

Recent results of XYZ studies at ATLAS & CMS

April 12, 2025

2025 Breakthrough Prize

The ATLAS, CMS, ALICE and LHCb Collaborations at CERN's Large Hadron Collider.

Apr 12, 2025

Zhen Hu

April 5, 2025

For detailed measurements of Higgs boson properties confirming the symmetry-breaking mechanism of mass generation, the discovery of new strongly interacting particles, the study of rare processes and matter-antimatter asymmetry, and the exploration of nature at the shortest distances and most extreme conditions at CERN's Large Hadron Collider.

7 Works

CMS dimuon & trigger

Muon system

- High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ ψ
- Silicon Tracking detector, B=3.8T
 - $\Delta p_T / p_T \sim 1\%$ & excellent vertex resolution
- Special triggers for different analyses at increasing Inst. Lumi.

- μ p_T, (μμ) p_T, (μμ) mass, (μμ) vertex, and additional μ Zhen Hu Apr 12, 2025 10th XYZ Workshop

FRN

- X(3872) studies (First LHC experiment to see X(3872))
 - Measurement of X(3872) to $J/\psi \pi^+\pi^-$ (2013)
 - Observation of $B_s^0 \rightarrow X(3872)\phi$ (2020)
 - Evidence of X(3872) in PbPb collisions (2022)
- Searches without showing significance structures
 - Upper limit for X(5568)[±] \rightarrow $B_s^0 \pi^{\pm}$ (2020)
 - Observation of $B^0 \rightarrow \psi(2S)K_S^0\pi^+\pi^-$ (2022)
 - Observation of $\,\Lambda_b^0
 ightarrow {
 m J}/\psi\,\Xi^-{
 m K}^+$ (2024)
- Observations of new structures and decays
 - Observation of X(4140) in $J/\psi\phi$ from $B^{\pm} \rightarrow J/\psi\phi K^{\pm}$ (2014)
 - Observation of X(6600) in $\mathrm{J}/\psi\,\mathrm{J}/\psi
 ightarrow\mu^+\mu^-\mu^+\mu^-$ (2023)
 - Observation of X(7100) in $J/\psi J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$ (2025.04.07)
 - Observation of X(6900) in $J/\psi \, \psi(2S)
 ightarrow \mu^+ \mu^- \mu^+ \mu^-$ (2025.04.07)

Spin-parity measurement of X(6600),X(6900),X(7100) (2025.04.08)

New domain of exotics: all-heavy tetra-quarks

• First mention of 4c states at 6.2 GeV (1975)

– Just one year after the discovery of J/ψ

We expect at least three exotic mesons with hidden charm, $c\bar{c}(p\bar{p}-n\bar{n})$ [between 3.7~4.1 GeV], $c\bar{c}\lambda\bar{\lambda}$ [~4.1 GeV] and $c\bar{c}c\bar{c}$ [~6.2 GeV] to which we refer

(Received January 20, 1975)

• First calculation of 4c states (1981): Z. Phys. C 7 (1981) 317

L	S	JPC	Mass (GeV)					
1	0	1	6.55	$\leftarrow (cc)_3 * - (cc)_3$				
	$\frac{1}{2}$	$0^{-1}, 1^{-1}, 2^{-1}, 3^{-1}$			L	S	JPC	Mass (GeV)
	0	2++	6.78					
	1	$1^{+-}, 2^{+-}, 3^{+-}$			1	0	1	6.82
	2	0,1,2,,3,4		(aa) $\overline{(aa)}$ +	2	0	2++	7.15
	0 1	3 2-+, 3-+, 4-+	6.98	$(cc)_{\underline{6}} - (cc)_{\underline{6}} * \longrightarrow$	3	0	3	7.41
	2	1, 2, 3, 4, 5						

• A different exotic system compared to exotics with light quarks

Apr 12, 2025

Total cross section, assuming unpolarized prompt $J/\psi J/\psi$ pair production 1.49 ± 0.07 (stat.) ± 0.13 (syst.) nb

Different assumptions about the $J/\psi J/\psi$ polarization imply modifications to the cross section ranging from -31% to +27%.

