

A new de-excitation tool: GEMINI++4v

Yujie Niu^{1,2} (牛玉杰)

November 2nd, 2024

第一届基础物理研讨会暨基础物理平台年会

¹Institute of High Energy Physics, Beijing, China

² University of Chinese Academy of Sciences, Beijing, China

E-mail: niuyj@ihep.ac.cn

Outline

- What is / why de-excitation?
- De-excitation generators status and experiments
- GEMINI++ / Performance of GEMINI++
- GEMINI++4 ν : Modified version of GEMINI++ for neutrino exp.
- Summary

GEMINI++/4v: Y.J. Niu, W.L. Guo, M. He, J. Su, arXiv: 2408.14955

What is / why de-excitation?

Nucleus de-excitation takes a significant part in neutrino experiment

- Emitting particles, especially neutrons from de-excitation contribute to signal-background ratio like nucleon decay searching, DSNB, atmospheric ν and so on
- But de-excitation is not considered well in widely-used ν generator such as GENIE and NuWro. De-excitation in GEANT4 is not reasonable compared to experimental result of light nucleus ₃

De-excitation generators

How about the generator of de-excitation? Good performance?

Models used to calculate de-excitation probability of emitting particles :

- Weisskopf-Ewing (WE): Angular momentum is not considered
- Hauser-Feshbach (HF): Angular momentum is considered

Generator	Comments	Model
TALYS	$p \rightarrow \overline{v} K^+$, DSNB, strange axial coupling constant	HF
ABLA	Energy resolution of accelerator neutrinos	WE
SMOKER	Neutron invisible decays	WE
CASCADE	Experimental data of ¹¹ B* and ¹⁵ N* de-excitations	HF
GEMINI++	Not used in neutrino experiments!	HF / WE

These generators must be validated with **experimental data!**

De-excitation experiments

(Yosoi et al.) Exp.1

- Quasi-free (p, 2p) reaction, targets are carbon (${}^{12}C \rightarrow {}^{11}B^*$) and ice (${}^{16}O \rightarrow {}^{15}N^*$)
- JUNO (Liquid-scintillator \rightarrow ¹²C), Super-Kamiokando / Hyper-Kamiokando (Water \rightarrow ¹⁶O)
- **Different threshold for particles** from de-excitation
- Results shown above, darker color for '2-body decay' and lighter for '3-body decay' In a decay

De-excitation experiments

- ¹²C(p, 2p) ¹¹B*
- Good energy resolution, no threshold for particle identification, even residue
- Only three two-body decay channels of ¹¹B were analyzed: ¹⁰B + n, ⁹Be + d and ⁷Li + α

Generator GEMINI++

GENIMI++: a Monte Carlo code, is an improved C++ version based on **GEMINI**

LISE ++	EXOTIC BEAM PRODUCTION WITH FRAGMENT SEPARATORS	Code	GEMINI++
LISE** Home Utilities LISE for Excel PACE 4 ETACHA GEMINI++ MOTER	• GEMINI++ : GUI evaporation code (Win, macOS, Linux);	Input	Nucleus, Excited energy, Spin
	01/07/22 : A serious bug was discovered in version 2.*, which happened with the AME2016 mass-table implementation. Please use version 3.0 (LISE package version 16.1.14). The GEMINI-GUI code has been upgraded to the original GENIMI program latest version	Formulism of width Γ_i	HF or WE
		Output	Complete de-excitation cascade information
R. J. Charity, PRC 82 (2010), 014610; PRC 82 (2010) 044610 https://lise.frib.msu.edu/gemini.html		Convenience	Event-by-event, Convenience

- GEMINI++ is designed for heavy nucleus process, like fission, fusion and so on
- GEMINI++ had been widely used in nuclear physics area, getting cheerful achievements!

Generator GEMINI++

Performance of GEMINI++

- Bad agreement with Exp.1
- Good prediction to Exp.2, but not enough
- GEMINI++ is designed for heavy nucleus, for light nucleus, modifications are required

Generator GEMINI++4v

GENIMI++4v is developed for neutrino experiments to handle de-excitations of residual nuclei associated with v interaction and nucleon decay based on GEMINI++ code

Open source:

https://github.com/NiuYJ1999/GEMINI_4nu

Three modifications are carried:

- Removing Back-shifted term
- Add discrete levels
- Adjust suppression factor

Removing Back-shifted term

5000 events for every interval of 0.1 MeV are simulated (0 MeV \leq Ex \leq 50 MeV) to determine the critical energy E_c of particle-emitting for 2-body decay

	Separation energ	y critic	al energy
Modes	Theory	GEMINI++	$\text{GEMINI}{+}{+}4\nu$
$n + {}^{10}B$	11.5	12.2	12.2
$p + {}^{10}\text{Be}$	11.2	17.1	12.2
$d + {}^{9}\text{Be}$	15.8	<u>ce</u> .16.6	16.6
$t + {}^{8}\text{Be}$	11.2 stere	20.5	12.1
$^{3}\mathrm{He} + ^{8}\mathrm{Li}$	27.20	28.6	28.6
$\alpha + {}^{7}\mathrm{Li}$	8.7	10.1	10.1
			Improved!

