

BESIIL上超子打靶的研究

张杰磊 (<u>zhangjielei@ihep.ac.cn</u>)

河南大学

第一届基础物理研讨会暨基础物理平台年会 2024年11月,河南省科学院

Outline

Introduction

> Study of $\Xi^0 n \rightarrow \Xi^- p$ PRL 130, 251902 (2023)

- Study of $\Lambda N \rightarrow \Sigma^+ X$ PRC 109, L052201 (2024)
- Study of $\Lambda p \rightarrow \Lambda p$ and $\overline{\Lambda} p \rightarrow \overline{\Lambda} p$ PRL 132, 231902 (2024)

Summary

Scattering experiments of particle beams bombarding target materials

James Chadwick

Scattering experiment must have **particle source**, target material, and detector.

Hyperon source

Baryon octet

One of main goals of nuclear physics is to understand baryonbaryon interaction in a unified perspective

Limited by availability and short-lifetime of hyperon beams

> Hyperons are obtained by bombarding hydrogen bubble chamber or scintillating fiber target with K^- .

Hyperon source

- > Hyperons are obtained by bombarding hydrogen bubble chamber or scintillating fiber target with K^- .
- > Intensity of hyperon beams is low, experimental measurements are scarce and have large uncertainty.

.

> No antihyperon source.

Reaction	Number of events
$\Lambda p \rightarrow \Lambda p$ (elastic)	584
$\Lambda p \rightarrow \Sigma^- p \pi^+$	132
$\Lambda p \rightarrow \Sigma^+ p \pi^-$	60
$\Lambda p \rightarrow \Lambda p \pi^+ \pi^-$	181
$\Lambda p \rightarrow \Sigma^{0} p$	35
various Ξ^0 p interactions	25

PI	LB	32,	720	(19)	970))
				_	_	

			·
Reaction	Momentum interval (GeV/c)	Number of events	σ (mb)
Ap→all	$\begin{array}{c} 0.5 \ \rightarrow 1.0 \\ 1.0 \ \rightarrow 1.5 \\ 1.5 \ \rightarrow 2.0 \\ 2.0 \ \rightarrow 2.5 \\ 2.5 \ \rightarrow 3.0 \\ 3.0 \ \rightarrow 4.0 \end{array}$		$\begin{array}{c} 25.8\pm \ 6.2\\ 31.3\pm \ 6.5\\ 42.8\pm \ 7.1\\ 37.5\pm \ 7.2\\ 34.1\pm \ 8.3\\ 41.8\pm 10.0 \end{array}$
Λp →Λ p	$\begin{array}{r} 0.5 \ \rightarrow 1.0 \\ 1.0 \ \rightarrow 1.5 \\ 1.5 \ \rightarrow 2.0 \\ 2.0 \ \rightarrow 2.5 \\ 2.5 \ \rightarrow 3.0 \\ 3.0 \ \rightarrow 4.0 \end{array}$	20 21 37 28 12 13	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Λp →Σ ⁰ Λp →Λpπ ⁰ Λp →Λpπ ⁺ π ⁻	$0.66 \rightarrow 4.0$ $0.88 \rightarrow 4.0$ $1.36 \rightarrow 4.0$	11 29 12	$\begin{array}{rrrr} 1.5 \pm & 0.5 \\ 4.1 \pm & 0.8 \\ 1.9 \pm & 0.6 \end{array}$
Σ ⁺ p →Σ ⁺ p	$\begin{array}{ccc} 0.5 &\to 1.5 \\ 1.5 &\to 2.5 \\ 2.5 &\to 4.0 \end{array}$	10 8 4	$\begin{array}{rrr} 31.2\pm10.1\\ 18.7\pm& 6.6\\ 15.3\pm& 7.8 \end{array}$
∑"р →∑"р	$\begin{array}{c} 0.5 \ \rightarrow 1.5 \\ 1.5 \ \rightarrow 2.5 \\ 2.5 \ \rightarrow 4.0 \end{array}$	6 11 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Ξ°p→Ξ°p Ξop→Ξop	$\begin{array}{c} 1.0 \rightarrow 4.0 \\ 1.0 \rightarrow 4.0 \end{array}$	6 4	$\begin{array}{rrrr} 13 & \pm & 6 \\ 19 & \pm 10 \end{array}$