Apr 12, 2025

We saw hints at Run I data (7 TeV & 8 TeV) Proposed three signal regions for Run II data

Signal: $X \rightarrow J/\psi J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

Blinded mass windows for Run II:

- 1. [6.3,6.6] GeV
- 2. [6.8,7.1] GeV
- 3. [7.2,7.8] GeV (for potential wide structure)

These mass windows will be windows for LEE for potential structures

Run I data will be ignored for significance calculation

CMS eventually decide to blind the whole region: [6.2, 7.8] GeV after LHCb released their result (13 TeV, 2020)

Zhen Hu

$J/\psi J/\psi$ candidates at 13 TeV

Zhen Hu

Mar 28, 2024

8

- Most significant structure is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:

Zhen Hu

- BW0 parameters very sensitive to SPS and DPS model assumptions
- A region populated by feed-down from possible higher mass states
- Possible coupled-channel interactions, pomeron exchange processes...

- Most significant structure is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - BW0 parameters very sensitive to SPS and DPS model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...
- SPS+DPS+BW0 as our background

Zhen Hu

CMS J/ ψ J/ ψ fit: 3 BWs + Background

The dips

- Interference among structures?
- > Possibility #2:
- Multiple fine structures to reproduce the dips?
- Mentioned in PAS

Zhen Hu

Apr 12, 2025

- More secrets to dig out
- We explored possibility #1 in detail

CMS J/ ψ J/ ψ interference fit

Editors' Suggestion

New Structures in the $J/\psi J/\psi$ Mass Spectrum in Proton-Proton Collisions at $\sqrt{s}=13~{
m TeV}$

A. Hayrapetyan *et al.* (CMS Collaboration) Phys. Rev. Lett. **132**, 111901 (2024) – Published 15 March 2024

Three structures, X(6900) and two new ones around 6.64 and 7.13 GeV, are seen in the $J/\psi J/\psi$ mass spectrum that are consistent with being part of a family of radial excitations. Show Abstract +

- Fit with interf. among BW1, BW2, and BW3 describes data well
- Measured mass and width in the interference fit

Table 1. Predictions of the masses (MeV) of S-wave fully heavy $T_{4Q}(nS)$ tetraquarks. Only 0⁺⁺ and 2⁺⁺ are considered for $T_{bc\bar{b}\bar{c}}$. The uncertainty is from the coupling constant $\alpha_s = 0.35 \pm 0.05$.

Nucl. Phys. B 966 (2021) 115393

$T_{4Q}(nS)$ states	J^p	Mass(n=1)	Mass(n-2)	<u> Mass(n - 2)</u>	mass(n=4)
$T_{cc\bar{c}\bar{c}}$	0++	$6055\substack{+69\\-74}$	$6555\substack{+36\\-37}$	6883^{+27}_{-27}	$7154\substack{+22\\-22}$
	2++	$6090\substack{+62\\-66}$	0500^{+34}_{-35}	seee+27	7100_{-22}^{+21}
$T'_{ccar{c}ar{c}}$	0++	5984_{-67}^{+64}	6468	6725^{+26}_{-26}	66^{+21}_{-22}
$T_{bcar{b}ar{c}}$	0++	$12387\substack{+109\\-120}$	12911^{+18}_{-1}	13200^{+35}_{-36}	$13429\substack{+29\\-30}$
	2++	$12401\substack{+117 \\ -106}$	$12914\substack{+49\\-49}$	13202^{+35}_{-36}	$13430\substack{+29\\-29}$
$T_{bcar{b}ar{c}}'$	0++	$12300\substack{+106\\-117}$	$12816\substack{+48 \\ -50}$	$13.04\substack{+35\\-35}$	$13333\substack{+29\\-29}$
$T_{bbar{b}ar{b}ar{b}}$	0++	$18475\substack{+151 \\ -169}$	$19073\substack{+59\\-63}$	1953^{+42}_{-42}	$19566\substack{+33\\-35}$
	2++	$18483\substack{+149\\-168}$	$19075\substack{+59\\-62}$	$19\ 55^{+41}_{-43}$	$19567\substack{+33\\-35}$
$T_{bbar{b}ar{b}ar{b}}$	0++	$18383\substack{+149\\-167}$	$18976\substack{+59\\-62}$	1956^{+43}_{-42}	$19468\substack{+34\\-34}$
		S-wave	M[BW1]	= 6638 ± 10 MeV) ± 12
			M[BW2	2] = 6847 ± 9 MeV)± 5
			M[BW3	6] = 7134 ± 1 MeV	9 ± 5

- Radial excited p-wave states (like J/ψ series)?
- Or Radial excited s-wave states?
- Theoretical situation difficulty & confusing
 - Important next step: measure J^{PC} to clarify

