BESIII上粲偶素与类粲偶素研究

朱凯(高能所)

第一届基础物理研讨会暨基础物理平台年会 2024年11月1日-2日,郑州,河南省科学院

Outline

- Introduction
- Recent progresses about charmonium(-like) studies
- Summary

Studies of charmonium(-like) states

Exotic states with hidden charm

CZY & S. L. Olsen, Nature Reviews Physics 1, 480 (2019)

Primarily studies the properties of charmonium(-like) states, including but are not limited to

- Searching for new states
- Determining the internal structure
- Measuring masses and widths
- Measuring transitions and decays
- Searching for new decay channels

Better understanding strong interaction

BESIII at BEPCII

- Center of mass energy range: $\sqrt{s} = 2 4.9 \text{ GeV}$
- Single beam current: 0.91 A
- Crossing angle: 11 mrad
- Design luminosity: 1.10³³ cm⁻² s⁻¹
- Achieved luminosity: 1.01.10³³ cm⁻² s⁻¹
 2024-11-1 zhuk@郑州基础物理平台

How to study charmonium(-like) sates at **BESIII**

- Below charm threshold
 - 2.7B $\psi(2S)$ sample
 - Transitions from $\psi(2S)$

3.8 M(DD 3.7 $\Psi(2S)$ n (2S) 3.6 $\chi_{c2}(1P)$ $h_{c1}(1F)$ 3.5 Mass (GeV/c²) $\chi_{c0}^{(1P)}$ hadron hadrons hadrons η,π^0 ππ 3.2 3.1 $I/\psi(1S)$ hadrons 2.9 $J^{PC} =$ 0^{++} 1++ 2^{++} 1+-

5

- Above charm threshold
 - 20 *f b*⁻¹ collision data @ 3.773 GeV
 - $22 f b^{-1}$ scan data above 4 GeV
 - Line shapes of cross -sections for Y, whose (radiative & hadronic) transitions for X and Z

Recent progresses

- Precise cross-sections of $e^+e^- \rightarrow open \ charm$
- Cross-sections of $e^+e^- \rightarrow hidden charm$ (张杰磊, 吴连近)
- Cross-sections of $e^+e^- \rightarrow light$ hadrons (bayon involved or not)
- Coupled channel analysis and partial wave analysis
- $\eta_c/\eta_c(2S)$ decays and new 12% rules (姬清平)
- χ_{cJ} , h_c , $\psi(2S)$ decays, non $-D\overline{D}$ decays of $\psi(3773)$, relative phase angle of strong/EM amplitudes of ψ decays (姬清平, 宋娇娇)

BESIII 粲偶素组历年发表物理文章

zhuk@郑州基础物理平台

Cross sections of $e^+e^- \rightarrow hidden \ charm$

$\eta_c(1S/2S)$ decays, extend 12% rule of $\psi(1S/2S)$

$$[1] \frac{Br(\eta_c(2S) \to h)}{Br(\eta_c(1S) \to h)} \approx \frac{Br(\psi(2S) \to h)}{Br(J/\psi \to h)} = 0.128 \ (M_{\psi_{(2S)}} - M_{J/\psi} \approx M_{\eta_c(2S)} - M_{\eta_c(1S)})$$

 $[2] \frac{Br(\eta_c(2S) \rightarrow h)}{Br(\eta_c(1S) \rightarrow h)} \approx 1$

If there is a glueball component mixed in η_c (1S) and η_c (2S), the value will less than 1

[1] Anselmino, M. and Genovese, M. and Predazzi, E., Phys. Rev. D 44, 1597—1598(1991)
 [2] K.~T.~Chao, Y.~F.~Gu and S.~F.~Tuan, Commun. Theor. Phys. 25, 471-478 (1996)

