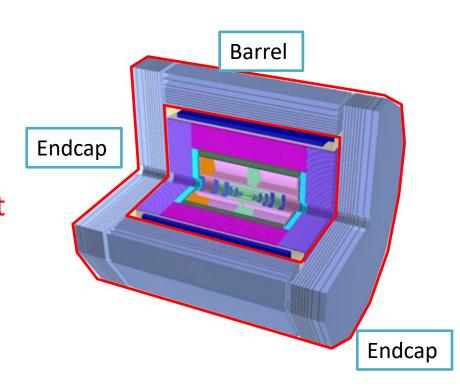


CEPC Muon Detector

Xiaolong Wang (for the Muon Detector Group) Fudan University


Content

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

Introduction

Muon detector, the outermost detector with the largest volume, clean environment.

- Production of Higgs: $e^+e^- \rightarrow ZH$, Higgs could be determined in the recoil of $Z \rightarrow \mu^+\mu^-$.
- Muons provide in many theoretical models a characteristic signature for new physics.
- Muon detector is designed for muon identification, but not limited to this. Benefits:
 - Could be used to detect the leakage of HCAL.
 - Can be used for trigger, like in ATLAS.
 - Can be used to search for Long-lived particles.
- Functions: muon ID, search for NP, leakage of HCAL, trigger and timing information.
- Furthermore, it must be robust and low cost.

Key requirements:

- Muon ID
- Track reconstruction

Requirements

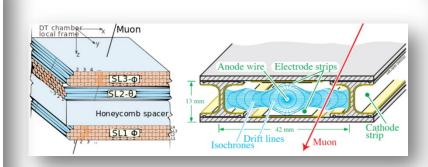
- Solid angle coverage: $0.98 \times 4\pi$
- Detection efficiency ($p_{\mu}^T > 4.0 \text{ GeV}/c$): > 95%
- Fake $(\pi \to \mu)$ @ 30 GeV/c: < 1% \longrightarrow Low fake rate
- Position resolution: $\sim 1 \ cm$ Resolution due to the multiple scattering of muon
- Time resolution: $\sim 1 ns$ —

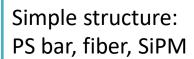
Rate capability: $\sim 60 \text{ Hz}/cm^2$

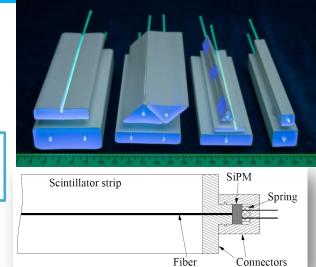
A typical time resolution of modern muon detector, and useful for trigger, T0 and background suppression.

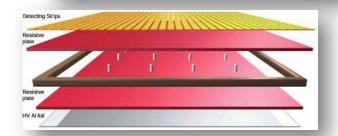
High efficiency

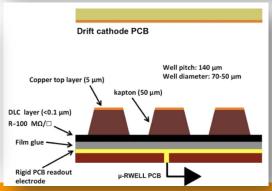
Compatible with the high luminosity operation


Technology survey and our choices


- Extruded plastic scintillator (PS) technology
 - Belle II, JUNO-TAO, MATHUSLA, LHAASO, sPHENIX, etc.
- RPC technology:
 - Belle, BESIII, Dayabay, ATLAS, CMS
- μ -RWELL (MGPD) technology
 - IDEA
- Experiments @ LHC
 - ATLAS: Thin Gap Chamber, RPC, Monitored Drift Tube, Small-Strip Thin-Gap Chamber, and Micromegas
 - LHCb: MWPC, RPC
 - CMS: Drift tube, Cathode Strip Chamber, RPC


Summary of performance and technical requirements for different gaseous μ detectors


	MDT/DT	CSC	TGC	MRPC	RPC
Spatial resolution $[\mu m]$	150	100	5mm	$15 \mathrm{mm}$	$15 \mathrm{mm}$
Time resolution [ns]	40	7	4.3	0.075	2
Averaged efficiency $[\%]$	98	98	99	95	95
$\mathrm{Hit}\ \mathrm{rate}\ [\mathrm{Hz/cm^2}]$	200	500	1000	500	100
Eletronic dependence	A	A	\mathbf{B}	A	\mathbf{C}
Software dependence	В	A	В	\mathbf{C}	\mathbf{C}
Technology requirement	A	A	В	В	\mathbf{C}
Cost per channel	H	\mathbf{H}	\mathbf{M}	\mathbf{M}	$_{\rm L}$


+PS

A-C are in descending order of the requirements, H-High, M-Middling, L-low.

Comparisons

	Advantages	Disadvantage
PS(+SiPM)	Solid detector, structure simple, high rate capability, low operation voltage, use SiPM similar to HCAL, time resolution	DCR of SiPM
RPC	Cost, mature tech., time resolution	Fill gas, HV system
μ -RWELL	Spatial resolution, high rate capability	Structure, number of readout channels, time resolution, cost.

Rate capability: $5 \sim 10 \text{kHz}/cm^2$

Scintillator	base	density ϱ [g/cm ³]	$ au_{ m D} \ [m ns]$	$L_{\rm ph}, N_{\rm ph}$ [per MeV]	$\lambda_{ m em} \ [m nm]$	$n(\lambda_{ m em})$
Anthracene BC-408 (BICRON) BC-418 (BICRON) UPS-89 (AMCRYS-H) UPS-91F (AMCRYS-H)	PVT PVT PS PS	1.25 1.032 1.032 1.06 1.06	30 2.1 1.5 2.4 0.6	16 000 10 000 11 000 10 000 6 500	440 425 391 418 390	1.62 1.58 1.58 1.60 1.60

PS bar and RPC have similar cost.

Our choice: PS(+SiPM) as the baseline option, RPC for comparison in R&D.

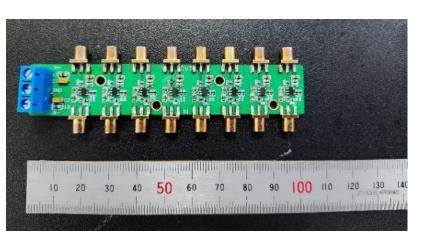
Technical Challenges

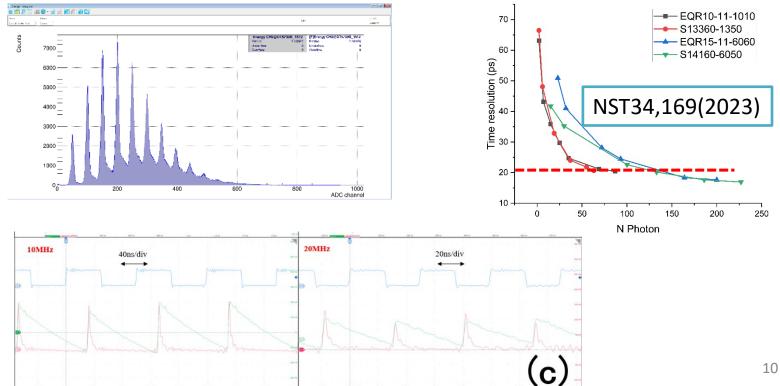
- Long detector module: > 5m, due to the large size of the muon detector.
- How to achieve the required efficiency and the time resolution from a long PS bar?
 - Kuraray fiber has an attenuation length of 6.8m.
 - We got the effective attenuation length of 2.63m from lab testing on WLS fiber.