Candidates / 25 MeV	180 160 140 120 80 60 40 20				j Dat → BW ······BW ······BW ······BW ·······BW ·······BW	a — Fit r_1 BW r_3 Bac b intervention r_1 r_1 r_1	^{135 /b' (13)} CMS kground erf.	Text	Canolicates / 25 MeV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				$\begin{array}{c} 135 \text{ fb}^{1}(13)\\ \text{CMS}\\ \text{ata} & -\text{Fit}\\ W_{3} & -\text{Background}\\ \text{erfering BWs}\\ \text{nterf.}\\ \end{array}$	≷Luthuthuthuthuthuthutke
<u>Data-Fit</u> Stat. unc.				7.5					Data-Fit Stat. unc.					
						ı	n _{Jiy Jiy} [G	eV]		0.0			m _{Jiy Jiy} [G	eV]
$1^{1}P_{1}$	1	363.9	320.3	-366.7	337.5	-14.4	0	0	-2.6	6553	-	-		
$1^{3}P_{0}$	0 1	300.7	320.2	-300.7	337.5	-1.2	-50.9	-43.1	-2.0	6460	6398.1	$\eta_c(1S)\chi_{c0}(1R)$	²)	
$1^{3}P_{1}$	1^{-+}	356.6	320.3	-366.7	337.5	-7.2	-28.4	21.5	-2.7	6554	6494.1	$\eta_c(1S)\chi_{c1}(1R)$	2)	
$1^{3}P_{2}$	2^{-+}	356.6	320.2	-366.7	337.5	-7.2	28.4	-2.1	-2.4	6587	6539.6	$\eta_c(1S)\chi_{c2}(1R)$	2)	
$1^{5}P_{1}$	1	342.4	320.4	-366.7	337.5	7.2	-85.3	-30.2	-2.7	6439	6508.8	$\eta_c(1S)h_{c1}(1I)$	2)	
$1^{5}P_{2}$	2	342.2	320.2	-366.7	337.5	7.2	-28.4	30.2	-2.5	657	6607.6	$J/\psi(1S)\chi_{c1}(1)$	<i>P</i>)	
$1^{3}P_{3}$	3	342.3	320.3	-366.7	337.5	7.2	56.9	-8.6	-2.5	6623	6653.1	$J/\psi(1S)\chi_{c2}(1$	P)	
$2^{1}P_{1}$	1	414.7	688.7	-263.4	548.6	-11.2	0	0	-1.6	6925	<u>arX</u>	<u>iv:2108.0</u>	<u>)4017 [h</u>	ep-ph]
$2^{-}P_{0}$ $2^{3}D_{1}$	1-+	410.0	689.0	-203.4	548.0	-5.0	-40.2 23.1	-34.5	-1.7	6026	-	-		
$2^{3}P_{0}$	2^{-+}	410.0	689.6	-263.4	548.7	-5.6	23.1	-3.4	-1.7	6951		-		
$2^{5}P_{1}$	1	398.7	689.5	-263.4	548.6	-5.6	-69.3	-24.2	-1.7	684		P-wave		
$2^5 P_2$	2	398.7	689.5	-263.4	548.6	5.6	-23.1	24.2	-1.5	6944		-		
$2^5 P_3$	$3^{}$	398.8	689.7	-263.4	548.6	5.6	46.2	-6.9	-1.6	6982	- M	[BW1] = <mark>65</mark>	$52 \pm 10 \pm$	12
3^1P_1	1	479.8	982.2	-215.5	727.8	-9.3	0	0	-1.1	7221		- M	eV	•
$3^{\circ}P_0$	0-+	475.2	982.7	-215.5	727.7	-4.6	-41.9	-31.0	-1.2	7153				-
$3^{3}P_{1}$	1^{-+}	475.1	982.6	-215.5	727.7	-4.6	-20.9	15.5	-1.2	7220	, ► ►	I[BVV2] = 69	$27 \pm 9 \pm$	5
$3^{3}P_{2}$	2^{-+}	475.1	982.6	-215.5	727.8	-4.6	20.9	-3.1	-1.0	7243	-	_ M	ev	•
3^5P_1	$1^{}$	465.9	982.8	-215.5	727.7	4.6	-62.8	-21.7	-1.2	7150	- N	I[BW3] = 72	87 ± 19 ±	5
$3^5 P_2$	$2^{}$	465.7	982.6	-215.5	727.8	-4.6	-20.9	21.7	-1.1	7236	-	- M	eV	
$3^5 P_2$	$3^{}$	465.8	982.6	-215.5	727.8	4.6	41.9	-6.2	-1.1	7271	-	-		