(1)

(2)

(3)

(4)

(5)

PLB 38, 123 (1972) cross-section

events	Signature	events **	cross-section (mb)
2	к, Λ	1	8
6	Λ	4	24
1	Λ	1	6
1	К,Λ	1	6
1	Λ	1	6
1	K or A	1	5
1	к, Λ	1	6
2	Λ	2	8
1	К	1	4
1	К	1	4
	2 6 1 1 1 1 1 2 1 1 1	2 K, Λ 6 Λ 1 Λ 1 K, Λ 1 K, Λ 1 K or Λ 1 K, Λ 1 K or Λ 1 K, Λ 2 Λ 1 K 1 K	2 K, Λ 1 6 Λ 4 1 Λ 1 1 Λ 1 1 Λ 1 1 K, Λ 1 1 K, Λ 1 1 K or Λ 1 1 K, Λ 1 2 Λ 2 1 K, Λ 1 2 Λ 2 1 K 1 1 K 1

Theory of hyperon-nucleon (YN) interaction has large uncertainty due to lack of relevant measurements

"Hyperon puzzle" of neutron stars

Hyperons are believed to be appeared in inner core of neutron stars.

 $\begin{array}{ll} B_1 \rightarrow B_2 + l + \bar{\nu}_l, \ B_2 + l \rightarrow B_1 + \nu_l \\ n \rightarrow p + e^- + \bar{\nu}_e, \ p + e^- \rightarrow n + \nu_e \\ \Lambda \rightarrow p + e^- + \bar{\nu}_e, \ p + e^- \rightarrow \Lambda + \nu_e \end{array} \begin{array}{ll} \Sigma^- \rightarrow n + e^- + \bar{\nu}_e, \ n + e^- \rightarrow \Sigma^- + \nu_e \\ \Xi^- \rightarrow \Lambda + e^- + \bar{\nu}_e, \ \Lambda + e^- \rightarrow \Xi^- + \nu_e \end{array}$

- Appearance of hyperons softens equation of state, lead to maximum mass that neutron stars can sustain is less than mass of already-observed neutron stars.
- A repulsive force is introduced to stiffen equation of state in theory, such as a combination of ΛN and ΛNN interactions. Study of hyperon-nucleon interaction is crucial to solve "hyperon puzzle" of neutron stars.

BESIII detector

Has been in full operation since 2008, all subdetectors are in very good status!

BESIII data samples

Experimental study on particle targeting at BESIII

PRL 127, 012003 (2021) CPC 48, 073003 (2024) $\bar{n}p \rightarrow \pi^+\pi^+\pi^-\pi^0$, $\pi^0 \rightarrow \gamma\gamma$

particle source: hyperon from J/ψ decays target material: beam pipe detector: **BESIII** detector

Experimental study on particle targeting at BESIII

							<u></u>
Hyperon/Antihyperon	$\tau ~(\times 10^{-10} \mathrm{s})$	Decay mode	\mathcal{B} (×10 ⁻³)	$P \; (\text{GeV}/c)$	$E_{\rm cm}~({\rm GeV})$	$N~(\times 10^5)$	$N^{\mathrm{bp}}~(\times 10^5)$
$\Lambda/ar{\Lambda}$	2.63	$J/\psi \to \Lambda \bar{\Lambda}$	1.89	1.074	2.24	189	103
$\Sigma^+/\bar{\Sigma}^-$	0.80	$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	1.07	0.992	2.28	107	15
$\Xi^0/\bar{\Xi}^0$	2.90	$J/\psi ightarrow \Xi^0 ar{\Xi}^0$	1.17	0.818	2.35	117	51
$\Xi^-/\bar{\Xi}^+$	1.64	$J/\psi \to \Xi^- \bar{\Xi}^+$	0.97	0.807	2.35	97	23
$\Lambda/ar{\Lambda}$	2.63	$\psi(2S) \to \Lambda \bar{\Lambda}$	0.38	1.467	2.36	11	7
$\Sigma^+/\bar{\Sigma}^-$	0.80	$\psi(2S) \to \Sigma^+ \bar{\Sigma}^-$	0.24	1.408	2.40	7	2
$\Xi^0/\bar{\Xi}^0$	2.90	$\psi(2S) \to \Xi^0 \bar{\Xi}^0$	0.23	1.291	2.47	7	4
$\Xi^-/\bar{\Xi}^+$	1.64	$\psi(2S) \to \Xi^- \bar{\Xi}^+$	0.29	1.284	2.47	9	3
$\Omega^-/\bar{\Omega}^+$	0.82	$\psi(2S) \to \Omega^- \bar{\Omega}^+$	0.06	0.774	2.67	2	0.1
							\