$$\rho(U) \propto \frac{\exp\left[2\sqrt{a(U - E_{\uparrow})}\right]}{a^{\frac{1}{4}}(U - E_{\uparrow})^{5/4}}$$

Modification of E_1 equals to tune excited energy:

- E_c can be changed due to this modification
- Winner in competition can be changed

• No available experimental E_1 for ${}^{11}B^*$ and ${}^{15}N^*$ and their daughter nucleus can be used (only E_1 of nucleus mass > ${}^{19}F$ can be found)

- $\rho(U)_{E_1 \neq 0}$ and $\rho(U)_{E_1=0}$ are used to do χ^2 calculation to fit existing discrete levels
- $\rho(U)_{E_1=0}$ gives a better result, this modification is reasonable

Add discrete levels

- **GEMINI++ does not consider discrete levels**
- Decayed nucleus always has low excited energy at the last decay
- Modifying the de-excitation result by adding the clearly known discrete levels in NNDC

Kinematic energy of some particles can be increased to cross the detection threshold in Exp.1

Impact of modification 1 and 2

- Besides more reasonable E_c can be given, removing E_1 obviously provides a better result
- Adding discrete levels provides higher "2-body decay" and "3-body decay" ratios for almost all particles

Modification of GEMINI++

Default *F_s* settings originate from the de-excitations of heavy nuclei

Settings	n	p	d	t	³ He	α
Default	1.0	1.0	0.5	0.5	0.5	1.0
$F_s = 1.0$	1.0	1.0	1.0	1.0	1.0	1.0
$F_s = 0.5$	1.0	0.5	0.5	0.5	0.5	0.5

Are default settings reasonable for light nuclei?

Don't use suppression factor to adjust results, namely $F_s = 1.0$ for all particles

 $F_s = 0.5$ for all charged particles. Compared with default, only two changes

Modification of GEMINI++

GEMINI++4v with $F_s = 1.0$:

Good agreement with ¹¹B* data
Can't account for ¹⁵N* data well

GEMINI++4v with $F_s = 0.5$ (Recommend!)

- Better agreement with ¹¹B* data
- \succ Partially account for ¹⁵N^{*} data, include *n*

This is the first time that a code can basically reproduce both ${}^{11}B^*$ and ${}^{15}N^*$ data

Accidental coincidence check

Fixed energy ranges of $16 \le Ex \le 35$ MeV for ${}^{11}B^*$ and $20 \le Ex \le 40$ MeV for ${}^{15}N^*$

• Compare the ratio of each type of charged particle emission among four types for every energy bin

- $F_s = 1.0$ and $F_s = 0.5$ differences are relatively small
- Predicted shapes are basically consistent with data except α
- Discrepancy maybe come from
 - $^{11}B^* \rightarrow t + \alpha + \alpha$

Not coincidental!

Summary

- De-excitation plays an more and more important role in ν experiments
- GEMINI++ is a potential event-by-event de-excitation generator
- Three modifications provide the best agreement with experiments in ${}^{11}B^*$ and ${}^{15}N^*$, the modified generator is named **GEMINI++4** ν
- More work is on-going, such as the predictions of gamma emitting from de-excitation
- Plan to combine GEMINI++4 ν into widely-used ν generator such as GENIE and NuWro Thanks for your attention!

Code detail (picture)

Modification of the last decay

Modification of the last decay

Width calculation

Hauser-Feshbach formulism

$$\Gamma_i^{HF} = \frac{1}{2\pi\rho(E^*, S_{CN})} \int d\epsilon \sum_{S_d=0}^{\infty} \sum_{J=|S_{CN}-S_d|}^{S_{CN}+S_d} \sum_{l=|J-S_i|}^{J+S_i} T_l(\epsilon)\rho(E^*-B_i-\epsilon, S_d)$$

- S_i, J, l for the evaporated particle, T_l is transmission coefficient, ϵ for kinematic energy, B_i for separation energy
- S_d is the spin of residue, S_{CN} is the spin of CN, ρ for level density
- Evaporation channels include n, p, d, t, 3He, α and so on
- Ignore the effect of angular momentum, gives Weissikopf formulism

$$\Gamma_i^W(E_i) = \frac{2s_v + 1}{2\pi\rho_i(E_i)} \frac{2m_v}{\pi\hbar^2} \int_0^{E_i - S_v - B_v} \sigma_c(\epsilon_v) \rho_f(E_f) \times (\epsilon_v - B_v) d\epsilon$$

Nuclear effects considered

Fermi surface

- Shell correction
- Pairing

Back-shifted Fermi Gas model

$$\rho_F(E_x, J, \Pi) = \frac{1}{2} \frac{2J+1}{2\sqrt{2\pi}\sigma^3} \exp\left[-\frac{(J+\frac{1}{2})^2}{2\sigma^2}\right] \frac{\sqrt{\pi}}{12} \frac{\exp\left[2\sqrt{aU}\right]}{a^{1/4}U^{5/4}}$$

- $U = E^* \Delta_{BFM}$, Δ_{BFM} is the parameter affected by shell correction and pairing, in fact, an adjustable parameter to fit experiment data in theory
- Parameter *a* has relationship with shell correction and A in GEMINI++

