Recent progresses on the radiative and weak decays of charmed hadron

孟 雨 (郑州大学)

Based on Sci.Bull 68,1880(2023), PRD109,074511(2024) PRD110,074510(2024)

合作者:冯旭(北大)、刘川(北大)、刘朝峰(高能所) 杨一玻(理论所)、张克龙(中科院网络中心)、脱心宇(BNL)等

第一届基础物理研讨会暨基础物理平台年会

2024年11月1-2日,河南,郑州

Outline

- Introduction
- Radiative decay
 - $D_s^* \to D_s \gamma$
 - $\eta_c \to 2\gamma$
 - $J/\psi \to \gamma \eta_c$
- Weak decay
 - $J/\psi \to D_s/Dl\nu_l$
- Summary and outlook

Motivation

Charmed hadron: a meson containing at least one charm or anti-charm quark

• "November Revolution"— The discovery of J/ψ particle in 1974, greatly facilitated the establishment of the Standard Model.

Why charmed hadron decays ?

- Precise test for the standard model
 The world's largest *τ*-charm factory—BESIIII
- Test various perturbative and non-perturbative approaches — intermediate energy scale
- More possibilities for the search of new physics
 rare decays

D^{\ast}_{s} radiative decay from the lattice QCD

Y.M.,Jin-Long Dang,Chuan Liu,Zhaofeng Liu,Tinghong Shen, Haobo Yan, and Ke-Long Zhang, PRD109,074511(2024)

D_s^* decay mode

$D_s^{*\pm}$	$I(J^{P}) = 0(?^{?})$				
	J^P is natural, width and decay modes consistent with 1 $^-$.				
$D_s^{*\pm}$ MA	SS	$2112.2\pm0.4~\text{MeV}$			~
$m_{D_s^{*\pm}}-m$	$D_{D_{\delta}^{\pm}}$	$143.8\pm0.4~\mathrm{MeV}$			~
$D_s^{*\pm}$ WIE	ОТН	$< 1.9 \; \mathrm{MeV}$ CL=90.0%			~
D_s^{st+} de	ECAY MODES				
D_s^{st-} r	nodes are charge conjugates of the modes below.				
Mode		Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P(MeV/c)	
Γ_1	$D_s^+\gamma$	$(93.5 \pm 0.7)\%$		139	~
Γ_2	$D_s^+\pi^0$	$(5.8\pm0.7)\%$		48	~
Γ_3	$D_s^+e^+e^-$	$(6.7 \pm 1.6) imes 10^{-3}$		139	~

 No absolute measurements, above branching fraction are determined by two relative measurements

$$\begin{aligned} R_{ee} &= \Gamma(D_s^* \to D_s e^+ e^-) / \Gamma(D_s^* \to D_s \gamma) \\ R_{Ds\pi^0} &= \Gamma(D_s^* \to D_s \pi^0) / \Gamma(D_s^* \to D_s \gamma) \end{aligned}$$

assuming no other decay mode exists.

• Total decay width of D_s^* is experimentally unknown.

D_s^* leptonic decay

• Decay width of $D_s^* \to l\nu_l$ is

$$\Gamma(D_s^* \to l\nu_l) = \frac{G_F^2}{12\pi} |V_{cs}|^2 f_{D_s^*}^2 m_{D_s^*}^3 \left(1 - \frac{m_l^2}{m_{D_s^*}^2}\right)^2 \left(1 + \frac{m_l^2}{2m_{D_s^*}^2}\right)^2$$

Branching fraction first determined by BESIII PRL131,141802(2023)

$$\operatorname{Br}(D_s^{*,+} \to e^+ \nu_e) = (2.1^{+1.2}_{-0.9_{\text{stat.}}} \pm 0.2_{\text{syst.}}) \times 10^{-5}$$

- Total decay width of D_s^* is essential to extract $f_{D_s^*}|V_{cs}|$, playing a important role to test the standard model.
- Radiative decay $D_s^* \to D_s \gamma$ can be used to estimate the D_s^* total decay width.