The hyperon-antihyperon pair is produced, also as antihyperon source.

Recent results on hyperon-nucleon scattering at BESIII

- ➢ First Study of Reaction $\Xi^0 n \rightarrow \Xi^- p$ Using Ξ^0 -Nucleus Scattering at an Electron-Positron Collider PRL 130, 251902 (2023)
- First measurement of ΛN inelastic scattering with Λ from $e^+e^- → J/ψ → Λ\overline{Λ}$ PRC 109, L052201 (2024)
- First Study of Antihyperon-Nucleon Scattering $\overline{\Lambda}p$ → $\overline{\Lambda}p$ and Measurement of Λp → Λp Cross Section PRL 132, 231902 (2024)

Study of $\Xi^0 n \to \Xi^- p$

Analysis method :

a very small horizontal crossing angle

Using $\overline{\Xi}^0$ to tag the event and requiring the recoiling mass in Ξ^0 region. Then reconstructing Ξ^- and p in the signal side.

Study of $\Xi^0 n \to \Xi^- p$

Cross section of $\Xi^0 + {}^9\text{Be} \rightarrow \Xi^- + p + {}^8\text{Be}$

$$\sigma(\Xi^{0} + {}^{9}\text{Be} \to \Xi^{-} + p + {}^{8}\text{Be}) = \frac{N^{\text{sig}}}{\epsilon \mathcal{BL}_{\text{eff}}}$$

$$\mathcal{L}_{\text{eff}} = \frac{N_{J/\psi} \mathcal{B}_{J/\psi}}{2 + \frac{2}{3}\alpha} \int_{a}^{b} \int_{0}^{\pi} (1 + \alpha \cos^{2}\theta) e^{-\frac{x}{\sin\theta\beta\gamma L}} N(x) C(x) d\theta dx$$

Study of $\Xi^0 n \to \Xi^- p$

The measured cross section of the reaction process $\Xi^0 + {}^9\text{Be} \rightarrow \Xi^- + p + {}^8\text{Be}$ is $\sigma(\Xi^0 + {}^9\text{Be} \rightarrow \Xi^- + p + {}^8\text{Be}) = (22.1 \pm 5.3_{\text{stat}} \pm 4.5_{\text{sys}})$ mb at $P_{\Xi^0} \approx 0.818 \text{ GeV}/c.$

If we take the effective number of reaction neutrons in ⁹Be nucleus as 3, the cross section of $\Xi^0 n \to \Xi^- p$ for single neutron is determined to be $\sigma(\Xi^0 n \to \Xi^- p) = (7.4 \pm 1.8_{\text{stat}} \pm 1.5_{\text{sys}})$ mb, consistent with theoretical predictions.

LO : H. Polinder, J.H., U.-G. Meißner, PLB 653 (2007) 29 NLO16: J.H., U.-G. Meißner, S. Petschauer, NPA 954 (2016) 273 NLO19: J.H., U.-G. Meißner, EPJA 55 (2019) 23

No significant H-dibaryon signals are seen

This work is the first study of hyperon-nucleon interaction in electron-positron collisions, and opens up a new direction for such research. 16

Study of $\Lambda N \rightarrow \Sigma^+ X$

PRC 109, L052201 (2024)

Reaction chain :

 $J/\psi \to \Lambda \overline{\Lambda}, \overline{\Lambda} \to \overline{p}\pi^+, \Lambda + N(\text{nucleus}) \to \Sigma^+ + X(\text{anything}), \\ \Sigma^+ \to p\pi^0, \pi^0 \to \gamma\gamma.$

Two-body decay, $P_{\Lambda} \approx 1.074 \text{ GeV}/c$, a very small horizontal crossing angle of 11 mrad for e^+ and e^- beams, resulting in a small range of 0.017 GeV/c above and below 1.074 GeV/c for P_{Λ} .

