CP violation of baryon decays

Fu-Sheng Yu Lanzhou University

XYZ workshop @ Hunan Normal University, 2025.04.12

A new horizon in particle physics: First observation of baryon CP violation

 $\Lambda_b^0 \to p K^- \pi^+ \pi^ \mathcal{A}_{CP} = (2.45 \pm 0.46 \pm 0.10)\%$ 5.2σ

LHCb, arXiv: 2503.16954, submitted to Nature

More interesting CP violation

Regional CPV

Decay topology	Mass region (GeV/c^2)	\mathcal{A}_{CP}	
$\Lambda_b^0 \to R(pK^-)R(\pi^+\pi^-)$	$m_{pK^{-}} < 2.2$	(53+13+02)%	40σ
	$m_{\pi^+\pi^-} < 1.1$	$(0.0 \pm 1.0 \pm 0.2)/0$	1.00
	$m_{p\pi^{-}} < 1.7$		
$\Lambda_b^0 \to R(p\pi^-)R(K^-\pi^+)$	$0.8 < m_{\pi^+ K^-} < 1.0$	$(2.7 \pm 0.8 \pm 0.1)\%$	3.3σ
	or $1.1 < m_{\pi^+ K^-} < 1.6$		
$\Lambda_b^0 \to R(p\pi^+\pi^-)K^-$	$m_{p\pi^{+}\pi^{-}} < 2.7$	$(5.4 \pm 0.9 \pm 0.1)\%$	6.0σ
$\Lambda_b^0 \to R(K^-\pi^+\pi^-)p$	$m_{K^-\pi^+\pi^-} < 2.0$	$(2.0 \pm 1.2 \pm 0.3)\%$	1.6σ

LHCb, arXiv: 2503.16954, submitted to Nature

1. Why baryon CPV? Motivation 2. Two-body: Why baryon CPV are so small?

3. Multi-body: CPV with $N\pi$ rescatterings

Outline

1. Why baryon CPV? Motivation 2. Two-body: Why baryon CPV are so small? 3. Multi-body: CPV with $N\pi$ rescatterings

Outline

CP violation in baryons

- CP violation is a necessary condition for matter-antimatter asymmetry of the Universe
 - CPV: SM < matter-antimatter asymmetry. => new source of CPV, new physics
 - The visible universe is mainly made of baryons.
- CPV were only observed in mesons, but not yet in baryons
- It is of great significance to search for baryon CPV.

History of CP violation

- 1956, Parity violation in weak interaction
- 1964, Observation of CPV in Kaon
- 1973, Kobayashi-Maskawa mechanism
- 2001, Observation of CPV in B meson
- 2019, Observation of CPV in D meson
- •CPV of baryons?

First observations are always two-body decays, but four-body in baryon decays

- 1956, Parity violation in weak interaction
- •1964, Observation of CPV in Kaon $\longrightarrow K_{I}^{0} \rightarrow \pi^{+}\pi^{-}$
- •1973, Kobayashi-Maskawa mechanism
- •2001, Observation of CPV in B meson $\longrightarrow B^0 \rightarrow J/\psi K_S^0, K^-\pi^+, \pi^+\pi^-$ •2019, Observation of CPV in D meson $\longrightarrow D^0 \rightarrow K^+K^-, \pi^+\pi^-$
- $\Lambda_h^0 \to p K^- \pi^+ \pi^-$ •2025, Observation of CPV in baryon 4-body

Fu-Sheng Yu

1. Why baryon CPV? Motivation 2. Two-body: Why baryon CPV are so small? 3. Multi-body: CPV with $N\pi$ rescatterings

Outline

- $A_{CP}(\Lambda_{h}^{0} \to p\pi^{-}) = (0.2 \pm 0.8 \pm 0.4) \%$
- •CPV in some B-meson decays are as large as 10%:

CPV of b-baryon

•Precision of b-baryon CPV measurements reaches the order 1% [LHCb, 2024]

$$\delta, A_{CP}(\Lambda_b^0 \to pK^-) = (-1.1 \pm 0.7 \pm 0.4) \, \Phi$$

CPV cancelled between S- and P-waves

penguin:

$$S_{PC_2} \approx -P_{PC_2}$$

•CPVs of S- and P-waves might be as large as B mesons, but cancelled with each other. •Baryons have spinors and Dirac structures, and thus partial waves.