Submitted or published in 2024: $\eta_c(2S) \rightarrow p\overline{p}, \omega\omega, \omega\phi, K^+K^-\eta, K^+K^-\eta', 2(\pi^+\pi^-)\eta \ (including \ \eta_c(1S)), 2(\pi^+\pi^-), K\overline{K}\pi$

Ways to beyond the limited statistics (analysis)

• Partial reconstruction and more decay channels

e^+	e-	$\rightarrow \phi \chi_{c}$	$\eta_{c2}(1D)$
		1100	

χ_{c0}	Full			Miss K^{\pm}			Miss π^\pm			Miss π^0		
Decay	K^{\pm}	π^{\pm}	π^0	K^{\pm}	π^{\pm}	π^0	K^{\pm}	π^{\pm}	π^0	K^{\pm}	π^{\pm}	π^0
$\pi^+\pi^-$	2	2	0	1	2	0	2	1	0	-	-	-
$\pi^+\pi^-\pi^0\pi^0$	2	2	2	1	2	2	2	1	2	2	2	1
$\overline{K^+K^-\pi^+\pi^-}$	4	2	0	3	2	0	4	1	0	-	-	-
$2(\pi^{+}\pi^{-})$	2	4	0	1	4	0	2	3	0	-	-	-
$3(\pi^{+}\pi^{-})$	2	6	0	1	6	0	2	5	0	-	-	-

Various reconstructions in $e^+e^- \rightarrow K^+K^-\psi(2S)$

- Approach (i): tag K^+ , K^- , and J/ψ from $\psi(2S) \rightarrow X J/\psi$
- Approach (ii): tag K^+ or K^- , and $\psi(2S)$ with $\pi^+\pi^- J/\psi$, 1C
- Approach (iii): tag K^+ , K^- , and $\psi(2S)$ with l^+l^-
- Approach (iv): tag K^+ or K^- , and $\psi(2S)$ with l^+l^- , 1C

• (deep) machine learning and AI assistant?

Ways to beyond the limited statistics (data)

BEPCII will upgrade in both Lum. and Max. E

- Luminosity is increased by a factor 3
 @ 2.35 GeV
- Maximun beam energy is increased up to 2.8 GeV

Q 2020	Q Jun. 2021	9	Apr. 2022	💿 Jul. 2024
White Paper of BESIII	Feasibility Study I	Report	Design Finished	Shutdown for Installation
			BEPCII keep running	
Int OM	ternal Review of Accelerator ay. 2020	Project Approved Jul. 2021	Fabrication Finished Jun. 2024	Commissioning

Accelerator physics

Key Technologies: Double beam power & Optics upgrade & Higher gradient of magnets

	BEPCII @ 2.35GeV	BEPCII-U @ 2.35GeV	BEPCII-U @ 2.8GeV
L $[10^{32} \text{cm}^{-2} \text{s}^{-1}]$	3.5	11	3.7
$\beta_{\mathcal{Y}}^{*}$ [cm]	1.5	1.35	3.0
Beam current [mA]	400	900	450
SR Power [kW]	110	250	250
$\xi_{y,\text{lum}}$	0.029	0.033	0.043
Emittance [nmrad]	147	152	200
Couping [%]	0.53	0.35	0.5
Bucket Height	0.0069	0.011	0.009
$\sigma_{z,0}$ [cm]	1.54	1.07	1.4
σ_z [cm]	1.69	1.22	1.6
RF Voltage [MV]	1.6	3.3	3.3

No dedicated SR operation, only parasitic SR experiments, 10 months/year BESIII time.