Study of $\Lambda N \rightarrow \Sigma^+ X$

 $N_{\rm ST} = 7207565 \pm 3741$

The reaction position can not be determined. These signal events mainly come from the reaction with beam pipe and inner wall of MDC.

Cross section of $\Lambda + {}^{9}\text{Be} \rightarrow \Sigma^{+} + X$

$$\sigma(\Lambda + {}^{9}\text{Be} \to \Sigma^{+} + X) = \frac{N_{\text{DT}}}{\epsilon_{\text{sig}}\mathcal{L}_{\Lambda}} \frac{1}{\mathcal{B}(\Sigma^{+} \to p\pi^{0})}$$

 $\mathcal{L}_{\Lambda} = N_{\mathrm{ST}} \frac{N_A}{N_{\mathrm{ST}}^{\mathrm{MC}}} \sum_{i}^{7} \sum_{j}^{N_{\mathrm{ST}}^{\mathrm{MC}}} \frac{\rho_T^j l^{ij}}{M^j} \mathcal{R}_{\sigma}^j$

path length of incident Λ of i_{th} event inside j_{th} layer

Z

pure surface process assumption (proportional to number of protons)

Parameter	Value
N _{DT}	795 ± 101
$\epsilon_{ m sig}$	24.32%
\mathcal{L}_{Λ}	$(17.00 \pm 0.01) \times 10^{28} \mathrm{cm}^{-2}$
$\mathcal{B}(\Sigma^+ \to p\pi^0)$	$(51.57 \pm 0.30)\%$

Study of $\Lambda N \to \Sigma^+ X$

The measured cross section of the reaction process $\Lambda + {}^{9}\text{Be} \rightarrow \Sigma^{+} + X$ is $\sigma(\Lambda + {}^{9}\text{Be} \rightarrow \Sigma^{+} + X) = (37.3 \pm 4.7_{\text{stat}} \pm 3.5_{\text{sys}})$ mb at $P_{\Lambda} \approx 1.074$ GeV/c. This work represents the first attempt to investigate Λ -nucleus interaction at an $e^{+}e^{-}$ collider.

If taking the effective number of reaction protons in ⁹Be nucleus as 1.93, the cross section of $\Lambda p \rightarrow \Sigma^+ X$ for single proton is determined to be $\sigma(\Lambda p \rightarrow \Sigma^+ X) = (19.3 \pm 2.4_{\text{stat}} \pm 1.8_{\text{sys}})$ mb.

101

(m þ)

ь 5

0.5

PRL 132, 231902 (2024)

Taking the hydrogen in the cooling oil of the beam pipe as target material, the information on the hyperon-proton scattering can be extracted directly.

ΛX

3.37

0.06

Be

Two-body decay, $P_{\Lambda/\overline{\Lambda}} \approx 1.074 \text{ GeV}/c$

The center-of-mass energy for the incident $\Lambda/\overline{\Lambda}$ and a static p is about 2.243 GeV/ c^2 .