Previous lattice study

 $\bullet~$ HPQCD, HISQ fermion with pion mass ~ 300 MeV, $a\sim 0.12$ and 0.09 fm, each ensemble with statistic $\sim 2000\times 4$

$$\langle D_s(p)|J_{\nu}^{\rm em}(0)|D_{s,\mu}^*(p')\rangle = \frac{2V(q^2)}{3(m_{D_s}+m_{D_s^*})}\epsilon_{\mu\nu\alpha\beta}p_{\alpha}p_{\beta}'$$

• $\Gamma_{D_s\gamma} = 0.066(26)$ keV, PRL112,212002(2014)

Branching fraction first determined by BESIII PRL131,141802(2023)

$$\operatorname{Br}(D_s^{*,+} \to e^+ \nu_e) = (2.1^{+1.2}_{-0.9_{\text{stat.}}} \pm 0.2_{\text{syst.}}) \times 10^{-5}$$

• HPQCD, PRL112,212002(2014)

$$\Gamma_{D_s\gamma} = 0.066(26) \text{keV}$$

• Combining the above results, it arrives at

$$f_{D_s^*}|V_{cs}| = (207.9^{+59.4}_{-44.6_{\text{stat.}}} \pm 42.7_{\text{syst.}}) \text{MeV}$$

with

 $42.7_{\rm syst.} \rightarrow 9.9_{\rm syst.exp} 41.5_{\rm syst.latt}$

$D_s^* \to D_s \gamma$ with new method

• The effective form factor

$$\langle D_s(p)|J_{\nu}^{\rm em}(0)|D_{s,\mu}^*(p')\rangle = \frac{2V_{\rm eff}(q^2)}{m_{D_s}+m_{D_s^*}}\epsilon_{\mu\nu\alpha\beta}p_{\alpha}p'_{\beta}$$

Scalar function method

$$\begin{split} V_{\text{eff}}(q^2) &= \frac{-(m_{D_s} + m_{D_s^*})E_{D_s}}{2Z_{D_s}m_{D_s^*}}e^{E_{D_s}t} \\ &\times \int^R d^3\vec{x} \frac{j_1(|\vec{p}||\vec{x}|)}{|\vec{p}||\vec{x}|} \epsilon_{\mu\nu\alpha0}x_\alpha \langle 0|\mathcal{O}_{D_s}(\vec{x},t)J_{\nu}^{\text{em}}(0)|D_{s,\mu}^*(p')\rangle \end{split}$$

with $q^2 = (m_{D_s^*} - E_{D_s})^2 - |\vec{p}|^2$.

- Zero transfer momentum $\vec{p} = (0,0,0)$ is projected directly, which is missed in the traditional way.
- Finite-volume effect is exponentially suppressed and also easily examined with an integral truncation $|\vec{x}| = R$.

Form factor and decay width

• We obtain $V_{\rm eff}(0)=0.178(9)$ and the decay width

 $\Gamma(D_s^* \to \gamma D_s) = 0.0549(54) \text{ keV}$

with a much reduced stastistical error compared with previous 0.066(26) keV.

• BESIII+ HPQCD [PRL112,212002(2014)]

 $f_{D_s^*}|V_{cs}| = (207.9^{+59.4}_{-44.6_{\text{stat.}}} \pm 9.9_{\text{syst.exp}} \pm 41.5_{\text{syst.latt}}) \text{MeV}$ where $\Gamma_{D_s^*}^{\text{total}} = 0.0700(280)$ keV.

• BESIII+ this work Y.M et al,PRD109,074511(2024)

 $f_{D_s^*}|V_{cs}| = (190.5^{+55.1}_{-41.7_{\text{stat.}}} \pm 9.1_{\text{syst.exp}} \pm 8.7_{\text{syst.latt}}) \text{MeV}$

where $\Gamma_{D_s^*}^{\text{total}} = 0.0589(54)$ keV.