C.H. Yu @ BESIII 2024 autumn workshop

Status of BEPCII upgrade project

BEPCII Operation plan

- Sep. 2021 Jun. 2024
 Data taking at ψ (3770) for 20fb⁻¹
- Jul. 2024 Dec. 2024 Summer shutdown for upgrade
- Jan. 2025 Jul. 2025 Data taking at beam energy 1.843GeV ψ (3686)
- <u>Aug. 2025 Sep. 2025</u>
 2nd SC magnet hor. test & the 4th RF cavity installation
- Oct. 2025 Jul. 2026 Data taking around beam energy 2.35GeV (project test)
- <u>Aug. 2026 Sep. 2026</u> <u>2 SC magnets installation & LINAC final upgrade</u>
- Oct. 2026 Sep. 2028 Data taking within beam energy 2.1-2.5GeV
- <u>Sep. 2028 Jul. 2030</u>

Data taking within beam energy 2.5-2.8GeV

A short term plan for next two years

- A Short term plan for 2025-2026: [9/fb + 18/fb]
 - 4.61 4.75 GeV, 10 points, 7.1/fb in total [114 days] \Rightarrow Y(4710), Y \rightarrow Z_{cs}

- PlanB: 4.61 4.71 GeV first, 3.4/fb in total [55 days]
- 4.4-4.6 GeV, add 7 points, 20 MeV step, 3.5/fb [56 days] ⇒ Y(4500)
- data samples around 4.7 GeV for Zcs, 2-3 points, 2-3/fb each, exact enery to be determined from the scan result [96-144 days]
- 4.76 5.0 GeV, 25 points, 18.2/fb in total [319 days]
- Compitition from Belle II

⁻eak Luminosity [x10³⁵cm₋₂s⁻¹]

Yuping @ BESIII 2024 summer Col. meeting

近未(~3年)

- 在正负电子对撞机II升级之后,获取超过30亿的ψ(2S)事例,以及在大于 4.4 GeV的能区获取约 30 /fb 的扫描数据
- 开展粲阈以下粲偶素衰变的精确测量,特别是η_c与η_c(2S)衰变到相同末态的系列测量,检验"新 12%规则";以及考虑到共振态与连续过程的干涉效应之后更新一批ψ(3686)的衰变分支比,并抽取 强相互作用振幅与电磁相互作用振幅之间的相角
- 寻找及测量更多ψ(3770)的非DD衰变模式,特别是精确测量含粲偶素末态的电磁与强跃迁过程,为进一步理解ψ(3773)的性质提供有效信息
- 通过研究4.4 至4.6 GeV 正负电子湮灭到特定遍举道过程的截面线型,寻找新的、尚未发现的矢量(类) 案偶素,确认或者否认 Y(4500) 的存在
- 利用在4.6至4.7 GeV能量点扫描数据,研究矢量(类) 粲偶素跃迁到 Z_{cs}(及其激发态)过程或者跃迁到C字称为正的 X 粒子过程,寻找类似于 X(3872)、Y(4230)、Z_c(3900) 这三个粒子之间的跃迁关系,寻找 Y(4660) 粒子新的衰变过程,特别是含奇异粒子的隐粲过程,为确定 Y(4660) 的粒子本性提供更多实验输入
- •利用 4.7 GeV 附近的更大样本寻找 Z_{cs} 新的衰变模式,特别是它的隐粲过程衰变模式,以其进一步理解它的产生与衰变的动力学机制
- •利用新获取的质心能量从 4.7 到 5.0 GeV 的数据,研究在此能区是否有新的尚末发现的矢量共振态。

Thanks for your attention!

backup

Previous discovered

BESIII

Date of arXiv submission

From QWG ExoticHub

Search for new production mode of X(3872)

- X(3872): $J^{PC} = 1^{++}$, very narrow, mass quite near to DD^* threshold
- Known X production modes
 - B decays
 - Double $c\bar{c}$ productions
 - $\gamma\gamma$ collisions
 - Charmonium/Bottomonium(-like) decays
 - Prompt processes in pp collisions

• At BESIII

 $\checkmark e^+ e^- \to Y \to \gamma X(3872)$ [PRL 112, 092001 (2014)] $\checkmark e^+ e^- \to Y \to \omega X(3872)$ [PRL 130, 151904 (2023)] ? $e^+ e^- \to Y \to \phi X(3872)$