$\cos heta_{\Lambda/ar\Lambda}$	$N_i^{ m sig}$	$\epsilon_i \ (\%)$	$(d\sigma/d\Omega)$ (mb/sr)
[-0.9, -0.7]	$(5.0^{+2.6}_{-1.9}, 0.0^{+1.1}_{-0.0})$	(6.94,4.93)	$(1.7^{+0.9}_{-0.7}, 0.0^{+0.5}_{-0.0})$
(-0.7, -0.5]	$(1.0^{+1.4}_{-0.7}, 0.0^{+1.1}_{-0.0})$	(14.13,10.44)	$(0.2^{+0.2}_{-0.1}, 0.0^{+0.3}_{-0.0})$
(-0.5, -0.3]	$(1.0^{+1.4}_{-0.7}, 1.0^{+1.4}_{-0.7})$	(17.32,13.27)	$(0.2^{+0.2}_{-0.1}, 0.2^{+0.3}_{-0.1})$
(-0.3, -0.1]	$(11.0^{+3.7}_{-3.0}, 0.0^{+1.1}_{-0.0})$	(17.74,14.66)	$(1.5^{+0.5}_{-0.4}, 0.0^{+0.2}_{-0.0})$
(-0.1, 0.1]	$(6.9^{+3.0}_{-2.3}, 0.0^{+1.1}_{-0.0})$	(19.11,15.79)	$(0.9^{+0.4}_{-0.3}, 0.0^{+0.2}_{-0.0})$
(0.1, 0.3]	$(5.0^{+2.6}_{-1.9}, 2.0^{+1.8}_{-1.1})$	(19.53,16.82)	$(0.6^{+0.3}_{-0.2}, 0.3^{+0.3}_{-0.2})$
(0.3, 0.5]	$(12.0^{+3.8}_{-3.1}, 7.0^{+3.0}_{-2.3})$	(19.21,17.68)	$(1.5^{+0.5}_{-0.4}, 1.0^{+0.4}_{-0.3})$
(0.5, 0.7]	$(13.0^{+3.9}_{-3.3}, 25.0^{+5.3}_{-4.7})$	(19.71,17.60)	$(1.6^{+0.5}_{-0.4}, 3.4^{+0.7}_{-0.6})$
(0.7, 0.9]	$(6.0^{+2.8}_{-2.1}, 37.0^{+6.4}_{-5.8})$	(9.80,9.93)	$(1.5^{+0.7}_{-0.5}, 9.0^{+1.6}_{-1.4})$

Cross sections in $-0.9 \le \cos\theta_{\Lambda/\overline{\Lambda}} \le 0.9$ are measured to be $\sigma(\Lambda p \to \Lambda p) = (12.2 \pm 1.6_{\text{stat}} \pm 1.1_{\text{sys}}) \text{ mb and}$ $\sigma(\overline{\Lambda}p \to \overline{\Lambda}p) = (17.5 \pm 2.1_{\text{stat}} \pm 1.6_{\text{stat}}) \text{ mb}$

Total cross sections are determined to be $\sigma_t(\Lambda p \to \Lambda p) = (14.2 \pm 1.8_{\text{stat}} \pm 1.3_{\text{sys}}) \text{ mb and}$ $\sigma_t(\overline{\Lambda}p \to \overline{\Lambda}p) = (27.4 \pm 3.2_{\text{stat}} \pm 2.5_{\text{sys}}) \text{ mb}$

Some ongoing researches on (anti)hyperonnucleon scattering at BESIII

$$> \Sigma^{+}n \rightarrow \Lambda p, \Sigma^{+}n \rightarrow \Sigma^{0}p$$

$$> \Xi^{0}n \rightarrow \Lambda\Lambda, \Xi^{-}p \rightarrow \Lambda\Lambda$$

$$> \Lambda p \rightarrow \Sigma^{0}p, \overline{\Lambda}p \rightarrow \overline{\Sigma}^{0}p$$

$$> \Sigma^{+}p \rightarrow \Sigma^{+}p, \overline{\Sigma}^{-}p \rightarrow \overline{\Sigma}^{-}p$$

$$> \Xi^{-}p \rightarrow \Xi^{-}p, \overline{\Xi}^{+}p \rightarrow \overline{\Xi}^{+}p$$
.....

 $\Lambda p \rightarrow \Lambda p / \overline{\Lambda} p \rightarrow \overline{\Lambda} p$ is studied using three-body decays $J/\psi \rightarrow pK\Lambda$, momentumdependent cross section measurement.

More results will come out soon !!!

Summary

1. Using a novel method, hyperon-nucleon scattering can also be measured at BESIII now.

 $\Sigma^0 n \to \Xi^- p$ $\land N \to \Sigma^+ X$ $\land p \to \Lambda p$ $\land \overline{\Lambda} p \to \overline{\Lambda} p$

2. This is the first study of hyperon-nucleon scattering in electron-positron collisions, and opens up a new direction for such research. Especially, antihyperon-nucleon scattering is studied for the first time.

3. With more statistics in future super tau-charm facilities, the momentumdependent cross section or differential cross section distributions can be studied based on the hyperons from multibody decays of J/ψ or other charmonia.

Thanks for your attention!