Content

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

R&D efforts and results

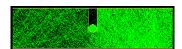

- Front-end electronics
- Performance of PS bars
- Simulation for improvements
- New R&D on PS bars
- Prototype and CR testing

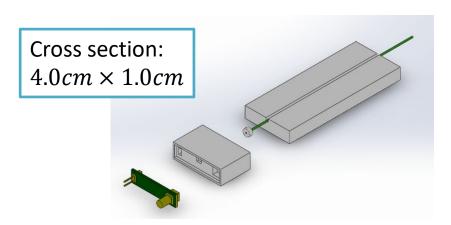

Published papers:

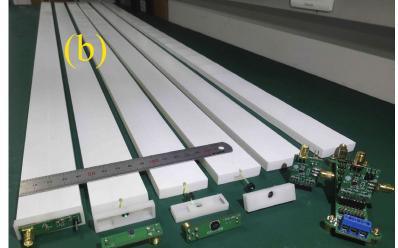
- 1. Design and performance of a high-speed and low-noise preamplifier for SiPM, Nucl. Sci. Tech. 34, 169(2023)
- 2. Design and test for the CEPC muon subdetector based on extruded scintillator and SiPM, JINST 19 P06020(2024)

R&D for front-end electronics

- Many different kinds of preamps for SiPM have been designed and tested, such as:
 - Design high-speed and low-noise preamp for SiPM.
 - Baseline noise of 0.6 mV, bandwidth of 426 MHz, and time resolution of 20 ps.
 - Test with laser input at 20MHz.
 - Clear N_{pe} spectrum.

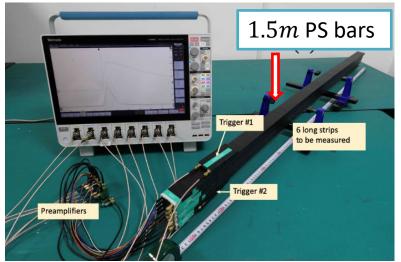


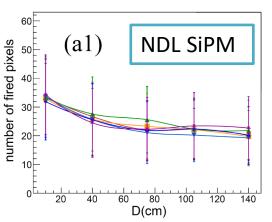


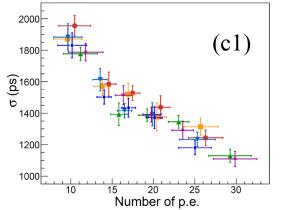

Performance of PS bars

- PS bars made by GNKD company (Beijing)
 - Increase the light yield;
 - Develop/improve the reflection layer with Teflon;
 - Strip production, with a width of 4cm.
- The quality of 1.5m bars has achieved the required performance, which will be described later.
- R&D on longer bar with hole has started

Samples with U groove

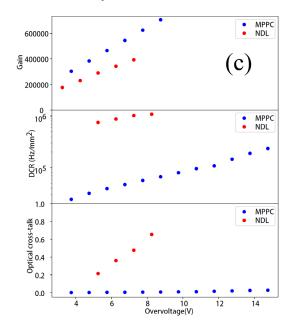


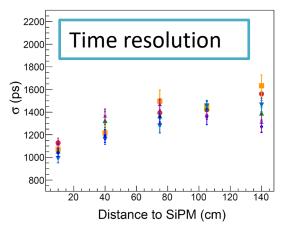

Prototype and CR test


- Studies of SiPMs, WLS fibers
- Prototype:
 - 1.5m PS bar + WLS fiber (1.2mm) + NDL SiPM/MPPC (3.0mm/1.3mm)
- Performance:
 - $-\epsilon > 98\%$ can be obtained
 - Time resolution better than 1.5ns

JINST 19 P06020(2024)

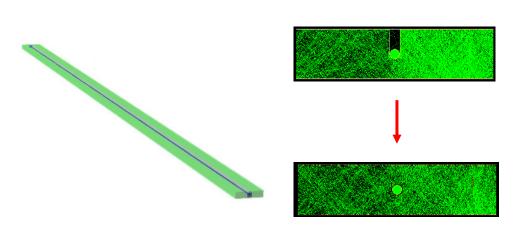
Effective attenuation length of fiber $L_{Att} = 2.63 \pm 0.37 m$

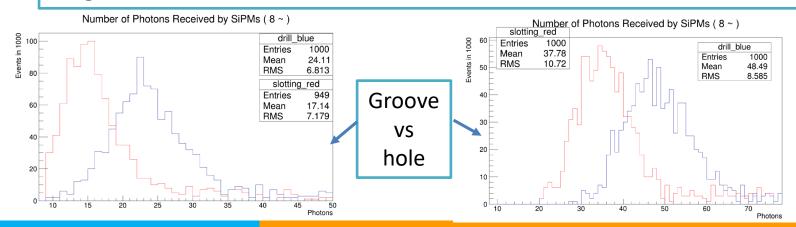


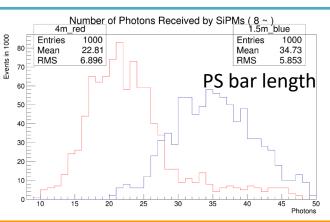


Properties of SiPMs

MPPC

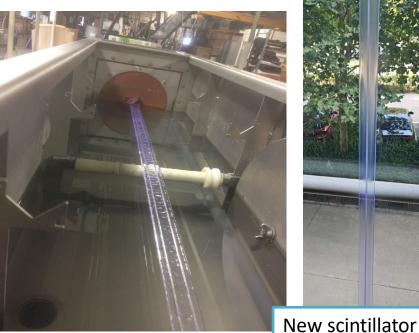

(b)




Standalone simulation

- Improving the performance of a single channel is to the key for a long detector module.
 - Light yield and light collection
- Simulation for single channel
 - Light collection and compared to lab test
 - Fiber embedding: Groove → hole, $N_{pe} \times 1.4$
 - Diameter: $1.2mm \rightarrow 2.0mm$, $N_{pe} \times (2-2.8)$

Simulation shows potential to increase the light yield by a factor of (2.8 - 3.9), which is helpful for building long detector module.

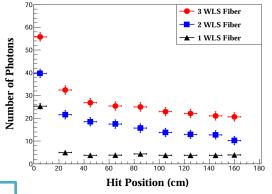


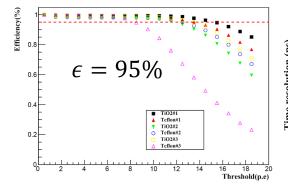
Improvements on the scint. strip

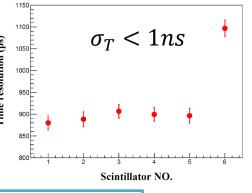
- Very new R&D in the past months, like the production in Fermi Lab.
- Fiber embedding: Groove → hole
- Diameter: no new fiber available yet, we use three 1.2mm fibers instead.

provided by GNKD,

with our R&D!




Scintillator production at Fermilab

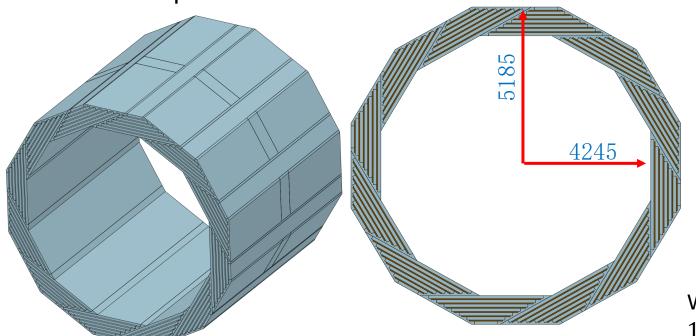

1.65m new scint with 2.5mm diameter hole

Use NDL EQR15 3mm × 3mm

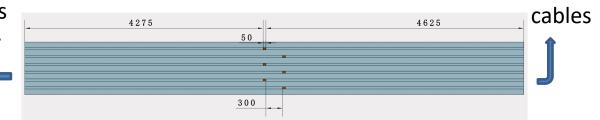
Trigger at middle

Very positive to the design of long module (>4m).