Dalitz decay $D_s^* \to D_s e^+ e^-$

• The third decay mode observed by CLEO, giving the branching fraction

$$R_{ee} = [0.72^{+0.15}_{-0.13} \pm 0.10]\%$$

PRD 86,072005(2014)

• First lattice result $R_{ee} = 0.624(3)\%$, much precise than 0.67(16)% PDG

$\eta_c \rightarrow 2\gamma$ decay width from lattice QCD

Y.M., Xu Feng, Chuan Liu, Teng Wang, and Zuoheng Zou, Sci. Bull 68, 1880 (2023)

 $\eta_c \to 2\gamma$

Experiments

	${ m Br} imes 10^5$	Note
CLEO	$0.7^{+1.6}_{-0.7} \pm 0.2$	PRL 101,101801(2008)
BESIII	$2.7\pm0.8\pm0.6$	PRD 87,032003(2013)
World average	$2.2^{+0.9}_{-0.6}$	PDG-aver
Global fit	1.68 ± 0.12	PDG-fit

• Theories: perturbative+nonperturbative

-	$\Gamma(\text{keV})$	Note
NRQCD	$9.9 \sim 10.6$	PRL 119 ,252001(2017)
DSE	$6.32\sim 6.39$	PRD 95 ,016010(2017)
Lattice	6.04(68)	CLQCD(2020)
PDG-fit	5.4(4)	PDG-fit

• High precision lattice simulation is essential

Results: $\eta_c \rightarrow 2\gamma$

 $\Gamma(\eta_c \to 2\gamma) = \begin{cases} 6.67(16)(6) \text{ keV} \\ 5.4(4) \text{ keV} \quad \text{PDG-fit} \\ 7.04^{+2.9}_{-1.9} \text{ keV} \quad \text{PDG-aver} \end{cases}$

YM et al, Sci Bull 68,1880(2023)

Lattice & Experiments

PDG(2023)

• Verified by HPQCD, $\Gamma_{\eta_c \gamma \gamma} = 6.788(45)_{\text{fit}}(41)_{\text{syst}}$ keV, PRD108,014513(2023)

PDG global fit

An overall fit to total width, 10 combinations of particle width obtained from integrated cross section, 21 branching ratios uses 97 measurements and one constraint to determine 15 parameters. The overall fit has a $\chi^2 = 120.8$ for 83 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $<\delta x_i - \delta x_j$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i = \Gamma_i / \Gamma_{badd}$.

The fit constrains the x_i whose labels appear in this array to sum to one.

