

BESIII上粲物理的研究

(On behalf of BESIII Collaboration)

2024年11月2日

第一届基础物理研讨会暨基础物理平台年会 10月31日-11月2日,郑州.

lihuijing@htu.edu.cn

Hadronic decays

(Semi-) leptonic decays

BESII@BEPCII

Beijing Electron Positron Collider(BEPCII)

Double-ring, symmetry, multi-bunch e⁺ e⁻ collider E_{cm} = 1.84 to 4.95 GeV Energy spread: $\Delta E \approx 5 \times 10^{-4}$ Peak luminosity in continuously operation @ E_{cm} = 3.77 GeV: 1.1 × 10³³ cm⁻²s⁻¹

Beijing Spectrometer(BESIII)

Why charm meson physics?

✓ Probe non-perturbative QCD

- \checkmark Help to understand hadron spectroscopy
- ✓ Probe the weak decay mechanisms in DCS decays

Amplitude analysis

 \rightarrow Get the information of $D \rightarrow VP, PP \dots$,

where V and P denote vector and

pseudoscalar, respectively.

Absolute BFs measurement

 \rightarrow Test theoretical calculations of these BFs and benefit the understanding of the quark SU(3) flavor symmetry and *CP* violation.

Why charm meson physics?

Ideal bridge to access the strong and weak effects between quarks

 \checkmark $|V_{cs}|$ and $|V_{cd}| \rightarrow$ Test CKM matrix unitarity

✓ Decay Constant $f_{D_{(s)}^+}$ and form factor f_+ → Calibrate LQCD

✓ Branching fraction (BF) ratio \rightarrow Test lepton flavor universality

- 20 fb⁻¹ @ $\sqrt{s} = 3.773$ GeV $e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$ 2.93 fb⁻¹ in 2010-2011
- 7.33 fb⁻¹ @ \sqrt{s} = 4.128 4.226 GeV $e^+e^- \rightarrow D_s^{*+}D_s^-$
- 10.6 fb⁻¹ @ \sqrt{s} = 4.237 4.699 GeV $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$

Analysis technique

Charge conjugated processes are implied

The signal branching fraction: $B_{sig} = \frac{N_{DT}^{signal}}{N_{D}^{ST} \times \overline{\epsilon}_{sig}}$

Double tag (DT): in the recoil ST $D_{(s)}^{-}$, analyze the signal $D_{(s)}^{+}$ $MM^{2} = E_{miss}^{2} - |\vec{p}_{miss}|^{2}$ $E_{miss} = E_{cm} - \sqrt{\left|\vec{p}_{D_{(s)}}\right|^{2} + M_{D_{(s)}}^{2}} - E_{X}$ $\vec{p}_{miss} = -\vec{p}_{D_{(s)}}^{-} - \vec{p}_{X}$ $U_{miss} = E_{miss} - |\vec{p}_{miss}|$ or other variables

- Closed source / hand coded
 - Tensor formulism: most of charm decays. $[D^+ \rightarrow K_S^0 \pi^+ \pi^0 \pi^0: \underline{\text{JHEP09}, 077(2023)}]$
 - Helicity formulism: $[e^+e^- \rightarrow \omega \pi^+\pi^-: \underline{\text{JHEP08}, 159(2023)}]$
- <u>GPUPWA</u>:
 - First PWA tool based on GPU
 - Used in many PWA of light mesons: $[J/\psi \rightarrow \gamma\eta\eta: \frac{\text{PRD87, 092009(2013)}}{J/\psi}; J/\psi \rightarrow \gamma\eta\eta': \frac{\text{PRD106, 072012(2022)}}{J/\psi}]$
- <u>FDC-PWA</u>:
 - Feynman Diagram Calculation
 - Used in some baryon final states $[\psi' \rightarrow p\bar{p}\eta: \underline{PRD88}, \underline{032010(2013)}; e^+e^- \rightarrow pK^-\overline{\Lambda}: \underline{PRL131}, \underline{151901(2023)}]$

