

A new de-excitation tool: GEMINI++

Yujie Niu ^{1,2} (牛玉杰)

November 2nd , 2024

第一届基础物理研讨会暨基础物理平台年会

¹ Institute of High Energy Physics, Beijing, China

² University of Chinese Academy of Sciences, Beijing, China E-mail: niuyj@ihep.ac.cn

Outline

- What is / why de-excitation?
- De-excitation generators status and experiments
- GEMINI++ / Performance of GEMINI++
- GEMINI++4 ν : Modified version of GEMINI++ for neutrino exp.
- Summary

GEMINI++/4v: **Y.J. Niu**, W.L. Guo, M. He, J. Su, arXiv: 2408.14955

What is / why de-excitation?

Nucleus de-excitation takes a significant part in neutrino experiment

- Emitting particles, especially neutrons from de-excitation contribute to **signal-background ratio** like **nucleon decay searching, DSNB, atmospheric** v and so on
- De-excitation in GEANT4 is not reasonable compared to experimental result of light nucleus $_3$ But de-excitation is not considered well in widely-used ν generator such as GENIE and NuWro.

De-excitation generators

How about the generator of de-excitation? Good performance?

Models used to calculate de-excitation probability of emitting particles :

- **Weisskopf-Ewing (WE):** Angular momentum is not considered
- **Hauser-Feshbach (HF):** Angular momentum is considered

These generators must be validated with **experimental data!**

De-excitation experiments

(Yosoi et al.) Exp.1

- Quasi-free (p, 2p) reaction, targets are carbon (12 C \rightarrow 11 B^{*}) and ice (16 O \rightarrow 15 N^{*})
- JUNO (Liquid-scintillator \rightarrow ¹²C), Super-Kamiokando / Hyper-Kamiokando (Water \rightarrow ¹⁶0)
- **Different threshold for particles** from de-excitation
- Results shown above, darker color for **'***2-body decay' and lighter for '3-body decay'* In a decay

De-excitation experiments

- \bullet ${}^{12}C(p,2p)$ ${}^{11}B^*$
- Good energy resolution, **no threshold** for particle identification, even residue
- Only three two-body decay channels of ^{11}B were analyzed: ^{10}B + n, ^{9}Be + d and ^{7}Li + α

Generator GEMINI++

GENIMI++: a Monte Carlo code, is an improved C++ version based on GEMINI

- GEMINI++ is designed for **heavy nucleus** process, like fission, fusion and so on
- GEMINI++ had been widely used in nuclear physics area, getting **cheerful** achievements!

Generator GEMINI++

Performance of GEMINI++

- Bad agreement with Exp.1
- Good prediction to Exp.2, but not enough
- GEMINI++ is designed for heavy nucleus, for light nucleus, modifications are required

Generator GEMINI++4v

GENIMI++4v is developed for neutrino experiments to handle de-excitations of residual nuclei associated with v interaction and nucleon decay based on GEMINI++ code

Open source:

https://github.com/NiuYJ1999/GEMINI_4nu

Three modifications are carried:

- *Removing Back-shifted term*
- *Add discrete levels*
- *Adjust suppression factor*

Removing Back-shifted term

5000 events for every interval of 0.1 MeV are simulated (0 MeV ≤ Ex ≤ 50 MeV) to determine the critical energy E_c of particle-emitting for 2-body decay

$$
\rho\left(U\right) \propto \frac{\exp\left[2\sqrt{a(U-\mathbf{E}_{\mathbf{T}})}\right]}{a^{\frac{1}{4}}(U-\mathbf{E}_{\mathbf{T}})^{5/4}}
$$

Modification of E_1 equals to tune excited energy:

- E_c can be changed due to this modification
- Winner in competition can be changed

• No available experimental E_1 for $^{11}{\rm B}^*$ and $^{15}{\rm N}^*$ and their daughter nucleus can be used (only E_1 of nucleus mass $>$ ¹⁹F can be found)

- $\rho(U)_{E_1\neq0}$ and $\rho(U)_{E_1=0}$ are used to do χ^2 calculation to fit existing discrete levels
- $\rho(U)_{E_1=0}$ gives a better result, this modification is reasonable

Add discrete levels

- **GEMINI++ does not consider discrete levels**
- Decayed nucleus always has low excited energy at the last decay
- Modifying the de-excitation result by adding the clearly known discrete levels in NNDC

12 Kinematic energy of some particles can be **increased** to **cross the detection threshold** in Exp.1

Impact of modification 1 and 2

- Besides more reasonable E_c can be given, removing E_1 obviously provides a better result
- Adding discrete levels provides higher "2-body decay" and "3-body decay" ratios for almost all particles

Modification of GEMINI++

Default \boldsymbol{F}_{s} **settings originate from the de-excitations of heavy nuclei**

Are default settings reasonable for light nuclei?