Spin Parity Analysis (2025)

CMS-PAS-BPH-24-002

"True" tetraquark

connects two colored objects (cc) and $(\bar{c}\bar{c})$ through direct strong interactions like quarks in a proton or neutron

"Molecule"

a bound state of two mesons connected by residual nuclear force, like proton and neutron in a nucleus

binding would be much weaker than in a nucleus or light "tetraquarks"

other empirical interactions?

Apr 12, 2025

• Molecular: less restrictions (e.g. meson $S_{1,2} = 0,1$): recall $J^P = 1^+$

Zhen Hu

Data Analysis

Apr 12, 2025

- We do not know the production mechanism
 - empirical model to reproduce p_T^X and p_z^X in data
- Monte Carlo tools:

Simplification in Angular Analysis

1 optimal observable \leftarrow Higgs boson discovery and spin-parity

• Final 2D model:

Zhen Hu

$$\mathscr{P}_{ijk}(m_{4\mu},\mathscr{D}_{ij})=\mathscr{P}_k(m_{4\mu})\cdot T_{ijk}(\mathscr{D}_{ij}\,|\,m_{4\mu})$$

Optimal Observables and Statistical Analysis

• 1D projection of data, optimal for $j = 0^{-}(2_m^{-})$ vs $i = 2_m^{+}$

Summary of Statistical Analysis

- Scan mixture of two 0^{++} amplitudes (11 steps)
 - constructive interference most conservative
 - Scan mixture of two 2⁻⁺ amplitudes (11 steps)
 no interference (different spin projections)
 - Data are consistent with a 2^{++} model, inconsistent with others

Zhen Hu

Summary of spin parity analysis

J^{PC} analysis of exotic hadron decays at LHC (production-independent)

- consistent picture: set of 3 exotic teraquark resonances with the same J^{PC}

$$-PC = + +$$
 very certain

$$n = (1,)2,3,4$$

- $-J \neq 1$ at > 99 % CL
- $-J \neq 0$ at > 95 % CL
- -J > 2 possible, but highly unlikely, require $L \ge 2$
- -J = 2 consistent, rare in nature, naively expected J = 0

Apr 12, 2025

10th XYZ Workshop

- Data samples [315 fb⁻¹]
 - Run II: 135 fb⁻¹ data taken in 2016, 2017 and 2018
 - Run III: 180 fb⁻¹ data taken in 2022, 2023 and 2024

Trigger:

- Run II:
 - HLT_Dimuon0_Jpsi_Muon (2016)
 - HLT_Dimuon0_Jpsi3p5_Muon2 (2017&2018)
- Run III:

Zhen Hu

- HLT_Dimuon0_Jpsi3p5_Muon2
- HLT_DoubleMu4_3_LowMass (new)
- **X(7100)**: 4.7 σ & Interference < 4 σ
- Significance of ALL states over 5σ ?
- Significance of **interference** over 5σ ?

$J/\psi J/\psi$ candidates Run 2+3

[6, 15] GeV	$N(J/\psi J/\psi)$	$N(J/\psi\mu\mu)$	$N(\mu\mu J/\psi)$	Ν(μμμμ)
Run II	12622 ± 165	6451 ± 146	772 ± 52	1295 ± 60
Run III	31802 ± 476	33603 ± 491	4604 ± 166	33187 ± 267
Run II+III	44936 ± 692	39371 ± 698	5374 ± 181	34656 ± 278

Apr 12, 2025

CMS J/ ψ J/ ψ fit – Run 3

First observation of X(7100)

First observation of interferene

	BW1 (MeV)	BW2 (MeV)	BW3 (MeV)
m	6588 ± 19	6849 ± 12	7179 ± 10
Г	454 ± 74	136 ± 18	67 ± 18

CMS J/ ψ J/ ψ fit – Run 2+3

First observation of X(7100)