• <u>TF-PWA</u>:

- TensorFlow-based, configurable, GPU acceleration, AD
- as an example: $[\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0: \underline{\text{JHEP12, 033(2022)}}]$
- Other tools:
 - <u>Amptools</u>: $[\chi_{c1} \rightarrow \eta \pi^+ \pi^-: \underline{\text{PRD95,032002(2017)}}]$
 - <u>PAWIAN</u>: $[e^+e^- \rightarrow \phi K^+K^-: PRD108, 032004 (2023)]$
 - $\underline{\text{ComPWA}}: [D^0 \to K_S K^+ K^-: \underline{\text{arXiv}:2006.02800}]$

Hadronic decays

- $e^+e^- \rightarrow D_s^{*+}D_s^-$ with 7.33 fb⁻¹ @ $\sqrt{s} = 4.128 4.226$ GeV
- $D_s^+ \rightarrow f_0(980) \ \rho^+$: mainly a *W*-external emission channel.
- $D_s^+ \rightarrow \omega \pi^+$: solely via the *W*-annihilation process.

Component	Phase (rad)	FF (%)	BF (10^{-3})
$f_0(1370) ho^+$	0.0(fixed)	$24.9 \pm 3.8 \pm 2.1$	$5.08 \pm 0.80 \pm 0.43$
$f_0(980) ho^+$	$3.99 \pm 0.13 \pm 0.07$	$12.6 \pm 2.1 \pm 1.0$	$2.57 \pm 0.44 \pm 0.20$
$f_2(1270)\rho^+$	$1.11 \pm 0.10 \pm 0.10$	$9.5\pm1.7\pm0.6$	$1.94 \pm 0.36 \pm 0.12$
$(ho^+ ho^0)_S$	$1.10 \pm 0.18 \pm 0.10$	$3.5\pm1.2\pm0.6$	$0.71 \pm 0.25 \pm 0.12$
$(ho(1450)^+ ho^0)_S$	$0.43 \pm 0.18 \pm 0.17$	$4.6\pm1.3\pm0.8$	$0.94 \pm 0.27 \pm 0.16$
$(\rho^+ \rho (1450)^0)_P$	$4.58 \pm 0.16 \pm 0.09$	$8.6\pm1.3\pm0.4$	$1.75 \pm 0.27 \pm 0.08$
$\phi((\rho\pi) \to \pi^+\pi^-\pi^0)\pi^+$	$2.90 \pm 0.15 \pm 0.18$	$24.9\pm1.2\pm0.4$	$5.08 \pm 0.32 \pm 0.10$
$\omega((ho\pi) ightarrow \pi^+\pi^-\pi^0)\pi^+$	$3.22 \pm 0.21 \pm 0.09$	$6.9\pm0.8\pm0.3$	$1.41 \pm 0.17 \pm 0.06$
$a_1^+(ho^0\pi^+)_S\pi^0$	$3.78 \pm 0.16 \pm 0.12$	$12.5\pm1.6\pm1.0$	$2.55 \pm 0.34 \pm 0.20$
$a_1^0((\rho\pi)_S \to \pi^+\pi^-\pi^0)\pi^+$	$4.82 \pm 0.15 \pm 0.12$	$6.3\pm1.9\pm1.2$	$1.29 \pm 0.39 \pm 0.24$
$\pi (1300)^0 ((\rho \pi)_P \to \pi^+ \pi^- \pi^0) \pi^+$	$2.22 \pm 0.14 \pm 0.08$	$11.7 \pm 2.3 \pm 2.2$	$2.39 \pm 0.48 \pm 0.45$

First time

 $\frac{B_{\phi \to \pi^+ \pi^- \pi^0}}{B_{\phi \to K^+ K^-}} = (0.230 \pm 0.014_{\text{stat}} \pm 0.010_{\text{syst}})\%$

