# Core-collapse Supernova Neutrino Detection at JUNO

Yibing Zhang Institute of High Energy Physics Nov 2th, 2024

第一届基础物理研讨会暨基础物理平台年会

# Outline

- Introduction to JUNO experiment
- Core-Collapse SuperNova (CCSN) neutrino
- CCSN monitor system
- Energy spectra reconstruction of CCSN neutrinos
- Summary

# **JUNO experiment**





#### JUNO detector:

- 20 kton LS
- 30 kton water
- 3% energy resolution
  @1MeV
- ~17612 20-inch PMTs
- ~25600 3-inch PMTs

#### Multipurpose:

- Neutrino mass ordering
- Precision measurement of oscillation parameters
- Supernova neutrino
- Solar neutrino, atmospheric neutrinos, DSNB, geoneutrino, nucleon decay...

JUNO Physics and Detector, PPNP 123 (2022), 103927

# **Neutrinos from CCSN**



#### Crab nebula (SN remnant)





Only observed SN neutrinos ~25 neutrinos in SN 1987 A

- ~ 1-3 supernovae in our galaxy
  per century.
- 99% of the energy goes to neutrinos.
- Explosion time scale ~ 10 s
- JUNO with Low energy threshold, high energy resolution and large target mass -> provides large statistics for observing the next SN

**SN 1987A** 

## **Neutrinos from CCSN**



- Luminosity and energy distributions during the three SN phases: burst, accretion and cooling. Depend on the SN model assumptions.
- Mean Energy is around 15 MeV. Energy range: 0-100 MeV.
- 10 s with most of events in the 1<sup>st</sup> second.

## **Interactions of CCSN in JUNO**



- Details of the SN neutrino spectra are still unknown. JUNO can reconstruct the energy spectra by a high-statistics observation of supernova neutrinos of different flavours.
- This will be helpful in understanding of SN neutrino production, flavour conversion and explosion mechanism.

## **Neutrinos as CCSN early warning**



- Messengers of core-collapse supernova
  - Electromagnetic signals
  - Gravitational waves
  - Neutrinos
- Neutrino: early warning of CCSN
  - pre-supernova (pre-SN) neutrino:
    - Days before core-collapse
    - $\langle E \rangle < 2 MeV$
  - Supernova (SN) neutrino:
    - ~ 0(10 s)
    - $\langle E \rangle \sim O(10 MeV)$

Ref: K.~Nakamura et al, Mon.Not.Roy.Astron.Soc. 461 (2016) 3, 3296-3313

# **CCSN monitor system**



Monitoring systems to give CCSN alert:

- Prompt monitor
  - give fast alert for SN, runs on CTU.
  - Number of PMTs hit & WP trigger info.
- On dedicated Multi-messenger (MM) trigger system
- Online monitor
  - Runs on DAQ.
  - Use IBD candidates selected
    from the fast event
    reconstruction

# **Prompt monitor**



Number of PMT hits



- Event selection:
  - Select SN signals based on N<sub>hit</sub>
  - Muon veto based on
    WP trigger to suppress
    background

•  $N_{hit}$  definition: number of PMTs being fired within some time interval (~1  $\mu s$ )

#### **Prompt monitor**



- Select SN candidates
  - No reconstruction info
  - $N_{hit} \in (N_{low}, N_{high})$
  - Energy at N<sub>low</sub>~8MeV
  - Energy at  $N_{high} \sim 40 MeV$

- Dominant background
  - Cosmogenic isotopes
  - Rate: ~209/day

# **Performance**—prompt monitor



Alert distance: 230~400 kpc

Alert time @10 kpc: **10~30 ms** 

# **Online monitor**



- Use global trigger events on DAQ.
- Perform event reconstruction to extract energy, vertex, ...
- Select IBD events
  - Different criteria for SN and pre-SN
  - Monitor them separately
- Fast characterization after CCSN alert:
  - Pointing, light curve, etc.

## **Online monitor**



#### **Online monitor**

- With reconstruction info, select IBD-like candidates
- SN IBD:
  - Background: reactor neutrino, Li9/He8, ...
  - Background rate: 127/day
- Pre-SN IBD:
  - Background: reactor neutrino, ...
  - Background rate: 21/day

### **Online monitor—Alert performance**



- 100% alert efficiency for SMC.
- Alert Distance (where the alert efficiency reaches 50%) reaches: 230~350 kpc
- Alert Time: 15~30 ms

- 100% alert efficiency for Betelgeuse .
- Alert Distance reaches: 0.6~1.6 kpc
- Alert Time: 3~120 hours before SN explosion

#### **Online monitor—Pointing Performance**



- Guide the telescopes to catch the early light of the CCSN by focusing on the targeted sky area.
- For a Betelgeuse-like star, the pointing ability is about 56° (81°) in the NO (IO) case, 15  $M_{\odot}$  Patton model.
- For a typical CCSN at 10 kpc, the pointing ability is about  $26^{\circ}$  ( $23^{\circ}$ ) in the NO (IO) case, 13  $M_{\odot}$  Nakazato model.

# **Detector response**

- IBD channel:
  - Diagonal matrix
- pES channel:
  - $E_{rec}$  is largely suppressed
  - Cut off due to energy threshold
- eES channel:
  - Lower Triangular Matrix



The response matrix combining three interaction channels

Ref: Li, Hui-Ling, et al. Physical Review D 99.12 (2019): 123009.

#### **Reconstruction of the CCSN Spectra**

The relationship between detector response, neutrino flux and observed spectra can be described by linear equation AF = S

• Unfolding algorithm: Singular Value Decomposition (SVD), Bayesian.

effect



- Allow reconstruction of the energy spectra of  $v_e$ ,  $\bar{v}_e$  and  $v_x$  through the unfolding approach.
- Used for further physics and astrophysics studies
- Full chain Monte Carlo reconstruction results will come soon.

# **Summary**

- JUNO advantage in CCSN detection
  - Large detector and excellent energy resolution
  - Multi channel detection, especially the pES channel
- CCSN monitor
  - Alert method
  - Alert performance
  - CCSN pointing
- Energy spectra reconstruction:
  - Reconstruct the full flavor neutrino energy spectra
  - CCSN burst mechanism
  - Neutrino flavor conversion