Trigger Simulation with Muon

Left : 2000 background events(10BX) ; Right : 1000 ZH→nnµµ events

HCal barrel 能量分布

• 左: nn ¥¥; 中: nnbb; 右: 束流本底

Vertex

- 左: 单个ZH→nn μ μ 事例
- 中: 单个束流本底事例
- 右: 束流本底Vertex hit数量分布

ITK Hit 个数分布

■ 左: bhabha ; 中: nnbb ; 右:束流本底 (10BX)

ITK

- 左: 单个ZH→nn μ μ 事例
- 中: 单个束流本底事例
- 右: 束流本底Vertex hit数量分布

OTK

- 左: 单个ZH→nn μ μ 事例
 - 中: 单个束流本底事例
- 右: 束流本底Vertex hit数量分布

TPC

- 左: 单个ZH→nn μ μ 事例
 - 中: 单个束流本底事例
- 右: 束流本底Vertex hit数量分布