> 4σ deviation from PDG value

Events / (15 MeV/c²) 🕂 Data 80 (a) Background 60 20 $\overline{M(\pi^{+}\pi^{+})} ({\rm GeV}/c^{2})^{1}$ $M^{0.5}(\pi^{-}\pi^{0})$ (GeV/ c^{2}) 1.5 Events / (15 MeV/c²) **980**) 100 $\overline{M(\pi^+\pi^-)} ({\rm GeV}/c^2)^{1}$ 1.5 Events / (15 MeV/c² 80 (e) 20 $M(\pi^{+}\pi^{+}\pi^{-})$ (GeV/c²) 0.5 $M(\pi^+\pi^+\pi^0)$ (GeV/ c^2) 0.5 Events / (15 MeV/c² 200 (g) 150 100 0.5 10 $M(\pi^{+}\pi^{-}\pi^{0})$ (GeV/ c^{2})

arXiv:2406.17452[hep-ex]

 $D^+ \rightarrow K^0_s \pi^+ \eta$

• $e^+e^- \to \psi(3770) \to D\overline{D}$ with 7.9 fb⁻¹@3.773 GeV

- arXiv:2404.09219 [hep-ex]
- The measurement of the branching fractions for $D \to \pi a_0(980)$ and the corresponding relative ratio can constrain the size and phase of the amplitude of the *W*-annihilation (*W*-exchange) process.

$$B_{D^+ \to \pi^+ \pi^0 \eta} = (2.18 \pm 0.12_{\text{stat}} \pm 0.05_{\text{syst}}) \times 10^{-3}$$

Polarization of $D^0 \rightarrow \omega \phi$

- The polarization in the $D^0 \rightarrow VV$ decay is sensitive to the V-A structure of electroweak interactions in the SM, spin correlations, and the final state interactions, among other effects.
- 2-D unbinned maximum likelihood fit
- $N_{sig} = 195.9 \pm 29.1$

 $\boldsymbol{\omega}$ and $\boldsymbol{\phi}$ are transversely polarized

(Semi-) leptonic decays

$$D^+ \to \ell^+ \nu_\ell \ (\ell = \mu, \tau)$$

• $\mu^+ \nu_{\mu}$, muon counter

 $\tau^+ \nu_{ au}$ 2.93 fb⁻¹@3.773 GeV

PRL123(2019)211802

 μ -like: $E_{\rm EMC} \leq 0.3 \, {\rm GeV}$

 π -like: $E_{\rm EMC} > 0.3 \, {\rm GeV}$

 $B(D^+ \to \mu^+ \nu_{\mu}) = (3.981 \pm 0.079 \pm 0.040) \times 10^{-4}$

 $f_{D^+}|V_{cd}|$ The most precise to date = $(47.53 \pm 0.48_{\text{stat}} \pm 0.24_{\text{syst}} \pm 0.12_{\text{input}})$ MeV

$$B(D^+ \to \tau^+ \nu_{\tau}) = (1.20 \pm 0.24 \pm 0.12) \times 10^{-3}$$

$$R_{\tau/\mu} = \frac{\overline{\Gamma}(D^+ \to \tau^+ \nu_{\tau})}{\overline{\Gamma}(D^+ \to \mu^+ \nu_{\mu})} = 3.02 \pm 0.68$$

SM prediction: 2.67 ± 0.01 No LFU violation 16

$D_{(s)}^{*+} \to \ell^+ \nu_\ell \ (\ell = e, \mu)$ Charmed vector meson

• $D_s^{*+} \to e^+ \nu_e$ @4.128 - 4.226 GeV

•
$$D^{*+} \to \ell^+ \nu_\ell \ (\ell = e, \mu)$$
 @4.178 - 4.226 GeV

 $B(D_s^{*+} \to e^+ \nu_e) = (2.1^{+1.2}_{-0.9} \pm 0.2) \times 10^{-5}$

 $f_{D_s^{*+}}|V_{cs}| = (208^{+59}_{-45} \pm 43) \text{ MeV}$

 $f_{D_s^{*+}} = (214_{-46}^{+61} \pm 44)$ MeV For the first time

No significant signal. Profile likelihood method.

$$B(D^{*+} \to e^+ \nu_e) < 1.1 \times 10^{-5} @ 90\%$$
 C. L.

$$B(D^{*+} \rightarrow \mu^+ \nu_{\mu}) < 4.3 \times 10^{-6} @ 90\%$$
 C. L.