Analysis method

- 368.5 pb⁻¹ e^+e^- colliding data at $\sqrt{s} = 4.914$ and 4.946 GeV
- $\phi \rightarrow K^+K^-, X(3872) \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow e^+e^- \text{ or } \mu^+\mu^-$
 - 6-track: 4C fit, ϕ and J/ψ mass windows of signal and sidebands
 - 5-track: missing one K, 1C fit, mass windows, and MUC for μ PID

5-track

Upper limits of the cross sections

$$\sigma(e^+e^- \to \phi \chi_{c1}(3872)) \cdot \mathcal{B}[\chi_{c1}(3872) \to \pi^+\pi^- J/\psi] = \frac{N_{\text{sig}}}{\mathcal{L}_{\text{int}}(1+\delta)\frac{1}{|1-\Pi|^2}\epsilon \mathcal{B}_{\text{sub}}},$$

Phys. Rev. D 110, L031103 (2024)

$$\begin{split} & \blacksquare \quad \boxed{\frac{\sqrt{s} \quad \mathcal{L}_{\text{int}} \quad N_{\text{obs}} \quad N_{\text{sdb}} \quad N_{\text{signal}}^{\text{up}} \quad (1+\delta) \quad \epsilon^{5} \quad \epsilon^{6} \quad \sigma_{B}^{\text{up}}}{4.914 \quad 208.11 \quad 0 \quad 1 \quad 1.70 \quad 0.690 \quad 19.7 \quad 2.8 \quad 0.85 \quad \text{pb}} \\ & \underline{4.946 \quad 160.37 \quad 0 \quad 0 \quad 2.00 \quad 0.755 \quad 20.8 \quad 7.0 \quad 0.96 \quad \text{pb}} \\ & \sigma_{\phi\chi_{c1}(3872)}/\sigma_{\phi\chi_{c1}} < 9 \quad \text{same order to} \quad \sigma_{\omega\chi_{c1}(3872)}/\sigma_{\omega\chi_{c1}} \sim 5 \end{split}$$

Search for $e^+e^- \rightarrow K^+K^-\psi(2S)$

- Y interest
 - $J^{PC} = 1^{--}$
 - Overpopulates the prediction of potential models
 - Not in the R-value structures, and *favor* hidden-charm final state
 - When strange-quark is involved

Extension from J/ψ to $\psi(2S)$?

 $e^+e^- \rightarrow K^+K^-J/\psi$ <u>CPC 46, 111002 (2022)</u> <u>PRL 131, 211902 (2023)</u>

Search for $e^+e^- \rightarrow K^+K^-\psi(2S)$ [cont']

• Z interest

- Non-zero iso-spin, good tetra-quark candidate
- From $Z_c~(\pi J/\psi)$ to $Z_{cs}~(KJ/\psi)$

Again, extension from J/ψ to $\psi(2S)$?

Analysis strategy

- Data sets: $\sqrt{s} = 4.699 4.951 \text{ GeV}$, 2.5 fb^{-1}
- Various reconstructions in $e^+e^- \rightarrow K^+K^-\psi(2S)$
 - Approach (i): tag K^+ , K^- , and J/ψ from $\psi(2S) \rightarrow X J/\psi$
 - Approach (ii): tag K^+ or K^- , and $\psi(2S)$ with $\pi^+\pi^- J/\psi$, 1C
 - Approach (iii): tag K^+ , K^- , and $\psi(2S)$ with l^+l^-
 - Approach (iv): tag K^+ or K^- , and $\psi(2S)$ with l^+l^- , 1C

No peaking background from inclusive MC

zhuk@郑州基础物理平台

Cross sections

$$\sigma^{\mathrm{B}} = \frac{N_{\mathrm{s}}}{\mathcal{L}_{\mathrm{int}}\epsilon_r (1+\delta) \frac{1}{|1-\Pi|^2}},$$