J.J.Han, J.X, Yu, Y.Li, H.n.Li, J.P.Wang, Z.J.Xiao, FSY, 2409.02821 11

S- and P-wave CPV are large but cancelled

J.J.Han, J.X, Yu, Y.Li, H.n.Li, J.P.Wang, Z.J.Xiao, FSY, 2409.02821

Partial-wave CPVs are large, but cancelled with each other

	$A_{CP}^{ m dir}$	$A_{CP}^{S ext{-wave}}(\kappa_S)$	$A_{CP}^{P ext{-wave}}(\kappa_P)$	A^{lpha}_{CP}	A_{CP}^{β}	A_{CP}^{γ}
$\Lambda_b \to p \pi^-$	$0.05\substack{+0.02 \\ -0.03}$	$0.17^{+0.05}_{-0.09} \ (49\%)$	$-0.06^{+0.04}_{-0.05}~(51\%)$	$0.02\substack{+0.01 \\ -0.02}$	$0.22\substack{+0.08 \\ -0.05}$	$0.11\substack{+0.05 \\ -0.06}$
$\Lambda_b \to p K^-$	$-0.06\substack{+0.03\\-0.02}$	$-0.05^{+0.05}_{-0.04}~(94\%)$	$-0.21^{+0.39}_{-0.46}~(6\%)$	$0.04\substack{+0.03 \\ -0.04}$	$-0.44\substack{+0.08\\-0.04}$	$0.02\substack{+0.06 \\ -0.05}$
	$A_{CP}^{ m dir}$	$A_{CP}^{S^T ext{-wave}}(\kappa_{S^T})$	$A_{CP}^{(D+S^L) ext{-wave}}(\kappa_{D+S^L})$	$A_{CP}^{P_1 ext{-wave}}(\kappa_{P_1})$	$A_{CP}^{P_2 ext{-wave}}(\kappa_{P_2})$	$A_{CP}^{\mathcal{J}}$
$\Lambda_b \to p \rho^-$	$0.03\substack{+0.03 \\ -0.05}$	$0.01^{+0.01}_{-0.04}~(7\%)$	$0.02^{+0.07}_{-0.03} \ (44\%)$	$0.03^{+0.04}_{-0.12}~(45\%)$	$0.17^{+0.04}_{-0.06}~(4\%)$	$-0.01\substack{+0.01 \\ -0.01}$
$\Lambda_b \to pK^{*-}$	$-0.05\substack{+0.10 \\ -0.16}$	$-0.15^{+0.12}_{-0.06}$ (6%)	$0.27^{+0.09}_{-0.27}$ (33%)	$-0.23^{+0.10}_{-0.18} (55\%)$	$-0.14^{+0.02}_{-0.10}$ (6%)	$0.02\substack{+0.04 \\ -0.05}$
	$A_{CP}^{ m dir}$	$A_{CP}^{S^T ext{-wave}}(\kappa_{S^T})$	$A_{CP}^{(D+S^L) ext{-wave}}(\kappa_{D+S^L})$	$A_{CP}^{P_1 ext{-wave}}(\kappa_{P_1})$	$A_{CP}^{P_2 ext{-wave}}(\kappa_{P_2})$	A_{CP}^{UD}
$\Lambda_b \to pa_1^-(1260)$	$-0.01\substack{+0.04 \\ -0.03}$	$-0.22^{+0.10}_{-0.10}$ (6%)	$-0.11^{+0.03}_{-0.07}$ (46%)	$0.18^{+0.11}_{-0.06} \ (40\%)$	$-0.24^{+0.07}_{-0.13} \ (8\%)$	$-0.24\substack{+0.08\-0.13}$
$\Lambda_b \to p K_1^-(1270)$	$0.09^{+0.08}_{-0.05}$	$0.34^{+0.02}_{-0.06}$ (8%)	$-0.11^{+0.12}_{-0.08}$ (42%)	$0.19^{+0.17}_{-0.15}$ (42%)	$0.33^{+0.04}_{-0.05}$ (8%)	$0.26^{+0.04}_{-0.10}$
$(heta_K = 30^\circ)$	-0.05	-0.06 (****)	-0.08 (-0.15 (-0.05 (-7.7)	-0.10
$\Lambda_b \to p K_1^-(1270)$	$0.07^{+0.05}_{-0.06}$	$0.46^{+0.02}_{-0.00}$ (9%)	$0.06^{+0.11}_{-0.08}$ (37%)	$-0.07^{+0.09}_{-0.10}$ (45%)	$0.46^{+0.06}_{-0.07}$ (9%)	$0.40^{+0.04}$
$(\theta_K = 60^\circ)$	-0.00	-0.09 (****)	-0.08 (1999)	-0.10 (-1.17)	-0.07 (****)	-0.09