First observation of interferene

			BW_1	BW ₂	BW ₃
_	Interference	<i>m</i> (MeV)	$6593~^{+15}_{-14}\pm25$	$6847~^{+10}_{-10}\pm15$	$7173 \ _{-10}^{+9} \pm 13$
	(Run 2+Run 3)	Γ (MeV)	$446\ ^{+66}_{-54}\pm 87$	$135\ ^{+16}_{-14}\pm 14$	73 $^{+18}_{-15} \pm 10$
_	Interference	<i>m</i> (MeV)	$6638 \ _{-38-31}^{+43+16}$	$6847 {}^{+44+48}_{-28-20}$	$7134 \ _{-25-15}^{+48+41}$
_	(Run 2 [12]) Γ (Me		$440 {}^{+230+110}_{-200-240}$	$191 \ _{-49-17}^{+66+25}$	$97 {}^{+40+29}_{-29-26}$
 Lhen Hu	Apr 12	, 2025	10th XYZ	Workshop	2

CMS-PAS-BPH-22-004

Apr 12, 2025

CMS $\psi(2S)J/\psi$ mass Run 2+3

CMS $\psi(2S)J/\psi$ fit Run 2+3

First observation of X(6900) $\rightarrow \psi(2S)J/\psi$

Evidence of $X(7100) \rightarrow \psi(2S)J/\psi$

Fit	Sample	e Interf.		X(6600)	X(6900)	X(7100)
f_{i23}	$J/\psi\psi(2S)$	BW_2, BW_3	<i>m</i> :		$6876^{+46+110}_{-29-110}$	7169^{+26+74}_{-52-70}
			Γ:	—	$253^{+290+120}_{-100-120}$	$154\substack{+110+140\\-82-160}$
<i>f_{II}</i> [1]	J/ψJ/ψ	Interference	<i>m</i> (MeV)	$6593 \ ^{+15}_{-14} \pm 25$	$6847~^{+10}_{-10}\pm15$	7173 $^{+9}_{-10}\pm13$
-))		(Run 2+Run 3)	Γ (MeV)	$446\ ^{+66}_{-54}\pm 87$	$135\ ^{+16}_{-14}\pm 14$	$73 {}^{+18}_{-15} \pm 10$
		Interference	<i>m</i> (MeV)	$6638 \ _{-38-31}^{+43+16}$	$6847 \ _{-28-20}^{+44+48}$	$7134 \ _{-25-15}^{+48+41}$
		(Run 2 [12])	Γ (MeV)	$440\ ^{+230+110}_{-200-240}$	$191 \ _{-49-17}^{+66+25}$	$97\ _{-29-26}^{+40+29}$

Apr 12, 2025

B physics at ATLAS

- ATLAS has collected a large set of data
 - Run 1 (2010-2013): 4.9 fb⁻¹ at 7 TeV and 20.3 fb⁻¹ at 8 TeV
 - Run 2 (2015-2018): 139*fb*⁻¹ at 13 TeV
- Analysis focus mostly on final states with muons.
- Dedicated B-physics triggers.
- Excellent track and muon identification with the goodness of the inner detector² and muon spectrometer.

Hunt for di- J/ψ resonances by ATLAS at 13 TeV

Events / 0.10 Ge

Data/Pred

Events / 0.10 Ge[\]

- Signal: $T_{cc\overline{cc}} \rightarrow J/\psi + J/\psi$ or $J/\psi + \psi(2S) \rightarrow 4\mu$
- Backgrounds:
 - Prompt: SPS and DPS
 - Non-prompt: $b\overline{b} \to J/\psi + J/\psi/\psi(2S) + X \to 4\mu$
 - Others: Single J/ψ background and non-peaking background containing no real J/ψ candidate
- Excess in both channels
- The unbinned maximum likelihood fits are performed in the 4μ mass spectrum.
 - The signal pdf: several interfering BW multiplied with a phase space factor and convolved with a mass resolution function

$$di - J/\psi : f_{s}(x) = \left| \sum_{i=0}^{2} \frac{z_{i}}{x^{2} - m_{i}^{2} + im_{i}\Gamma_{i}} \right|^{2} \sqrt{1 - \frac{4m_{J/\psi}^{2}}{x^{2}}} \otimes R(\alpha)$$

$$\psi + \psi(2S) : f_{s}(x) = \left(\left| \sum_{i=0}^{2} \frac{z_{i}}{x^{2} - m_{i}^{2} + im_{i}\Gamma_{i}} \right|^{2} + \left| \frac{z_{3}}{x^{2} - m_{3}^{2} + im_{3}\Gamma_{3}} \right|^{2} \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x}\right)^{2}} \otimes R(\alpha)$$

$$Zhen Hu$$

$$Apr 12_{i} 2025$$

$$10th XYZ Workshop$$

$$32$$

ATLAS di- J/ψ channel

- Model A similar to LHCb model I, but 2 auxiliary BWs interfere with X(6900)
- Model B similar to LHCb model II: one auxiliary BW interferes with NRSPS
- Both models describe the data well
 - the broad structure at the lower mass could result from other physical effects, such as the feed-down
- The peak around 6.9 Gev is consistent with the LHCb observed X(6900), with significance > 5σ