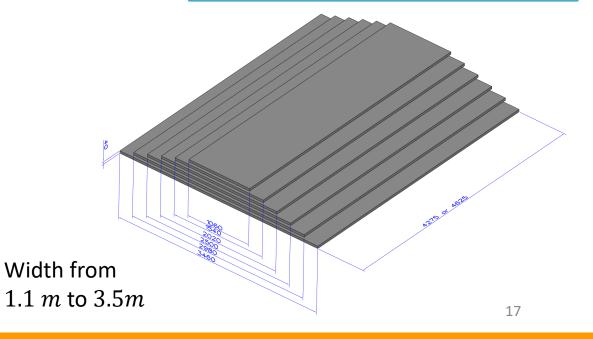
Content

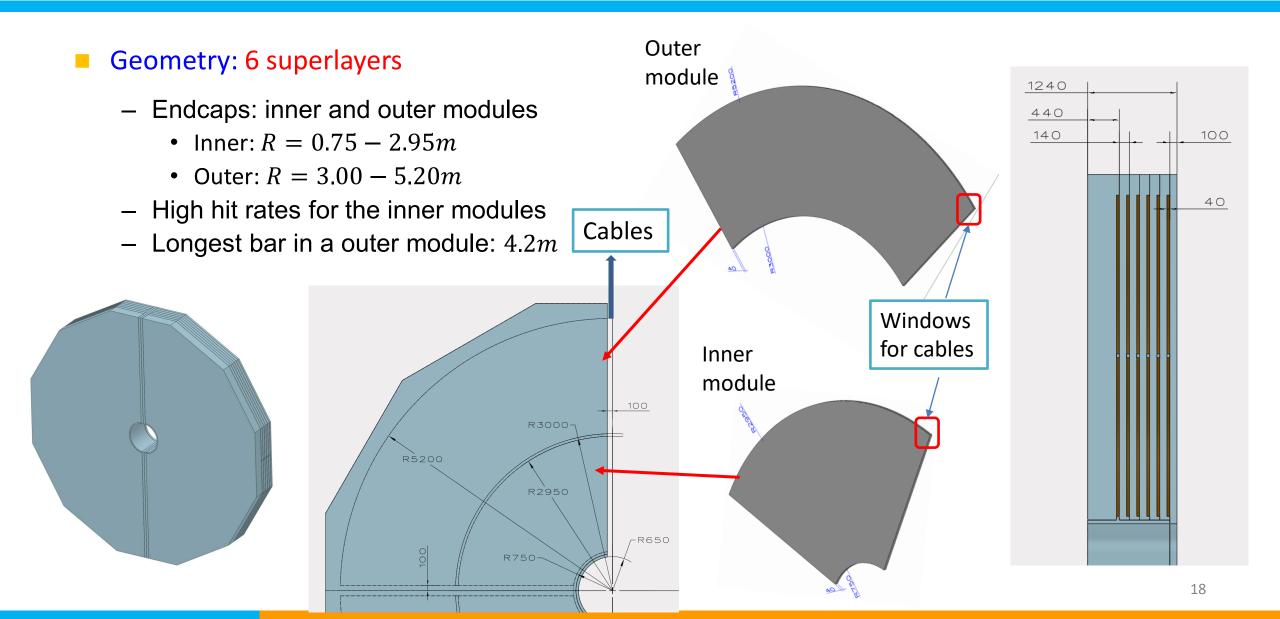

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

Detailed design

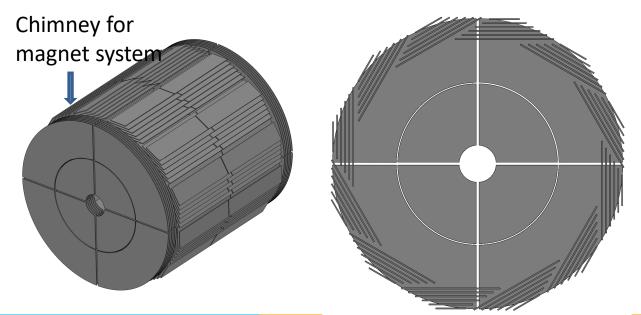

- Geometry: barrel and endcaps
- Detector channel elements and module
- Consideration on readout electronics

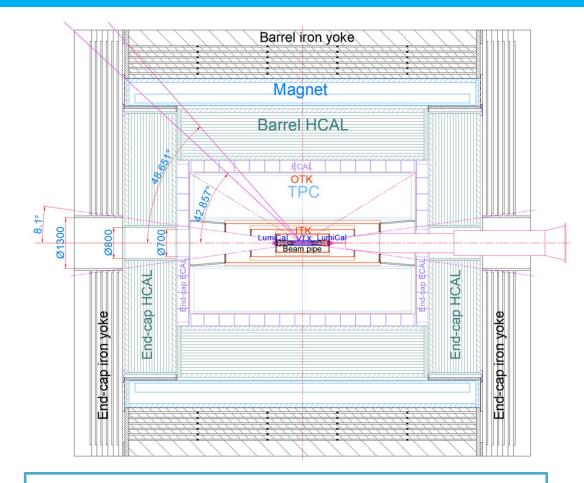
Detailed design - geometry


- Geometry: 6 superlayers, to cover the detection as much as possible cables
 - Barrel: Helix dodecagon sectors.
 - Rectangle modules inserted between iron plates.
 - Cable: towards the gaps between barrel and endcaps.


L = 4.275m or 4.625m

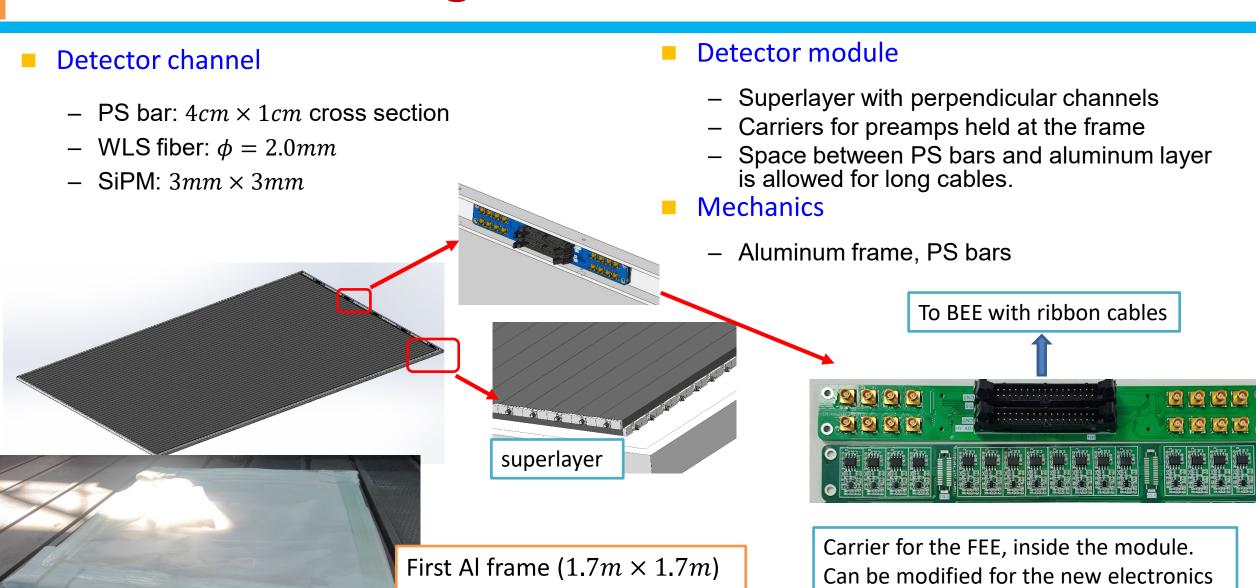
Vary the separation position to avoid dead zone in the middle of barrel.