Comparison of the $D_{(s)}^+$ decay constant

• Input $|V_{cd}| = 0.22487 \pm 0.00068$ from CKM global fit

FLAG21(2+1+1	EPJC82(2022)869	212.1±0.7	•
FMILC(2+1+1)	PRD98(2018)074512	212.7±0.6	•
FMILC(2+1+1)	PRD90(2014)074509	212.6±0.4	
ETM(2+1+1)	PRD91(2015)054507	207.4±3.8 ⊨•	4
ETM(2+1+1)	LATTICE2013(2014)314	202.0±8	
FMILC(2+1+1)	LATTICE2013(2014)405	212.3±0.3±1.0	
FMILC(2+1+1)	LAT2012(2012)159	209.2±3.0±3.6 ++	H
HFLAV21	PRD107(2023)052008	205.1±4.4 ⊢⊷	
CLEO,μν	PRD78(2008)052003	207.2±8.7±2.5 ⊷	-1
BESIII ,μν	PRD89(2014)051104,2.9fb ⁻¹	204.2±5.3±1.7 ⊷	
BESIII, tv	PRL123(2019)211802,2.9fb	⁻¹ 224.7±22.5±11.3+-	- H
BESIII,μν	arXiv:2410.07626,20.3fb ⁻¹	211.5±2.3±1.4	- σ=1.2%
0	100	200)
	f_{D^+} (Me	eV)	

• Input $|V_{cs}| = 0.97320 \pm 0.00011$ MeV from CKM global fit

ETM(2+1+1)	PRD91(2015)054507	247.2±4.1 ►	
FMILC(2+1+1)	PRD98(2018)074512	249.9±0.4	
FLAG21(2+1+1))EPJC82(2022)869	249.9±0.5	
HFLAV21	$\begin{array}{l} {\sf PRD107(2023)052008} \\ {\sf PRD79(2009)052002, \tau_e \nu} \\ {\sf PRD80(2009)112004, \tau_p \nu} \end{array}$	252.2±2.5	ei
CLEO		251.8±11.2±5.3 ⊫	∎H
CLEO		257.0±13.3±5.0 ⊨	
BaBar	$\begin{array}{l} PRD82(2010)091103, \tau_{e,\muv} \\ JHEP09(2013)139, \tau_{e,\mu,\piv} \\ PRD104(2021)052009, \tau_{\piv} \\ PRD104(2021)032001, \tau_{pv} \\ PRL127(2021)171801, \tau_{ev} \\ PRD108(2023)092014, \tau_{\piv} \\ JHEP09(2023)124, \tau_{\muv} \\ PRD110,052002, \tauv, D_s^{+D_s^{-}} \end{array}$	244.6±8.6±12.0++++	+-1
Belle		261.1±4.8±7.2	+ + + +1
BESIII 6.32 fb ⁻¹		249.7±6.0±4.2 H++	#
BESIII 6.32 fb ⁻¹		251.6±5.9±4.9 H++	•-#
BESIII 6.32 fb ⁻¹		251.1±2.4±3.0 H+	•-#
BESIII 7.33 fb ⁻¹		255.0±4.0±3.1 H	•-#
BESIII 7.33 fb ⁻¹		253.4±4.0±3.7 H+	++
BESIII 10.6 fb ⁻¹		259.6±3.7±4.6	+++
BESIII 0.482 fb ⁻	¹ PRD94(2016)072004, μν	245.5±17.8±5. F	
CLEO	PRD79(2009)052001, μν	256.7±10.2±4.0 F	
BaBar	PRD82(2010)091103, μν	264.9±8.4±7.6	
Belle	JHEP09(2013)139, μν	248.8±6.6±4.8 F	
BESIII 3.19 fb ⁻¹	PRL122(2019)071802, μν	253.0±3.7±3.6 F	
BESIII 6.32 fb ⁻¹	PRD104(2021)052009, μν	249.8±3.0±3.9 F	
BESIII 7.33 fb ⁻¹	PRD108(2023)112001, μν	248.4±2.5±2.2 F	
BESIII 10.6 fb ⁻¹	PRD110,052002, μν, D _s ⁺ D _s	253.2±6.1±3.7 F	
BESIII Combine BESIII Combine	$\frac{\partial \tau v}{\partial t} + \mu v$	253.93±1.54±1.82 252.08±1.34±1.82	σ=0.9%
0	100	200	
$f_{D_s^+}$ (MeV)			