Don't use suppression factor to adjust results, namely $F_s = 1.0$ for all particles

 $F_s = 0.5$ for all charged particles. Compared with default, only two changes

Modification of GEMINI++

 \triangleright Good agreement with $^{11}B^*$ data \triangleright Can't account for $15N^*$ data well

GEMINI++4v with $F_s = 1.0$ **:** GEMINI++4v with $F_s = 0.5$ (Recommend!)

 \triangleright Better agreement with $^{11}B^*$ data

➢Partially account for 15N [∗] data, include *n*

This is the first time that a code can basically reproduce both $^{11}{\rm B^*}$ and $^{15}{\rm N^*}$ data

Accidental coincidence check

Fixed energy ranges of $16 \leq Ex \leq 35$ MeV for $^{11}B^*$ and $20 \leq Ex \leq 40$ MeV for $^{15}N^*$

Compare the ratio of each type of charged particle emission among four types for every energy bin

- $F_s = 1.0$ and $F_s = 0.5$ differences are relatively small
- Predicted shapes are basically consistent with data except α
- Discrepancy maybe come from
	- $^{11}B^* \rightarrow t + \alpha + \alpha$

Not coincidental!

Summary

- De-excitation plays an more and more important role in ν experiments
- GEMINI++ is a potential event-by-event de-excitation generator
- Three modifications provide the best agreement with experiments in ¹¹B^{*} and ¹⁵N^{*}, the modified generator is named GEMINI++4v
- More work is on-going, such as the predictions of gamma emitting from de-excitation
- Plan to combine GEMINI++4 ν into widely-used ν generator such as GENIE and NuWro *Thanks for your attention!*

Code detail (picture)

Modification of the last decay

Modification of the last decay

Width calculation

Hauser-Feshbach formulism

$$
\Gamma_l^{HF} = \frac{1}{2\pi\rho(E^*, S_{CN})} \int d\epsilon \sum_{S_d=0}^{\infty} \sum_{J=|S_{CN}-S_d|}^{S_{CN}+S_d} \sum_{l=|J-S_i|}^{J+S_i} T_l(\epsilon) \rho(E^* - B_i - \epsilon, S_d)
$$

- S_i, J, l for the evaporated particle, T_l is transmission coefficient, ϵ for kinematic energy, B_i for separation energy
- S_d is the spin of residue, S_{CN} is the spin of CN, ρ for level density
- Evaporation channels include n, p, d, t, 3He, α and so on
- **Ignore the effect of angular momentum, gives Weissikopf formulism**

$$
\Gamma_l^W(E_i) = \frac{2s_v + 1}{2\pi \rho_i(E_i)} \frac{2m_v}{\pi \hbar^2} \int_0^{E_i - S_v - B_v} \sigma_c(\epsilon_v) \rho_f(E_f) \times (\epsilon_v - B_v) d\epsilon
$$

Nuclear effects considered

 $1s_{1/2}$ $1p_{3/2}$ $1p_{1/2}$ **proton neutron**

Fermi surface

- **Shell correction**
- **Pairing**

Back-shifted Fermi Gas model

$$
\rho_F(E_x, J, \Pi) = \frac{1}{2} \frac{2J+1}{2\sqrt{2\pi}\sigma^3} \exp\left[-\frac{(J+\frac{1}{2})^2}{2\sigma^2}\right] \frac{\sqrt{\pi}}{12} \frac{\exp\left[2\sqrt{aU}\right]}{a^{1/4}U^{5/4}}
$$

- $U = E^* \Delta_{BFM}$, Δ_{BFM} is the parameter affected by shell correction and pairing, in fact, an adjustable parameter to fit experiment data in theory
- Parameter \boldsymbol{a} has relationship with shell correction and A in GEMINI++