Detailed design - geometry

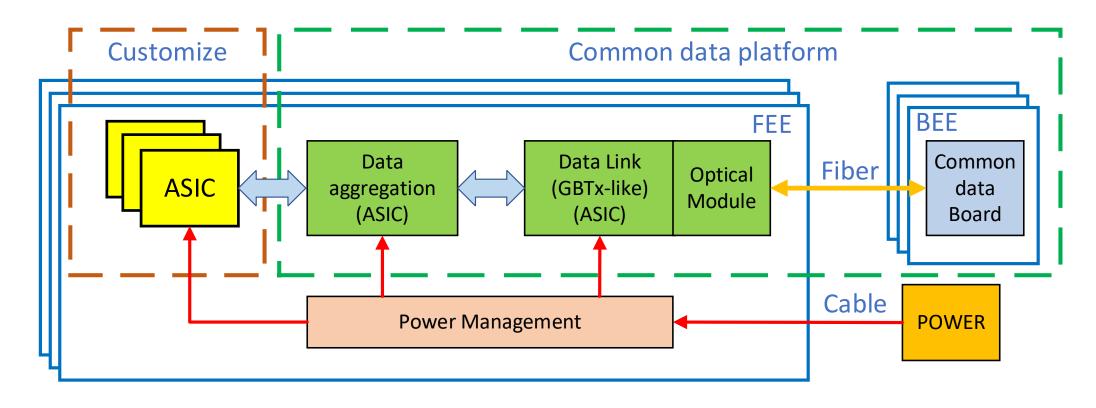
Overall of the design

- Number of channels: (288 modules) 43,176
 - Barrel: 144 modules, 23,976 ch
 - Inner endcaps: 48 modules, 6,912 ch
 - Outer endcaps: 48 modules, 12,288 ch
- Sensitive length: 119,563m
 - Length for PS bar and WLS fiber
- Sensitive area: 4782m²

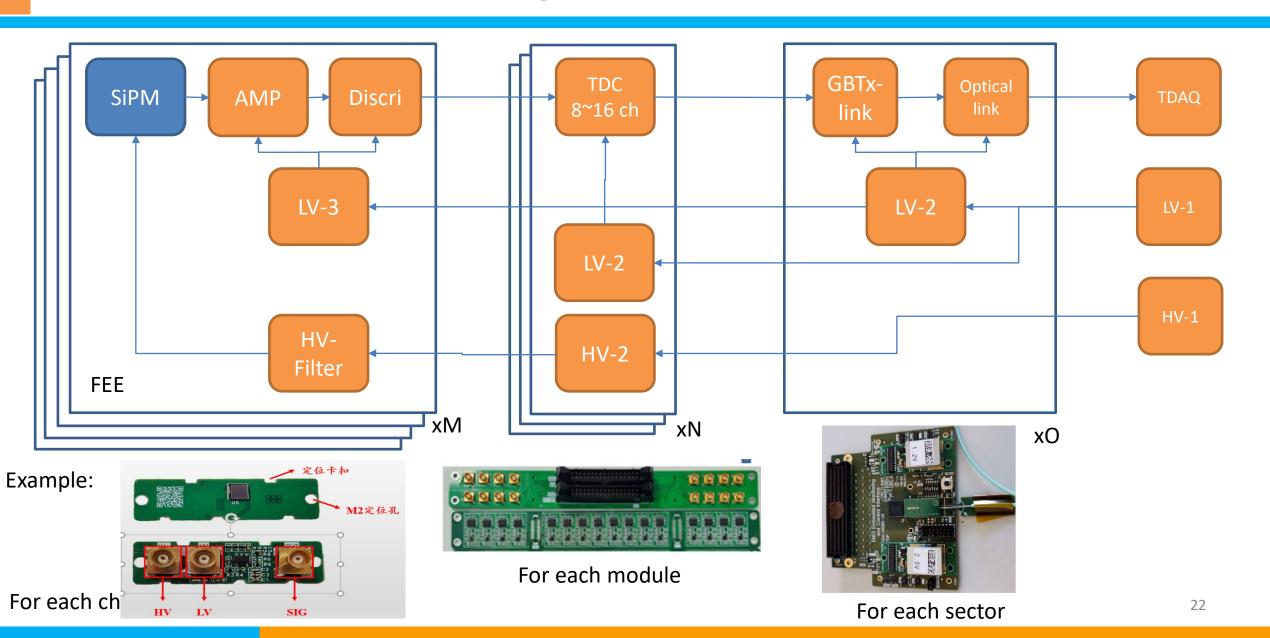


Detection dead area: $\sim 1.5\%$

0.04% due to chimneys in the barrel for magnet system, 0.07% from the cross in endcaps, and 1.4% due to the beampipe.


Detailed design of the channel and module

is ready for module prototype.


in the future.

Baseline for SiPM readout

- Readout design for ECAL and HCAL covers the requirements of Muon detector: $N_{pe} < 100$, $\sigma_T < 0.5 ns$
- Use the ASIC scheme from ECAL or HCAL, and customize the FEE based on ASIC.
- Revise according to the constraints from cooling and mechanical structure of the detector

Stage scheme

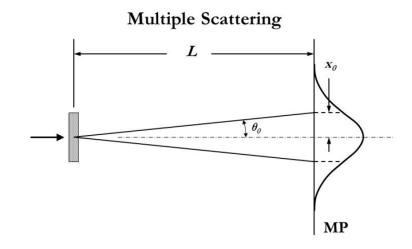
Content

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

Geant4 simulation for performance

- Geometry and Geant4 simulation is implemented in CEPCSW, reconstruction and performance studies are ongoing:
 - Study of the Molière radius of muons originating at the interaction point and traversing the ECAL and HCAL. → Spatial resolution

Spatial resolution

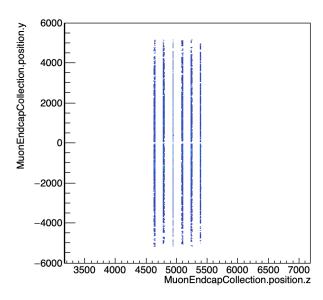

Spatial resolution due to the multiple scattering:

$$\Theta_{rms}^{proj.} = \sqrt{\langle \Theta^2 \rangle} = \frac{13.6 \text{ MeV}}{\beta cp} z \frac{x}{X_0} [1 + 0.038 \ln(x/X_0)]$$

- From the calculation: $\sim 1.3cm$
- Reference to Belle II (1cm):

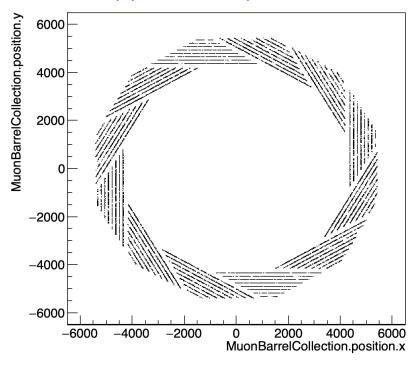
$$L \times 2$$
, $p_{th} \times 4 \rightarrow \sigma_{scat} \sim 1cm$

The higher momentum, the smaller σ_{scat}

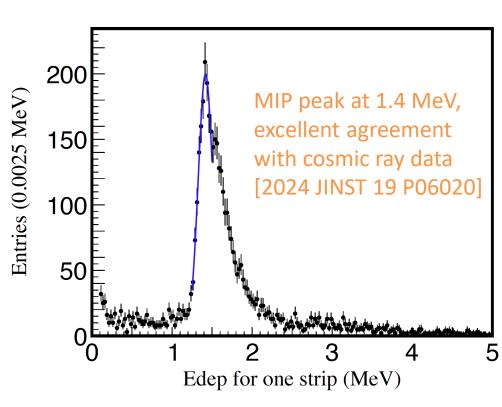

Spatial resolution of 1 cm is required, i.e., keep the width of 4 cm for a PS bar.

Detector Simulation

Everything based on CEPCSW framework.