19

Comparison of form factor $D \to K(\pi)\ell^+\nu_\ell$

20

Experimental precision is comparable to the latest QCD result.

Comparison of $|V_{cd(s)}|$

Rare decays

$$D_s^+ \to h^+(h^0)e^+e^-$$

- $e^+e^- \rightarrow D_s^{*+}D_s^-$ with 7.33 fb⁻¹ @ $\sqrt{s} = 4.128 4.226$ GeV
- In the SM, the $D_s^+ \to h^+(h^0)e^+e^-$ involve both shortdistance (SD) and long-distance (LD) contribution. SD: FCNC, suppressed by GIM mechanism. LD: through a radiated photon or an intermediate meson
- decaying to dileptons, can enhance the BFs to 10^{-6} .

$$B(D_s^+ \to \pi^+ \phi(\to e^+ e^-)) = (1.17^{+0.23}_{-0.21} \pm 0.03_{\text{syst}}) \times 10^{-57.8\sigma}$$

$$B(D_s^+ \to \rho^+ \phi(\to e^+ e^-)) = (2.44^{+0.67}_{-0.62} \pm 0.16_{\text{syst}}) \times 10^{-54.46}$$

$$B(D_s^+ \to \pi^+ \pi^0 e^+ e^-) < 7.0 \times 10^{-5} @ 90\%$$
 C. L.

 $B(D_s^+ \to K^+ \pi^0 e^+ e^-) < 7.1 \times 10^{-5} @ 90\%$ C. L.

 signal $D_s^+ \rightarrow \rho^+ \phi (\rightarrow e^+ e^-)$ $37.8^{+10.3}_{-9.6}$ γ²/d.o.f: 16.2/33 1.95 M(D⁺) (GeV/c²) 1.9 Out of ϕ mass window to reject potential LD

🕂 data ---- background

 $D_s^+ \rightarrow \pi^+ \phi (\rightarrow e^+ e^-)$

χ²/d.o.f: 9.5/20

PRL133(2024)121801

First upper limits on the BFs

effect.

 $B(D_s^+ \to K_s^0 \pi^+ e^+ e^-) < 8.1 \times 10^{-5} @ 90\%$ C. L.

$e^+e^- \rightarrow D_s^{*+}D_s^-$ with 7.33 fb⁻¹ @ $\sqrt{s} = 4.128 - 4.226$ GeV

- In the rare radiative decays of charmed mesons, the short distance interaction of the $c \rightarrow u\gamma$ process make a negligible contribution.
- The long distance, non-perturbative processes dominate these decays, potentially enhancing BFs up to 10⁻³.
- To test the QCD-based calculation of the long-distance dynamics.

 $B(D_s^+ \to \gamma \rho(770)^+) = (2.2 \pm 0.9_{stat} \pm 0.2_{syst}) \times 10^{-4}$

3. $\mathbf{8}\sigma$ smaller than the theoretical calculation of weak annihilation.