(a) Both BW and Expo functions can fit the data well $M = 4787.7 \pm 17.7 \text{ MeV}, \Gamma = 110.3 \pm 33.9 \text{ MeV}$ $\Gamma^{ee}B(Y \rightarrow K^+K^-\psi(2S)) = 0.13 \pm 0.02 \text{ eV}$

(b) Solid line represents PHSP, 2σ deviation at 4.845 GeV Indicate distinct production mechanism

arXiv:2407.20009, submitted to Phys. Rev. Lett.

zhuk@郑州基础物理平台

Search for $e^+e^- \rightarrow \phi \chi_{c0}$

- Y(4660): heaviest vector charmonium-like state that has been wellestablished experimentally
 - Belle and BaBar: $\pi^{+}\pi^{-}\psi(3686)$ (discover), $D_{s}^{+}D_{s1}^{-}(2536)$, $\Lambda_{c}^{+}\Lambda_{c}^{-}$
 - Theories: tetra-quark ($[cs][c\bar{s}]$ or $[cq][c\bar{q}]$), charmonium, molecules $(f_0(980)\psi(2S), \Lambda_c\overline{\Lambda}_c, D\overline{D}, \text{light hadron-charmonium pair})$, hybrid ($c\bar{c}g$)
 - BESIII: $\pi^+\pi^-\psi(3686)$, $\pi^+\pi^-\psi_2(3823)$, $\phi\chi_{c1/2}$, $K_S^0K_S^0J/\psi$, $D^{*0}D^{*-}\pi^+$, $\Lambda_c^+\Lambda_c^-$
- Evidence of $e^+e^- \rightarrow Y(4660) \rightarrow \phi \chi_{c2}$ would indicate strange quark component in the Y (4660)
 - Replace χ_{c2} with χ_{c0}
 - Previous $e^+e^- \rightarrow \phi \chi_{c0}$ at BESIII: upper limit at 4.6 GeV only one energy point <u>Phys. Rev.D 97, 032008 (2018).</u>

Analysis strategy

- Data sets: $\sqrt{s} = 4.4 4.95$ GeV, 6.7 fb^{-1}
- Five χ_{c0} decay channels (with $\phi \to K^+K^-$) and various reconstruction methods
 - 4C or 1C kinematic fit, optimized χ^2 cuts, varied signal regions

χ_{c0}	Full			Miss K^{\pm}			Miss π^{\pm}			Miss π^0		
Decay	K^{\pm}	π^{\pm}	π^0	K^{\pm}	π^{\pm}	π^0	K^{\pm}	π^{\pm}	π^0	K^{\pm}	π^{\pm}	π^0
$\pi^+\pi^-$	2	2	0	1	2	0	2	1	0	-	-	-
$\pi^+\pi^-\pi^0\pi^0$	2	2	2	1	2	2	2	1	2	2	2	1
$\overline{K^+K^-\pi^+\pi^-}$	4	2	0	3	2	0	4	1	0	-	-	-
$2(\pi^{+}\pi^{-})$	2	4	0	1	4	0	2	3	0	-	-	-
$3(\pi^{+}\pi^{-})$	2	6	0	1	6	0	2	5	0	-	-	-