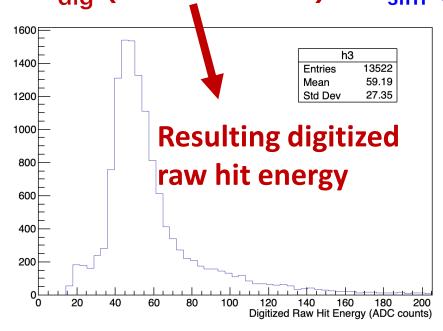

Muon Sim Hit positions

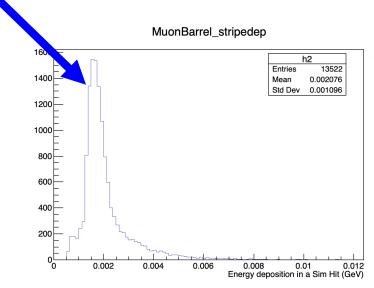
z-y position map in Endcap


1k muons at 10 GeV muons

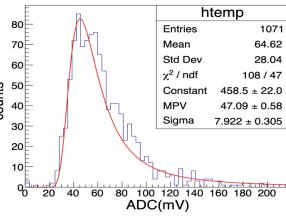
x-y position map in Barrel

Muon detector geometry is clearly visible!


Muon Sim Hit Energy deposition

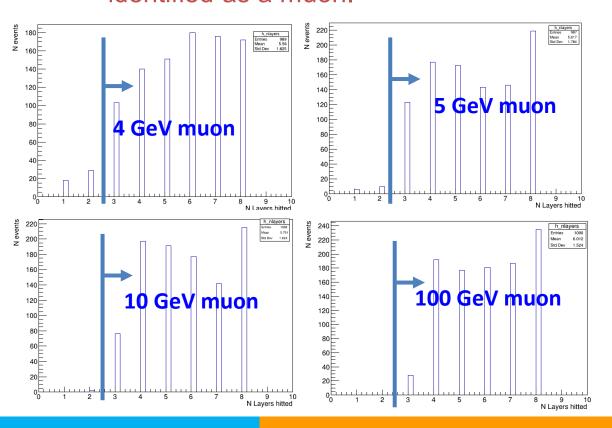


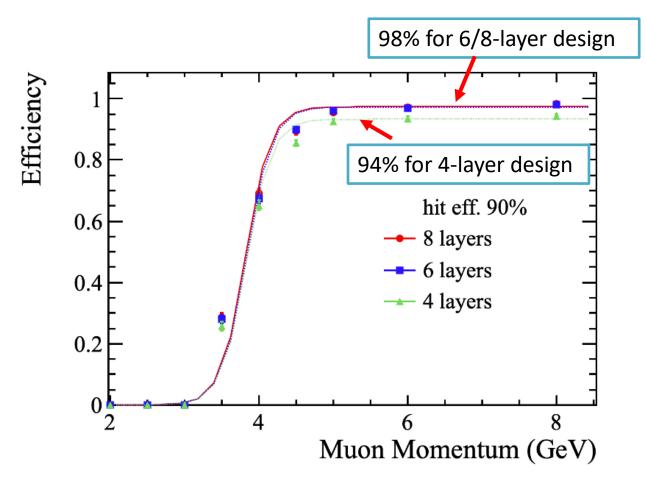
Detector Simulation


- Digitization from "Sim Hit" (deposited energy) to "Raw Hit" (ADC counts)
- A first experimental version implemented:
 - A simplified model from deposited energy to ADC counts.
 - Only for barrel at the moment.

E_{dia} (ADC counts) = E_{sim} (MeV) ÷ 1.4 MeV ⊗

ADC distribution of MIPs from CR testing.

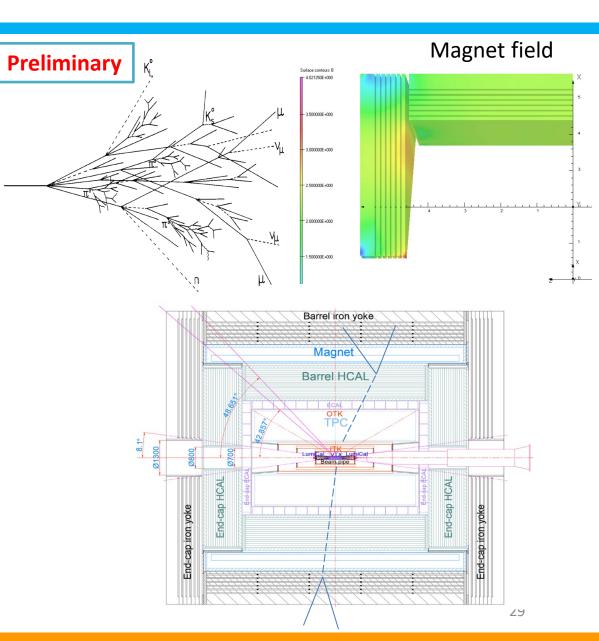



[2024 JINST 19 P06020]

Muon ID from simulation

- Muon ID efficiency vs. momentum
- Define Muon ID:

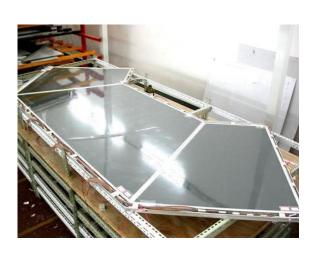
If a muon candidate has 3 or more hits reconstructed in the muon detector, it is identified as a muon.



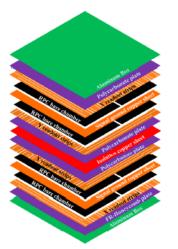
Muon ID efficiency of the barrel

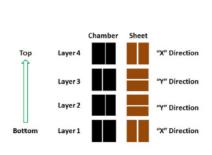
About track reconstruction

- Tracking in the muon detector may be used to rescue some energy leakage of HCAL:
 - Magnet field in the iron layers can be simulated;
 - Most charged particles in the tail of a hadronic shower are π^{\pm} and μ^{\pm} .
 - If we can reconstruct the momentum of these charged particles, or add their masses, at least.
 - K_L may be reconstructed from its decay to $\pi^+\pi^-\pi^0$.
- Tracking in the Muon detector can extend the search of LLP from L < 3.5 m to L < 4.9m.

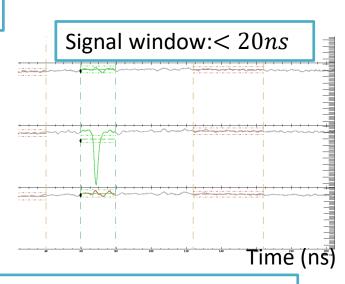

Content

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

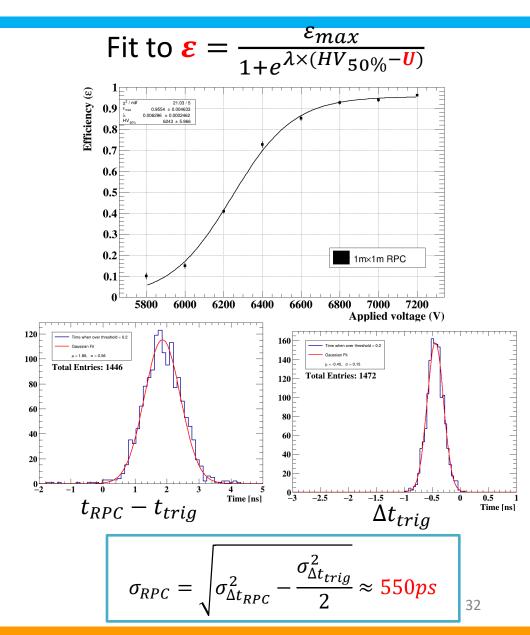

For the backup option


RPC technology used in China

	MUC@BESIII	CR veto@DYB
Bare RPCs	$1,272 m^2$	$3,200 m^2$
Box	136	195
Readout strip & insulation materials	$636 m^2$	$3,200 m^2$
Electronics	9,152ch	6,000 ch



Ongoing R&D at SJTU


- A prototype from ATLAS (upgrade).
- Use R134a gas, 1.2 mm gas gap.
- Gain of preamp: 16
- Efficiency curve and time resolution determined from CR testing.