 $B(D_s^+ \to \gamma \rho(770)^+) < 6.1 \times 10^{-4} @90\%$ C. L.

- Based on 20 fb⁻¹ $\psi(3770)$ data and 7.33 fb⁻¹ @ $\sqrt{s} = 4.128 4.226$ GeV data, BESIII have reported many important results on the charmed mesons: the amplitude analysis for the hadronic decays, dynamic studies for the semi-leptonic decays, precision measurements on the pure leptonic decays, the rare decays, DCS decays, and so on.
- More precise measurements for about $D^{0(+)}$ decays are coming soon based on the 20 fb⁻¹ $\psi(3770)$ data.

Backup

Observation of $a_0(1817)$ in D_s^+ decay

Pure leptonic $D^+_{(s)}$ decays

> Axial current (nonperturbative)

$$<0|\overline{s}\,\gamma_{\mu}\,\gamma_{5}\,c\,|D_{s}^{+}>=i\,p_{\mu}\,f_{D_{(s}^{+}})$$

 $(f_{D_{(s)}^+}: D_{(s)}^+ \text{ decay constant})$

- V_{cd(s)}: CKM matrix element, fundamental SM parameter, measured from experiments.
- > In the SM, ignoring radiative corrections, the decay width:

$$\Gamma = \frac{G_F^2}{8\pi} f_{D_{(s)}^+}^2 \left| V_{cd(s)} \right|^2 m_\ell^2 m_{D_{(s)}^+} \left(1 - \frac{m_\ell^2}{m_{D_{(s)}^+}^2} \right)^2 \quad (\ell = e, \mu, \tau)$$

□ The decay constants $f_{D_{(s)}^+}$: help to calibrate the LQCD calculations; □ The CKM matrix elements $|V_{cd(s)}|$: help to test the unitarity of CKM.

On the other side, although the $f_0(1710)$ is well established in the PDG [4], its quark structure is still unclear. The two most possible candidates are a glueball or a vector-vector, i.e., $K^*\bar{K}^*$, molecule [1,5,6]. If the $f_0(1710)$ is a $K^*\bar{K}^*$ molecule, there should be an isovector partner $a_0(1710)$, just as the nearly degenerate $f_0(980)$ and $a_0(980)$ for the case of $K\bar{K}$ molecules. If it is a glueball, a second state as pure glueballs must be isoscalar. Therefore, whether $a_0(1710)$ exists is crucial to understand the picture of $f_0(1710)$.

Both $a_0(980)$ and $f_0(980)$ decays to K^+K^- . Impossible to sepatate them here

Isospin configurations: $a_0(980) \ I=1 \rightarrow (|K^+K^->-|K^0\overline{K^0}>)$ $f_0(980) \ I=0 \rightarrow (|K^+K^->+|K^0\overline{K^0}>)$ The comparison of K^+K^- and $K_S^0K_S^0$ spectrum will reveal more information!

Why charm meson physics?

Quantum correlation $D^0 \overline{D^0}$: $|\psi(3770)\rangle \rightarrow \frac{1}{\sqrt{2}}(|D^0\rangle|\overline{D}^0\rangle - |\overline{D}^0\rangle|D^0\rangle)$

Provide direct access to the $D^0 - \overline{D^0}$ strong-phase difference

 \checkmark Important input in CKM γ measurement

✓ Precise test of perturbative QCD calculations in charm decays, mixing and CPV

Different methods depending on the final states of D decays

- GLW : D decaying to CP eigenstates
- ADS : *D* decaying to CF/DCS eigenstates
- **GGSZ** : *D* decaying to self-conjugate eigenstates