ATLAS $J/\psi + \psi(2S)$ channel

Extracted masses and widths (GeV)

$J/\psi + \psi(2S)$	model α	model β
m_3 or m	$7.22 \pm 0.03^{+0.01}_{-0.03}$	$6.96 \pm 0.05 \pm 0.03$
Γ_3 or Γ	$0.09 \pm 0.06^{+0.06}_{-0.03}$	$0.51 \pm 0.17^{+0.11}_{-0.10}$
$\Delta s/s$	$\pm 21\% \pm 14\%$	$\pm 20\% \pm 12\%$

Apr 12, 2025

Summary: new exotic hadrons at LHC

J/ψ. Zhen Hu

Apr 12, 2025

 $J/\psi J/\psi$ spin parity

10th XYZ Workshop

http://cds.cern.ch/record/2929695 南师 清华 JHU

Backup

Apr 12, 2025

CMS J/ ψ J/ ψ fit – Run 2&3

Apr 12, 2025

Concept of Analysis: Production

- We do not know the production mechanism
 - empirical model to reproduce p_T^X and p_z^X in data

- tune **Pythia** to match p_T^X in sideband and signal region
- fine-tune re-weighting p_T^X
- residual p_T^X and p_z^X consistency tests coverage in systematics
- essential to model
 detector acceptance

Apr 12, 2025

10th XYZ Workshop

J/ψ Polarization

Apr 12, 2025

Zhen Hu

10th XYZ Workshop

Production angles

(4) production angles consistent with unpolarized resonances

Zhen Hu

Decay angles

(5) decay angles (consistency check): distinguish models

Zhen Hu

Apr 12, 2025

Summary of Statistical Analysis

• Full set of results, compared to 2_m^+

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\underbrace{\begin{array}{cccccccccccc} 0_h^+ \ \mathrm{vs} \ 2_m^+ & \begin{array}{ccccccccccccccccccccccccccccccccccc$	
$1^{-} \operatorname{vs} 2_{m}^{+} \qquad \begin{array}{cccc} 1^{-} & 8.0 \times 10^{-8} & 5.2 & 6.4 \times 10^{-9} & 5.7 \\ 2_{m}^{+} & 3.8 \times 10^{-1} & 0.3 & 0.50 & 0.0 \end{array}$	
$1^{+} \operatorname{vs} 2_{m}^{+} \begin{array}{c} 1^{+} & 4.7 \times 10^{-3} & 2.6 & 2.7 \times 10^{-5} & 4.0 \\ 2_{m}^{+} & 5.2 \times 10^{-2} & 1.6 & 0.50 & 0.0 \end{array} -J \neq 1 \text{ at } > 99 \ \% \ CL$	
$2_m^{-} \operatorname{vs} 2_m^{+} 2_m^{-} 4.1 \times 10^{-12} 6.8 3.9 \times 10^{-14} 7.5 \\ 2_m^{+} 2.8 \times 10^{-1} 0.6 0.50 0.0 0.0$	
$2^{-}_{\text{mix}} \text{ vs } 2^{+}_{m} 2^{-}_{m} 6.5 \times 10^{-4} 3.2 1.5 \times 10^{-4} 3.6 \\ 3.1 \times 10^{-1} 0.5 0.50 0.0 0.0 P \neq -1 \text{ very certain} P \neq -1 very$	> 31
$2_{h}^{-} \operatorname{vs} 2_{m}^{+} 2_{m}^{+} 2_{m}^{+} 4.3 \times 10^{-1} 0.2 0.50 0.0 \mathbf{)}$)

• Recall: 2^{++} can have a mixture of 2_m^+ and look-alike of $0^+, 1^+$

Zhen Hu

10th XYZ Workshop

 $-J^{PC} = 2^{++}$

Observation of triple J/ ψ

Signal yield: $5^{+2.6}_{-1.9}$ events Significance > 5σ

 $\sigma(pp \rightarrow J/\psi J/\psi J/\psi X)$ = 272 +141-104 (stat) ± 17 (syst) fb

Nature Physics 19 (2023) 338

"6c" search in future?