Trigger with time resolution < 0.1ns

For the backup option, we will perform the R&D focusing on glass with low resistance ($10^{10}\Omega m$), which is available in China.

Content

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design
- Performance from simulation
- RPC related and testing
- Research team and working plan
- Summary

Research Team

Institutions (7) and faculties/staff (13)

Fudan University: Xiaolong Wang, Wanbing He, Weihu Ma

Shanghai Jiaotong University: Jun Guo, Liang Li

IHEP: Zhi Wu, Yuguang Xie, Jie Zhang

South China Normal University: Hengne Li

Nankai University: Minggang Zhao, Junhao Yin

– LPI: Pasha Pakhalov

BINP: Alexander Barnyakov

Graduate students: ~20

Task board:

Overall: X.L. Wang

Software and simulation:
 H.N. Li, J.H. Yin, M.G. Zhao

R&D on PS scheme: X.L. Wang, Z. Wu, W.B. He, W.H. Ma

R&D on PRC scheme: J. Guo, Y.G. XieProduction and testing: Z. Wu, Y.G. Xie

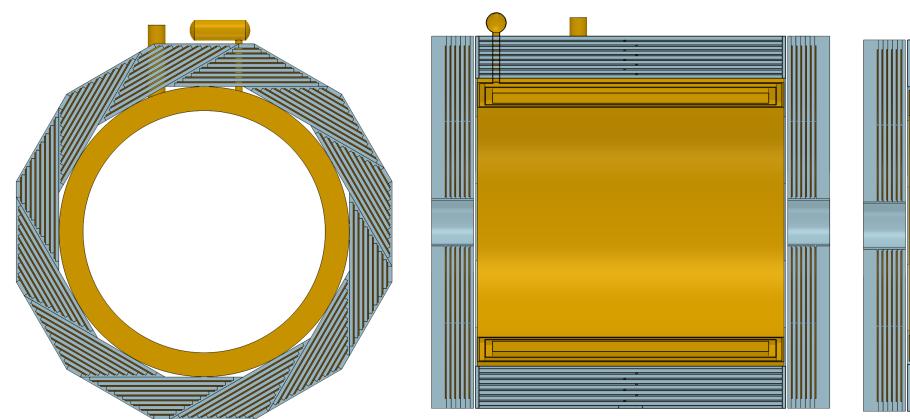
Electronics:Radiation hardness test:J. ZhangW.H. Ma

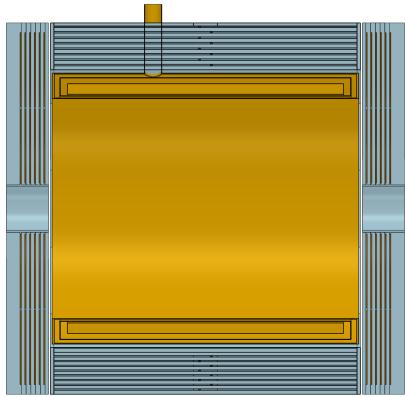
LLP search:L. Li

Working plan

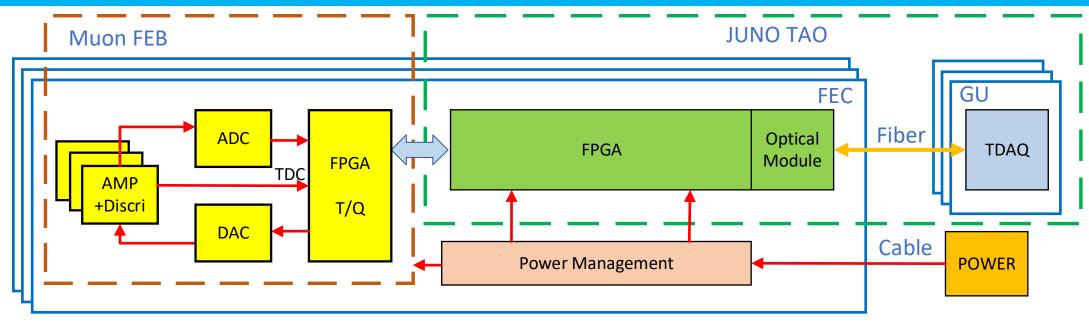
- Improvement and optimization of PS bars
- Build a prototype module and testing
 - The performance of a module with a length of 5m: efficiency, time resolution
- Optimization of structure design
- Software and simulation
- Radiation hardness studies.

Summary

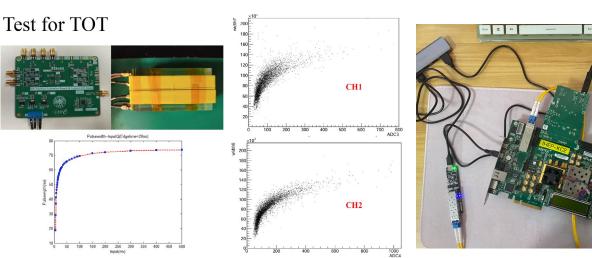

- Muon detector will be designed for muon ID, but not limited to this.
- Many R&D efforts have been performed: FEE, prototype, simulation, etc.
 - Performance of a 1.5*m* prototype: $\epsilon > 98\%$, $\sigma_T < 1.5 ns$
 - R&D on new scintillator with hole shows very good performance.
- Detailed design:
 - Barrel: 6 layers, 2 long modules per layer, helix dodecagon
 - Endcaps: 6 layers, 4 sectors per layer, two modules (inner and outer) per sector
 - Large area modules with long PS bars.
 - -43,176 channels, $4782 m^2$ area, and 119,563 m long fiber, in total.
- Work plan will focus on electronics, software and simulation for performance, prototype modules with long bars.



Thank you for your attention!

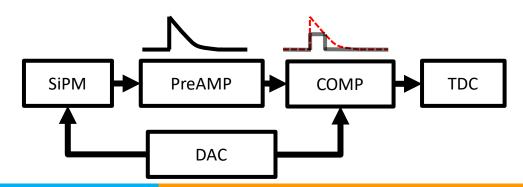

Add chimneys

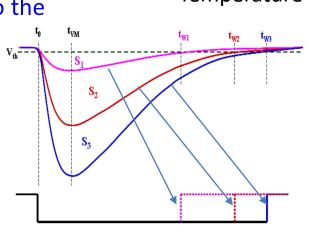
- Input the chimneys of the magnet system.
- It contributes a dead zone of <0.4%.

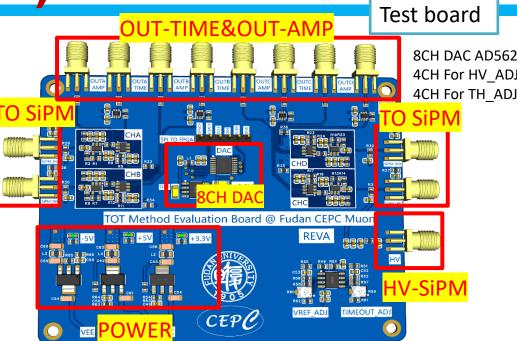


Near-term test environment

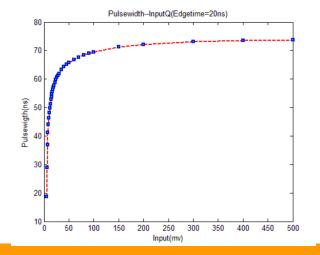
- FEB (Front-end Electronics Board)
 - Commercial chips with radiation tolerance based on past studies for particle physics experiments
 - FPGA based TDC for TOA and TOT measurement with ~1 ns time resolution
 - ADC for charge measurement or TOT calibration
 - DAC for threshold setting or SiPM bias voltage adjustment
- Reuse JUNO-TAO electronics for readout, clock synchronization and TDAQ
 - To accelerate the development schedule