Summed all energy and decay channels

Cross sections

Two dimensional fit

$\sqrt{s} \; (\text{GeV})$	$\mathcal{L}_{int} \ (pb^{-1})$	$\bar{\varepsilon}$ (%)	$N_{\rm sig}$	$N_{ m sig}^{ m up}$	$N_{\rm F}^{\rm up}$	$(1+\delta)_{\rm ISR}$	$\frac{1}{ 1-\Pi ^2}$	σ^B (pb)	$\sigma^{\rm UL} \ ({\rm pb})$
4.470	111.1	10.4	$-5.0^{+1.6}_{-0.8}$	4.1	6.2	0.822	1.055	$-10.6^{+3.4}_{-1.7} \pm 1.3$	13.2
4.530	112.1	16.5	$-4.8^{+2.1}_{-1.2}$	4.8	6.2	0.874	1.054	$-6.0^{+2.6}_{-1.5} \pm 0.6$	7.7
4.575	48.9	21.1	$0.8^{+2.4}_{-1.5}$	6.4	8.1	0.779	1.055	$2.0^{+6.0}_{-3.8} \pm 0.2$	20.3
4.600	586.9	22.5	$10.4^{+8.5}_{-7.4}$	23.8	26.2	0.775	1.055	$2.0^{+1.7}_{-1.5} \pm 0.2$	5.2
4.612	103.8	22.8	$-0.8^{+2.6}_{-1.5}$	6.2	7.1	0.777	1.055	$-0.9^{+2.9}_{-1.6} \pm 0.1$	7.8
4.620	521.5	23.3	$16.4^{+8.4}_{-7.4}$	29.4	32.1	0.797	1.055	$3.4^{+1.7}_{-1.5} \pm 0.3$	6.7
4.640	552.4	24.4	$17.3^{+9.3}_{-8.2}$	31.4	34.0	0.838	1.055	$3.1^{+1.7}_{-1.5} \pm 0.3$	6.1
4.660	529.6	26.1	$26.6^{+9.5}_{-8.6}$	40.9	40.9	0.825	1.054	$4.7^{+1.7}_{-1.5} \pm 0.4$	7.2
4.680	1669.3	26.0	$11.7^{+12.8}_{-11.6}$	31.5	40.2	0.936	1.054	$0.6^{+0.6}_{-0.6}\pm0.1$	2.0
4.700	536.5	26.9	$8.9^{+8.0}_{-6.9}$	21.7	26.5	0.995	1.055	$1.2^{+1.1}_{-1.0} \pm 0.1$	3.7
4.740	164.3	27.8	$0.6^{+4.3}_{-3.0}$	9.6	10.4	1.031	1.055	$0.3^{+1.8}_{-1.3} \pm 0.0$	4.5
4.750	367.2	28.3	$-0.9^{+4.7}_{-3.4}$	9.6	13.4	1.016	1.055	$-0.2^{+0.9}_{-0.6} \pm 0.0$	2.6
4.780	512.8	29.7	$-0.5^{+6.6}_{-5.3}$	12.8	15.1	0.897	1.055	$-0.1^{+1.0}_{-0.8} \pm 0.0$	2.2
4.840	527.3	30.2	$22.0^{+9.1}_{-8.0}$	35.8	38.2	0.855	1.056	$3.3^{+1.3}_{-1.2} \pm 0.3$	5.7
4.914	208.1	31.7	$3.8^{+5.5}_{-4.5}$	13.6	20.3	0.819	1.056	$1.4^{+2.1}_{-1.7} \pm 0.1$	7.6
4.946	160.3	31.6	$-4.8^{+2.8}_{-1.8}$	5.6	7.0	0.818	1.056	$-2.3^{+1.4}_{-0.9} \pm 0.2$	3.4

arXiv:2410.12620

Search for $Y(4660) \rightarrow \phi \chi_{c0}$

Parameters	Continuum	BW
$\Gamma_{e^+e^-} \mathcal{B}_{\phi\chi_{c0}}$ (eV)	-	0.29 ± 0.08
${ m M(MeV)}$	4630 (fixed)	4630 (fixed)
$\Gamma_{\rm tot} \ ({\rm MeV})$	-	72 (fixed)
f	0.3 ± 0.1	-
n	6 ± 15	-
χ^2/ndf	29.2/14	22.2/15

- The product of $\Gamma_{ee}^{Y(4660)} B(Y(4660) \rightarrow \phi \chi_{c0}$ is determined to be 0.29 \pm 0.08 eV
- upper limit @ 90% C.L.: 0.40 eV