Apr 12, 2025

 $J/\psi \Xi^{-}K^{+}$ channel

- Multi-body decays of b-hadrons may proceed through exotic intermediate resonances
 - E.g. pentaquark $J/\psi p$ structure in $\Lambda_b \rightarrow J/\psi p K^-$ observed by LHCb
 - $\Lambda_b \rightarrow J/\psi \Xi^- K^+$ final state can unveil yet-unobserved (e. g. doubly-strange) pentaquarks
- First-time observation of $\Lambda_b \rightarrow J/\psi \Xi^- K^+$
 - In final states with $J/\psi \to \mu\mu$, $\Xi^- \to \Lambda(\to p\pi^-)\pi^-$

- $\Lambda_b \rightarrow J/\psi \Xi^- K^+$ branching fraction ratio measurement
 - Large systematics cancellation in the measured ratio R
 - Result dominated by low signal statistics

$$R = \frac{B(\Lambda_b \to J/\psi \Xi^- K^+)}{B(\Lambda_b \to \psi(2S)\Lambda)} = \frac{N_{signal}}{N_{ref.}} \times \frac{\epsilon_{signal}}{\epsilon_{ref.}} \times \frac{B(\psi(2S) \to J/\psi \pi^- \pi^+)}{B(\Xi^- \to \Lambda \pi^-)}$$

 $= [3.38 \pm 1.02 (stat.) \pm 0.61 (syst.) \pm 0.03 (B)] \%$

• Search for intermediate resonances

No evidence of resonant structures at this signal statistics

1

Apr 12, 2025

103 fb⁻¹ @ 13 TeV pp collision data

 $\mathcal{B}(B^0 \to \psi(2S)K_S^0 \pi^+ \pi^-)/\mathcal{B}(B^0 \to \psi(2S)K_S^0) = 0.480 \pm 0.013 \text{ (stat)} \pm 0.032 \text{ (syst)},$ $\mathcal{B}(B^0_s \to \psi(2S)K^0_S)/\mathcal{B}(B^0 \to \psi(2S)K^0_S) = (3.33 \pm 0.69 \text{ (stat)} \pm 0.11 \text{ (syst)} \pm 0.34 \text{ (}f_s/f_d\text{))} \times 10^{-2}$ Zhen Hu

CMS

Bkg.-subtracted data

700

600

500

400

103 fb⁻¹ (13 TeV)

Bkg.-subtracted data

Weighted simulation

2-body intermediate invariant masses

MeV 600

20

500

103 fb⁻¹ (13 TeV)

 $\rho(770)^{0}$

No evidence of new resonant • structures at this signal statistics

ATLAS-CMS-LHCb data comparison

Disclaimer: comparison plots in this page are not made by ATLAS/CMS/LHCb (taken from <u>https://indico.cern.ch/event/1158681/contributions/5162594/</u>)

- Comparing with LHCb, CMS has:
 - 135/(3+6) ≈ <mark>15X</mark> int. lum.
 - $(5/3)^4 \approx \frac{8X}{1000}$ muon acceptance
 - Higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
 - Similar number of final events, but much less DPS
 - 2X yield @CMS for X(6900)

- Comparing with CMS, ATLAS has:
 - 1/3 –1/2 of CMS data (trigger?)
 - dR cut—remove high mass events

Apr 12, 2025

Fit CMS data with LHCb model I: 2 auxiliary BWs + X(6900) + bkg

 117 ± 24

						•	
•	LHCb	did	not	give	parameters	for	BW1

 6927 ± 10

- CMS has a shoulder before BW1
- helps make BW1 distinct

CMS

Model I

 6550 ± 10

• Does not describe 2 dips well

 112 ± 27

Apr 12, 2025

CMS and LHCb Fit Comparison - 2

Zhen Hu

CMS and ATLAS Fit Comparison

- ATLAS model A: analogous to LHCb model I, but 2 auxiliary BWs interfere with X(6900)
- ATLAS Model B: analogous to LHCb model II, one auxiliary BW interferes with NRSPS
- Both models describe the data well
 - the broad structure at the lower mass could result from other physical effects, such as the feed-down
- The 3rd peak mass is consistent with the LHCb observed X(6900), with significance > 5σ