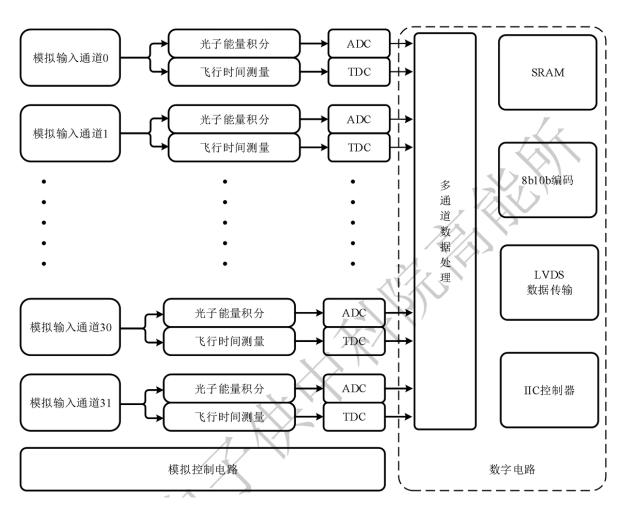

Readout electronics:

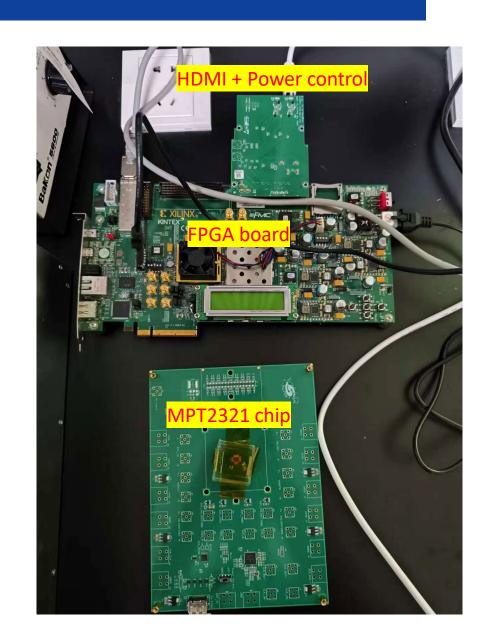

Time-over-threshold (TOT) scheme


Long cables!

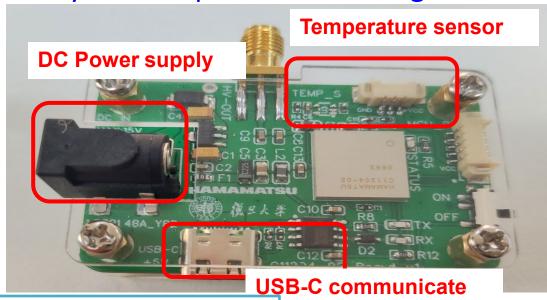
- Front-end electronics ready:
 - High time resolution preamp: $\sigma_T \approx 20 \ ps$
 - − High-speed discriminator shows $\sigma_T \approx 0.2 \ ns$
- Implementation of TOT: operational amplifier + high-speed discriminator + TDC.
- FEE integrated DAC to adjust threshold and SiPM bias voltage.
- It's possible to get N_{pe} according to TOT.
- Investigating the possibility of integrating the BEE into the


detector module: only power cable and signal fiber.

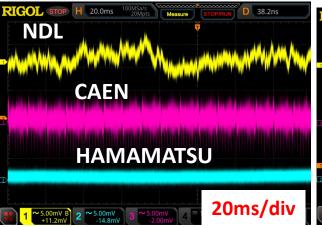


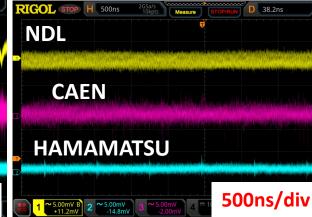

Temperature sensor will be included.

SiPM - ASIC MPT2321



MPT2321, made in China 32CH ADC (12bit) + TDC(50ps)



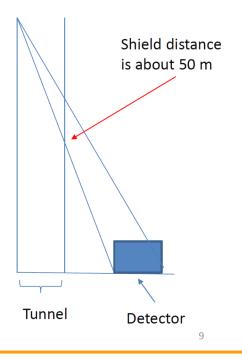

SiPM mini power

Study on mini power to be integrated into the FEE.

Ripple noise @ OUTPUT:45V

SiPM POWER	BIAS-2-14/70 @NDL	C14156 @Hamamatsu	MAX5026 @Fudan
Voltage (V) Output Range	14~70	0~80	0~71
Current (mA) Output Range	0.5	2	2
Number of SiPMs driven	100	400	400
Power consumption (mW)	250	100	200
Ripple noise (mV/Vpp)	5.2	0.1	2
Price (¥)	~2000	500	30

1\$ = 7¥


Considerations of the backgrounds

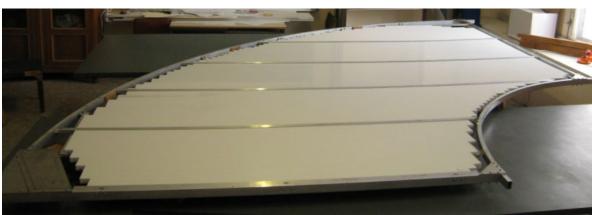
- Very low level of the CR backgrounds, with the earth shield of > 50m.
- Reference to the beam backgrounds in Belle II.

Barrel Layer	Expected Hit Rate (Hz/cm ²)	Expected RPC Efficiency	$\begin{array}{c} \text{Bad-case} \\ \text{Hit Rate} \\ \text{(Hz/cm}^2) \end{array}$	Bad-case RPC Efficiency	Worst-case Hit Rate (Hz/cm^2)	Worst-case RPC Efficiency	
0	-scintillators-		-scintillators-		—scintillators—		
1	—scir	ntillators—	—scin	—scintillators—		—scintillators—	
2	2.6	0.86	26	0.00	260	0.00	
3	1.7	0.91	17	0.14	170	0.00	
4	0.9	0.95	9	0.54	90	0.00	
5	0.5	0.97	5	0.54	50	0.00	
6	0.5	0.97	5	0.54	50	0.00	
7	0.3	0.98	3	0.84	30	0.00	
8	0.5	0.97	5	0.54	50	0.00	
9	0.2	0.98	2	0.89	20	0.00	
10	0.2	0.98	2	0.89	20	0.00	
11	0.1	0.99	1	0.94	10	0.49	
12	0.1	0.99	1	0.94	10	0.49	
13	0.1	0.99	1	0.94	10	0.49	
14	0.2	0.98	1	0.94	10	0.49	

Table 2: Neutron flux, hit rate per unit area, and instantaneous efficiency in each layer of the barrel KLM from the late-2020 simulations of beam-induced neutron backgrounds at the SuperKEKB design luminosity of $6\times10^{35}\,\mathrm{cm^{-2}s^{-1}}$. Here, the Belle II hybrid configuration replaces the RPCs in the two innermost layers with scintillators and neutron-absorbing polyethylene sheets.

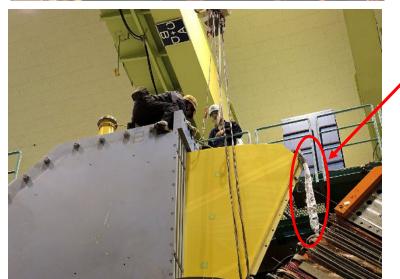
For a 4m long bar, the hit rate might be 160Hz. For the 'bad-case', it would be 1.6kHz!