×1	100															
×5	13	100														
×8	25	14	100													
×15	10	5	10	100												
×17	5	3	6	2	100											
×34	30	17	35	13	7	100										
×35	15	8	17	6	3	48	100									
×38	16	9	17	7	3	21	10	100								
×42	12	7	13	5	3	21	10	8	100							
×45	18	10	20	8	4	24	12	13	10	100						
×48	17	10	19	7	4	26	13	12	9	14	100					
×50	4	2	5	2	1	6	3	3	2	3	24	100				
×56	-45	-25	-50	-19	-10	-60	-29	-31	-24	-36	-36	-9	100	_		
Г	-2	-	-2	-1	0	-3	-1	-2	-1	-2	6	1	-28	100		
X999	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	
	×ı	×5	×8	×15	×17	×34	X35	X38	X42	XAC	XAR	X50	X56	Г	X999	
4										- 40						1
4	Mode								R	ate (Me	v)			ŝ	icale facto	1
n.	Mode $\eta_k(1S) =$	 η'(958): 	τπ						R	ate (Me	V)			5	òcale facto	
r ₁ r ₅	Mode $\eta_{c}(1S) - \eta_{c}(1S) - $	 η'(958): K[*](892) 	$\pi \pi = \overline{K}^{*}(892)$						R	ate (Me .60 ±0.08 .20 ±0.04	V)			ŝ	icale facto	
Г1 Г5 Г8	Mode $\eta_c(1S) - \eta_c(1S) - \eta_c(1S) - \eta_c(1S) - \eta_c(1S) - \eta_c(1S)$	+ $\eta'(958)$: + $K^{*}(892)$ + $\phi\phi$	$\pi \pi \bar{K}^{*}(892)$						R 0 0	ate (Me .60 ±0.08 .20 ±0.04 .051 ±0.0	V) 1 106			S	icale facto	
Г1 Г5 Г8 Г15	Mode $\eta_c(1S) =$ $\eta_c(1S) =$ $\eta_c(1S) =$ $\eta_c(1S) =$	+ $\eta'(958)$: + $K^{*}(892)$ + $\phi\phi$ + $\omega\omega$	τπ (892)						R 0 0 0 0	ate (Me .60 ±0.08 .20 ±0.04 .051 ±0.0	V) 1 106 115			s	icale facto	
Г1 Г5 Г8 Г15 Г17	Mode $\eta_c(1S) =$ $\eta_c(1S) =$ $\eta_c(1S) =$ $\eta_c(1S) =$ $\eta_c(1S) =$	$\gamma'(958)$: $K^{*}(892)$ $\phi \phi \phi$ $\phi \omega \omega$ $\phi f_{2}(1270)$	ππ K [*] (892)						R 0 0 0 0 0	ate (Me .60 ±0.08 .20 ±0.04 .051 ±0.0 .066 ±0.0 .31 ±0.08	V) 1006 115			5	icale facto	
F1 F3 F8 F15 F17 F34	Mode $\eta_c(1S) =$ $\eta_c(1S) =$ $\eta_c(1S) =$ $\eta_c(1S) =$ $\eta_c(1S) =$ $\eta_c(1S) =$	+ $\eta'(958)$: + $K^{*}(892)$ + $\phi\phi$ + $\omega\omega$ + $f_{0}(1270)$ + $K\bar{K}\pi$	τπ K [*] (892) <i>fg</i> (1270)						R 0 0 0 0 0 0 0 0 2	ate (Me .60 ±0.08 .20 ±0.04 .051 ±0.0 .066 ±0.0 .31 ±0.08 .25 ±0.14	V) 1 1006 115 1			S	Scale facto	
F1 F5 F8 F15 F17 F34 F35	Mode $\eta_{t}(1S) =$ $\eta_{t}(1S) =$ $\eta_{t}(1S) =$ $\eta_{t}(1S) =$ $\eta_{t}(1S) =$ $\eta_{t}(1S) =$ $\eta_{t}(1S) =$	+ $\eta'(958)$: + $K^*(892)$ + $\phi\phi$ + $\omega\omega$ + $f_2(1270)$ + $K\bar{K}\pi$ + $K\bar{K}\eta$	$\pi\pi$ $\overline{K}^{*}(892)$ $if_{2}(1270)$						R 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ate [Me .60 ±0.08 .20 ±0.04 .051 ±0.0 .066 ±0.0 .31 ±0.08 .25 ±0.14 .42 ±0.08	V) 1006 115 1			5	icale facto	