Flavour	$K^{\pm}\pi^{\mp}\pi^{\mp}\pi^{-}, K^{\pm}\pi^{\mp}\pi^{0}, K^{\pm}\pi^{\mp}, \dots$
CP-even	$K^+K^-, \pi^+\pi^-, \pi^0\pi^0, K^0_S\pi^0\pi^0, K^0_L\pi^0, K^0_L\omega, \pi^+\pi^-\pi^0^\dagger$
$CP ext{-odd}$	$K^0_S \pi^0, \ K^0_S \eta, \ K^0_S \omega, \ K^0_S \eta', \ K^0_S \phi, \ K^0_L \pi^0 \pi^0$
Self-conjugate	$\tilde{K}_{S}^{0}\pi^{+}\pi^{-}, K_{S}^{0}K^{+}K^{-}, \dots$

 $D_s^+ \rightarrow \ell^+ \nu_\ell \ (\ell = \mu, \tau)$

RESII

• $\tau^+ \rightarrow e^+ \nu_e \bar{\nu}_{\tau}$

200

150

200

100

0

0.5

1

1.5 2

Separated fit 4940

0.5

0

@4.178 - 4.226 GeV PRL127(2021)171801 K_s⁰K $\mathbf{K}^{\dagger}\mathbf{K}^{\dagger}\pi^{}$ $\mathbf{K}^{\dagger}\mathbf{K}^{-}\pi^{-}\pi^{0}$ 200 100 $K_S^0 K^+ \pi^- \pi^-$ 100 $K^0_s K^- \pi^+ \pi^-$ 150 $\pi^+\pi^-\pi^-$ 400 E Events / (0.1 GeV)

1 1.5

E^{tot}_{extra} (GeV)

 $D \rightarrow K_s^0 \pi BG$

---- Signal + all BGs

 $D_s^+ \rightarrow \tau^+ (\rightarrow e^+ \nu_a \overline{\nu}_r) \nu_r$ signal

• $\tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau$

@4.128 - 4.226 GeV

JHEP09(2023)124

• $\tau^+ \rightarrow \pi^+ \pi^0 \bar{\nu}_{\tau}$

 $\tau^+ \to \pi^+ \bar{\nu}_{\tau}$

@4.178 - 4.226 GeV PRD104(2021)032001

 $E_{\text{extra}}^{\text{tot}}$: The total energy of the extra showers excluding those used in the tag side and $\gamma(\pi^0)$ from D_s^{*+} .

 $(10.82 \pm 0.05)\%$

 $e^+e^- \rightarrow D_s^{*+}D_s^{*-}@4.237 - 4.699 \text{ GeV}$

 $D_s^+ \to \tau^+ \nu_{\tau}$

$E_{\rm cm}~({ m GeV})$.	$\mathcal{L}~(\mathrm{pb}^{-1})$	$M_{\rm BC}~({\rm GeV}/c^2)$	$N_{ m ST}$
4.237	530.3	(2.107, 2.117)	$6477{\pm}163$
4.246	593.9	(2.107, 2.118)	$11944{\pm}246$
4.260	828.4	(2.107, 2.118)	$21550{\pm}320$
4.270	531.1	(2.107, 2.118)	$13319{\pm}244$
4.280	175.7	(2.106, 2.119)	$4063{\pm}152$
4.290	502.4	(2.106, 2.119)	$9316{\pm}221$
4.310 - 4.315	546.3	(2.106, 2.119)	$5758{\pm}228$
4.400	507.8	(2.106, 2.119)	1855 ± 87
4.420	1090.7	(2.106, 2.121)	$14890 {\pm} 443$
4.440	569.9	(2.106, 2.121)	$9699{\pm}443$
4.470 - 4.699	4768.3	(2.104, 2.123)	$25156{\pm}762$
Sum			124027 ± 1121

 $N_{\rm DT} = 2845 \pm 83$

$$B_{D_s^+ \to \tau^+ \nu_{\tau}} = (5.60 \pm 0.16 \pm 0.20)\%$$

Simultaneous fit with the same BF

PRD110(2024)052002

37

0.8