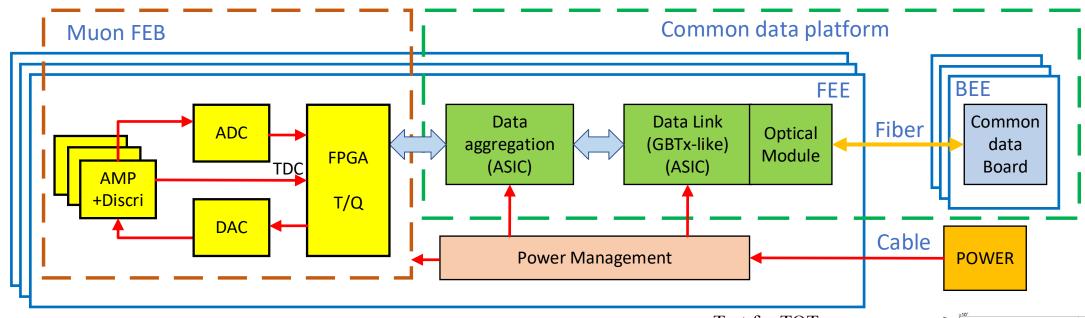
Bandwidth requirement

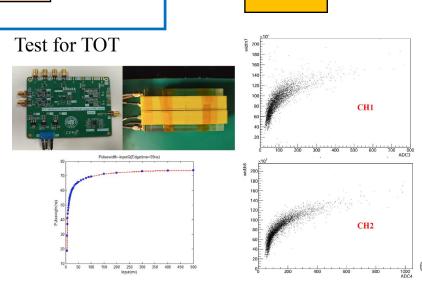

Muon	Module	Channel/Module	Readout Channel	Hit rate/Hz (worst case)	Data format	Raw data rate / Gbps
Barrel	192	169.5	32544	10 k	48bit	15.63
Inner endcaps	64	144	9216	10k~100 k, Average 20 k	(8b BX+ 10b ADC + 2b range + 9b TOT + 7b TOA+ 4b chn ID + 8b chip ID)	8.85
Outer endcaps	64	256	16384	10 k		7.87
Total			~58.2 k			~32.4

- Very preliminary, conservative estimation according to data from Belle II experiment.
- We assigning a faculty to take care of this issue.

Reference for endcaps

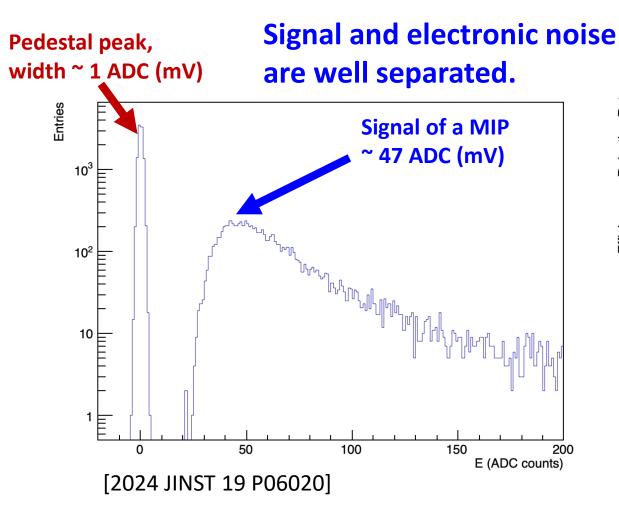

Structure of a module


Installation

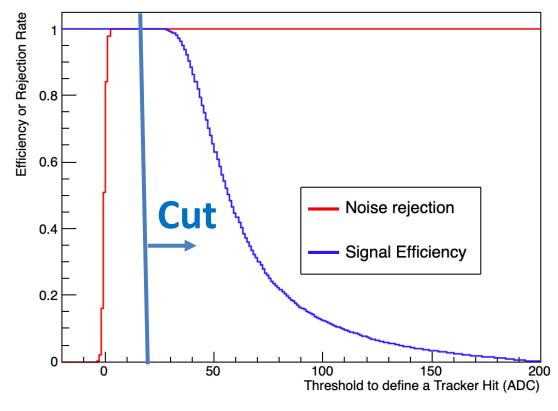


Cables

Alternative: discrete device scheme

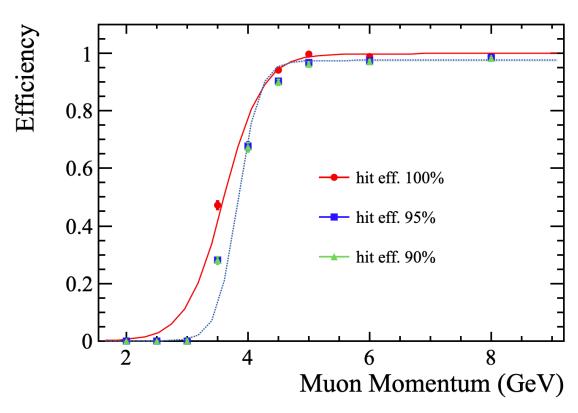


- FEB (Front-end Electronics Board)
 - Commercial chips with radiation tolerance based on past studies for particle physics experiments
 - FPGA based TDC for TOA and TOT measurement with ~1 ns time resolution
 - ADC for charge measurement or TOT calibration
 - DAC for threshold setting or SiPM bias voltage adjustment



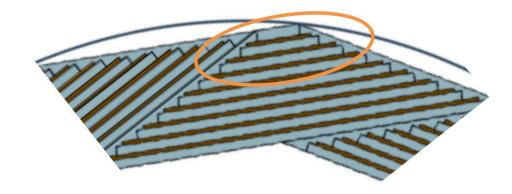
Detector Optimization

The muon tracker hit vs. energy threshold:



The noise rejection (red) as a function of the energy threshold

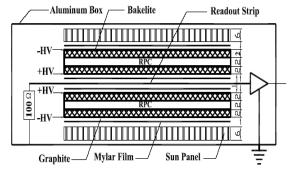
Detector Optimization

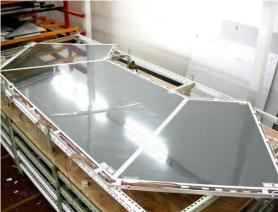

Muon ID efficiency vs efficiency of single channel

6-layer design of the barrel

What we learn from the simulations:

- 1. Efficiency of a single channel should $\geq 95\%$,
- 2. Number of superlayers should ≥ 6 , while, layers #7,8 are not very helpful for the muon ID, due to the short ϕ -length
- 3. Threshold of momentum > 4 GeV/c, need help from HCAL for the lower momentum muon track.


RPC technology – BESIII


- Homemade Oil-free Bakelite RPC;
- Gas mixture: Ar:R134a:ISO-B=50:42:8
- First time successful mass production in China, bare chamber pass rate > 90%;
- Good performance and keep running even now (>15years)!

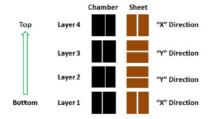
Bare RPCs	$1,272 m^2$
Box	136
Readout strip & insulation materials	$636 m^2$
Electronics	9,152ch

Table 2-4 BESIII Detector Performance

Parameters		Design Target	Real Performance			
			Cosmic Ray	Double μ	$\pi\pi J/\psi(\mu\mu)$	Total
Average Efficiency		95	94.7	95.11	95.17	93.6
Counting Ra	te	$< 0.1 Hz/cm^2$	0.04 (Random Trigger)			
Spatial	$\sigma_{R\Phi}$	< 20mm	19	18	19	17.6
Resolution	σ_Z	< 30mm	23	21	22	22.5
$P(\pi \to \mu)$ @1 $GeV/c \parallel < 5\%$				5.5%	(MC)	

RPC technology – Dayabay

Super module:


- Two layers of 2-D readout
- 4-layer RPCs
- Module size: $2.17m \times 2.20m \times 0.08m$
- Number of modules: 194
- Bare RPC sizes: $1.0m \times 2.10m$, $1.1m \times 2.1m$
- Bakelite plate size limitation: $2.4m \times 1.2m!$

Bare RPCs	$3,200 \ m^2$
Box	195
Readout strip & insulation materials	$3,200 m^2$
Electronics	6,000 ch

We have the tech. based on Bakelite ready.