Γ1 Γ5 Γ8 Γ15 Γ17 Γ34 Γ35 Γ38	Mode $\eta_i(1S) = -$ $\eta_i(1S) = -$	+ $\eta'(958)$: + $K^*(892)$ + $\omega\omega$ + $\omega\omega$ + $f_2(1270)$ + $K\bar{K}\pi$ + $K\bar{K}\eta$ + $K\bar{K}\eta$	ππ K [*] (892) fs (1270) ⁺ π ⁻						R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ate [Me .60 ±0.08 .20 ±0.04 .051 ±0.0 .066 ±0.0 .31 ±0.08 .25 ±0.14 .42 ±0.08 .206 ±0.0	V) 1 1 1 1 1 1 1 1 1 1 1 1 1			5	icale facto	
 F1 F5 F8 F15 F17 F34 F35 F38 F42 	Mode $\eta_i(1S) =$ $\eta_i(1S) =$ $\eta_i(1S) =$ $\eta_i(1S) =$ $\eta_i(1S) =$ $\eta_i(1S) =$ $\eta_i(1S) =$ $\eta_i(1S) =$ $\eta_i(1S) =$	$+ \eta'(958):$ $+ K^{*}(892)$ $+ \omega \omega$ $+ \omega \omega$ $+ K\bar{K}\pi$ $+ K\bar{K}\eta$ $+ K\bar{K}\eta$ $+ K^{+}K^{-}\pi$ $+ 2[K^{+}K]K^{-}\pi$	ππ K [*] (892) µf ₂ (1270) ⁺ π ⁻ ⁻)						R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ate (Me .60 ±0.08 .20 ±0.04 .051 ±0.0 .066 ±0.0 .31 ±0.08 .25 ±0.14 .42 ±0.08 .206 ±0.0 .044 ±0.0	V) i i i i i i i i i i i i i			5	icale facto	,
 F1 F3 F8 F15 F17 F34 F35 F38 F42 F45 	Mode $\eta_i(1S) = -$ $\eta_i(1S) = -$	$\gamma \eta'(958):$ $\gamma \phi \phi$ $\gamma \phi \phi$ $\gamma \phi \phi$ $\gamma f_{2}(1270)$ $\gamma K\bar{K}\pi$ $\gamma K\bar{K}\eta$ $\gamma K\bar{K}\eta$ $\gamma K^{+}K^{-}\pi$ $\gamma 2 K^{+}K$ $\gamma 2 \pi^{+}\pi^{-}\pi$	ππ K [*] (892) f ₂ (1270) ⁺ π ⁻)						R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ate (Me .60 ±0.08 .20 ±0.04 .051 ±0.0 .066 ±0.0 .31 ±0.08 .25 ±0.14 .42 ±0.08 .206 ±0.0 .004 ±0.0 .277 ±0.0	V) 1006 115 132 109 135			5	icale facto	
 F1 F3 F8 F15 F17 F34 F35 F38 F42 F45 F48 	Mode $\eta_i(1S) = -$ $\eta_i(1S) = -$	+ $\eta'(958)$: + $K^{*}(892)$ + $\omega\omega$ + $\omega\omega$ + $K\bar{K}\pi$ + $K\bar{K}\eta$ + $K^{+}K^{-}\pi$ - $\chi^{-}\chi^{-}\chi^{-}\chi^{-}\chi^{-}\chi^{-}\chi^{-}\chi^{-}$	τπ <u>K</u> [*] (892) <i>f₂</i> (1270) ⁺ π ⁻ ¬)						R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ate (Me .60 ±0.08 .20 ±0.04 .051 ±0.0 .066 ±0.0 .31 ±0.08 .25 ±0.14 .42 ±0.08 .206 ±0.0 .044 ±0.0 .277 ±0.0 .043 ±0.0	V) 1006 115 115 115 115 115 115 115 11			ţ	icale factor	
 F1 F8 F15 F17 F34 F35 F38 F42 F45 F48 F50 	Mode $\eta_{c}(1S) = -$ $\eta_{c}(1S) = -$	+ $\eta'(958)$: + $K^{*}(892)$ + $\omega\omega$ + $\omega\omega$ + $K\bar{K}\pi$ + $K\bar{K}\pi$ + $K\bar{K}\pi$ + $K^{+}K^{-}\pi$ - $2[K^{+}K^{-}\pi^{-}\pi^{-}$ + $2[\pi^{+}\pi^{-}\pi^{-}$ + $p\bar{p}$ + $A\bar{A}$	ππ <u>K</u> [*] (892) lf ₂ (1270) ⁺ π ⁻ ¬) }						R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ate (Me .60 ±0.08 .20 ±0.04 .051 ±0.0 .066 ±0.0 .31 ±0.08 .25 ±0.14 .42 ±0.08 .206 ±0.0 .044 ±0.0 .277 ±0.0 .043 ±0.0	V) 1006 115 115 115 115 104 107			ŝ	icale factor	

• The smaller errors of fitting may due to: (i)large uncertainties of $\eta_c \rightarrow 2\gamma$; (ii)Highly correlated with other decay channels ;

Discussion

 CLEO(08) and BESIII(13) extract the branching fraction of η_c → 2γ by

 $J/\psi \to \gamma \eta_c \to 3\gamma$

• PDG23, $Br(\eta_c \rightarrow 2\gamma)$

$VALUE (10^{-4})$		CL%	EVTS	DOCUMENT I	D	TECN	COMMENT	
$\textbf{1.68} \pm \textbf{0.12}$	OUR FIT							
$2.2^{+0.9}_{-0.6}$ OU	IR AVERAGE							
$2.7 \pm \! 0.8 \pm \! 0.6$				1 ABLIKIM	2013	BES3		
$0.7 \ ^{+1.6}_{-0.7} \ \pm 0.2$			$1.2 \ ^{+2.8}_{-1.1}$	² ADAMS	2008	CLEO	$\psi(2S) ightarrow \pi^+\pi^- J/\psi$	
			 We do not use the follow 	ving data for ave	rages, fits	, limits, etc. • •		
$2.0 \ {}^{+0.9}_{-0.7} \ {\pm}0.2$			13	³ WICHT	2008	BELL	$B^{\pm} \rightarrow K^{\pm} \gamma \gamma$	
$2.80 \ ^{+0.67}_{-0.58} \ \pm 1.0$				⁴ ARMSTRONG	1995F	E760	$\bar{p} p \rightarrow \gamma \gamma$	
< 9		90		⁵ BISELLO	1991	DM2	$J/\psi ightarrow \gamma\gamma\gamma$	
$6_{-3}^{+4} \pm 4$				⁴ BAGUN	1987B	SPEC	$\overline{p} p \rightarrow \gamma \gamma$	
< 18		90		6 BLOOM	1983	CBAL	$J/\psi \rightarrow \eta_c \gamma$	
¹ ABUKIM 2013I reports $[\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))] = (4.5 \pm 1.2 \pm 0.6) \times 10^{-6}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma\eta_c(1S)) = 0.017 \pm 0.004$. Our first error is their experiment's error and our second error is the systematic error from using our best value								

 2 ADAMS 2008 reports [$\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{tunal}$] × [8[$J/\psi(1S) \rightarrow \gamma\eta_c(1S)$] = (1.2 $^{+2.7}_{-1.1} \pm 0.3$) × 10⁻⁶ which we divide by our best value 8[$J/\psi(1S) \rightarrow \gamma\eta_c(1S)$] = 0.017 ± 0.004. Our first error is the experiment's error and our second error is the systematic error from using our best value.

$\eta_c \rightarrow 2\gamma$:PDG24-update

VALUE (10^{-4})	С	1%	EVTS	DOCUMENT ID		TECN	COMMENT		
$\textbf{1.66} \pm \textbf{0.13}$	OUR FIT Error includes scale factor of 1.2.								
			• • We do not use t	he following data for averages, f	its, limits,	etc. • •			
$3.2 \pm 1.0 \pm 0.3$				¹ ABLIKIM	20131	BES3			
$0.9 \ _{8}^{+1.9} \ \pm 0.1$			$1.2 \ ^{+2.8}_{-1.1}$	² ADAMS	2008	CLEO	$\psi(2S) ightarrow \pi^+\pi^- J/\psi$		
$2.0 \ _{-0.7}^{+0.9} \ {\pm} 0.1$			13	³ WICHT	2008	BELL	$B^\pm o K^\pm \gamma \gamma$		
$2.80 \ {}^{+0.67}_{-0.58} \pm 1.0$				⁴ ARMSTRONG	1995F	E760	$\overline{p} \; p o \gamma \gamma$		
< 9	91	0		⁵ BISELLO	1991	DM2	$J/\psi o \gamma\gamma\gamma$		
$6 \; {}^{+4}_{-3} \pm 4$				⁴ BAGLIN	1987B	SPEC	$\overline{p} \; p o \gamma \gamma$		
< 18	91	0		6 BLOOM	1983	CBAL	$J/\psi o \eta_c \gamma$		

¹ ABUKIM 2013I reports $[\Gamma(\eta_c(1S) \rightarrow \gamma \gamma)/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))] = (4.5 \pm 1.2 \pm 0.6) \times 10^{-6}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))$ = $(1.41 \pm 0.14) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² ADAMS 2008 reports $[\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))] = (1.2^{+2.7}_{-1.1} \pm 0.3) \times 10^{-6}$ which we divide by our best value B($J/\psi(1S) \rightarrow \gamma\eta_c(1S)$) = (1.41 ± 0.14) × 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 ${\rm Br}(J/\psi \to \gamma \eta_c) : 1.7(4)\% \to 1.41(14)\%$

$J/\psi \to \gamma \eta_c$

• New method for $J/\psi \rightarrow \gamma \eta_c$ without momentum extrapolation V(0)=1.89(4) Y.M. et al, in preparation

• Lattice vs PDG: a puzzle !

3 σ tension for $\eta_c \to 2\gamma$ and 5 σ tension for $J/\psi \to \gamma\eta_c$

$J/\psi \rightarrow D/D_s l \nu_l$ semileptonic decay from lattice QCD

Y.M., Jin-Long Dang, Chuan Liu, Xin-Yu Tuo, Haobo Yan, Yi-Bo Yang, and Ke-Long Zhang, PRD110,074510(2024)

J/ψ decay channels

- Decays involving hadronic resonances
- Decays into stable hadrons
- Radiative decays
- Dalitz decays

 Weak a 	 Weak decays 							
Γ_{364}	$D^-e^+ u_e$ + c.c.	$<7.1\times10^{-8}$	CL=90%	984	~			
Γ_{365}	$\overline{D}^0 e^+ e^-$ + c.c.	$< 8.5 \times 10^{-8}$	CL=90%	987	~			
Γ_{366}	$D_s^-e^+\nu_e + {\rm c.c.}$	$<1.3\times10^{-6}$	CL=90%	923	~			
Γ_{367}	$D_s^{*-}e^+\nu_e+{\rm c.c.}$	$<1.8\times10^{-6}$	CL=90%	828	~			
Γ_{368}	$D^-\pi^+$ + c.c.	$<7.5\times10^{-5}$	CL=90%	977	~			
Γ_{369}	$\overline{D}^0\overline{K}^0$ + c.c.	$< 1.7 imes 10^{-4}$	CL=90%	898	~			
Γ_{370}	$\overline{D}^0 \overline{K}^{*0} + c.c.$	$<2.5 imes10^{-6}$	CL=90%	670	~			
Γ_{371}	$D_s^-\pi^+$ + c.c.	$< 1.3 imes 10^{-4}$	CL=90%	915	~			
Γ_{372}	$D_s^- \rho^+ + \text{c.c.}$	$< 1.3 imes 10^{-5}$	CL=90%	663	~			

- Semileptoinc decay: $J/\psi \rightarrow D/D_s l\nu_l$ this work
- Phenomenological aspect: plenties of studies on hadronic and radiative decay, less on semileptonic decay(Br $< 10^{-8}$) \leftarrow limited by the experimental detection

• Completed measurements

channels	Upper limit	J/ψ number	Refs
$J/\psi \to D_s e \nu_e$	4.9×10^{-5}	$5.8 imes 10^7$	PLB639,418(2006)
$J/\psi \to D_s e \nu_e$	1.3×10^{-6}	2.3×10^8	PRD90,112014(2014)
$J/\psi \to De\nu_e$	7.1×10^{-8}	1.01×10^{10}	JHEP06,157(2021)
$J/\psi \to D\mu\nu_{\mu}$	5.6×10^{-7}	1.01×10^{10}	JHEP01,126(2024)

BES & BESIII collaboration

• Future measurements ?

channels	Upper limit	J/ψ number	Refs
$J/\psi \to D_s e \nu_e$	—	1.01×10^{10}	BESIII
$J/\psi \to D_s \mu \nu_\mu$	—	1.01×10^{10}	BESIII
$J/\psi \to D_s e \nu_e$	—	$\sim 10^{12}$	STCF
$J/\psi \to D_s \mu \nu_\mu$		$\sim 10^{12}$	STCF

The amplitude

$$i\mathcal{M} = -i\frac{G_F}{\sqrt{2}}V_{cs(d)}\epsilon_{\alpha}(p')H_{\mu\alpha}(p,p')g_{\mu\nu}\bar{u}_l\gamma_{\nu}(1-\gamma_5)u_{\nu_l}$$

with the nonperturbative hadronic interaction ZPC46,93(1990)

$$\begin{aligned} H_{\mu\alpha}(p,p') &\equiv \langle D/D_s(p)|J^W_{\mu}|J/\psi_{\alpha}(\epsilon,p')\rangle \\ &= F_1(q^2)g_{\mu\alpha} + \frac{F_2(q^2)}{Mm}p'_{\mu}p_{\alpha} + \frac{F_3(q^2)}{m^2}p_{\mu}p_{\alpha} - \frac{iF_0(q^2)}{Mm}\epsilon_{\mu\alpha\rho\sigma}p'_{\rho}p_{\sigma} \end{aligned}$$

The decay width

$$\begin{split} \Gamma &=& \frac{G_F^2 V_{cs(d)}^2}{12M^2} \frac{1}{32\pi^3} \int_{m_l^2}^{(M-m)^2} dq^2 \times \left[\frac{c_0}{(E_l^+ - E_l^-)} \right] \\ &+& \frac{c_1}{2} ((E_l^+)^2 - (E_l^-)^2) + \frac{c_2}{3} ((E_l^+)^3 - (E_l^-)^3) \end{split}$$

with $E_l^{\pm}=\frac{1}{2M}\Big[q^2+m_l^2-\frac{1}{2q^2}\Big((q^2-M^2+m^2)(q^2+m_l^2)\mp 2M|\vec{p}|(q^2-m_l^2)\Big)\Big]$

- Correlated fit to a constant at suitable time region $\sim [0.8, 1.7]$ fm for all ensembles with $|\vec{p}| = 2\pi |\vec{n}|/L, |\vec{n}|^2 = 0, 1, 2, 3, 4.$
- A polynomial form $F_i(q^2) = d_i^{(0)} + d_i^{(1)} \cdot q^2 + d_i^{(2)} \cdot q^4$ describes lattice data well

• The branching fraction Y.M et al, PRD110,074510(2024)

$$\begin{array}{lll} {\rm Br}(J/\psi\to D_s e\nu_e) &=& 1.90(6)_{\rm stat}(5)_{V_{cs}}\times 10^{-10} \\ {\rm Br}(J/\psi\to D e\nu_e) &=& 1.21(6)_{\rm stat}(9)_{V_{cd}}\times 10^{-11} \end{array}$$

• The ratio between μ and e

$$\begin{array}{rcl} R_{J/\psi}(D_s) &=& 0.97002(8)_{\rm stat} \\ R_{J/\psi}(D) &=& 0.97423(15)_{\rm stat} \end{array}$$

Differential decay width

- $\bullet~$ The experimental inputs $m_{J/\psi}=3.09690(1)~{\rm GeV},~m_{D_s}=1.96834(7)~{\rm GeV},$ and $m_D=1.86966(5)~{\rm GeV}$
- A potential test by future Super Tau Charm Facility with expected $10^{12} J/\psi$ samples Front. Phys. (Beijing) 19, 14701(2024)

• Light, strange and charm quark included (point+wall propagator)

- Calculate arbitrary three-point function
- Five lattice spacings for continuum limit
- Physical pion mass extrapolation

Symbol	a(fm)	$L^3 \times T$	$m_{\pi}(MeV)$	$N_c \times N_t$	Disk(T)
C24P29	0.10521	$24^3 \times 72$	292.3(1.0)	200×72	90
E28P35	0.08970	$28^3 \times 64$	351.4(1.4)	150×64	85
F32P30	0.07751	$32^3 \times 96$	300.4(1.2)	150×96	285
G36P29	0.06884	$36^3 \times 108$	297.2(0.9)	150×54	256
H48P32	0.05198	$48^3 \times 144$	316.6(1.0)	80×72	576
C32P23	0.10521	$32^{3} \times 64$	227.9(1.2)	150×64	130
C48P14	0.10521	$48^3 \times 96$	136.4(1.7)	80 imes 96	512
F48P21	0.07751	$48^3 \times 96$	207.5(1.1)	80×96	512

• Total: 2.4P

Conclusion and outlook

Conclusion

- Lattice studies on $\eta_c \to 2\gamma, J/\psi \to \gamma\eta_c, D_s^* \to D_s\gamma$ and $J/\psi \to D/D_s l\nu_l$ with new lattice method
- New puzzle in $\eta_c \rightarrow 2\gamma$, 2.9σ tension with the PDG value
- The most precise $\Gamma(D_s^* \to D_s \gamma) = 0.0549(54)$ keV and $R_{ee} = 0.624(3)\%$ for the Dalitz decay $D_s^* \to D_s e^+ e^-$.
- $\bullet\,$ The method can be generally applide to various $P \to V$ semileptonic decay.

Outlook

• Continuum limit and physical pion mass on the lattice, towards the world's highest precision lattice calculation on flavor physics.

CLQCD in china