•This is a general feature in baryon decays, $\Lambda_b \rightarrow pP, \, pV, \, pA$

J.J.Han, J.X, Yu, Y.Li, H.n.Li, J.P.Wang, Z.J.Xiao, FSY, 2409.02821 13

Fu-Sheng Yu

1. Why baryon CPV? Motivation 2. Two-body: Why baryon CPV are so small?

Outline

3. Multi-body: CPV with $N\pi$ rescatterings

Multi-body decays

- •For first observation of baryon CPV, it must be multi-body decays of Λ_h .
- •More resonances, more partial waves, more chances.
- Large CPV in multi-body decays of B mesons.
 - $\mathcal{A}_{B^+\to K^+K^-\pi^+} = -0.115 \pm 0.008 \,,$ $\mathcal{A}_{B^+ \to K^+ K^- K^+} = -0.0365 \pm 0.0036$, $\mathcal{A}_{B^+\to\pi^+\pi^-\pi^+} = 0.076 \pm 0.005 \,,$
- Large regional CPV, such as S- & P-wave interference, $f_0(500) - \rho(770)$
- •Large data samples in $\Lambda_h^0 \rightarrow ph^-h^+h^-$, $h = \pi, K$

Multi-body decays of Λ_h

- Advantage: more resonances, more chances for large CPV
- •Disadvantage: Too many resonances, and with large uncertainties

N(1650)	$1/2^{-}$	****	$N(1700)$ BREIT-WIGNER MASS $1650 ext{ to } 1800 \ (pprox 1720)$ MeV
N(1675)	$5/2^{-}$	***	$N(1700)$ BREIT-WIGNER WIDTH $100 ext{ to } 300 \ (pprox 200)$ MeV
N(1680)	$5/2^{+}$	****	$N(1710)$ BREIT-WIGNER MASS $1680 ext{ to } 1740 \ (pprox 1710)$ MeV
N(1700)	$3/2^{-}$	•••	N(1710) BREIT-WIGNER WIDTH 80 to 200 ($pprox$ 140) MeV
	1 /o±		
N(1710)	1/2+		$N(1720)$ BREIT-WIGNER MASS $1680 ext{ to } 1750 \ (pprox 1720)$ MeV
N(1720)	$3/2^+$	****	$N(1720)$ BREIT-WIGNER WIDTH $150 ext{ to } 400 \ (pprox 250)$ MeV

•Close to each other, with large decay widths. No clear dominant one.

$N\pi$ scatterings

- • N^* usually from $N\pi$ scatterings
- Data from SAID program

https://gwdac.phys.gwu.edu/

Institute for Nuclear Studies THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

INS DAC Home INS DAC [SAID] **INS Home Pi-N** Newsletters Obituary R.A. Arndt

Partial-Wave Analyses at GW [See Instructions] **Pion-Nucleon Pi-Pi-N** Kaon(+)-Nucleon **Nucleon-Nucleon Pion Photoproduction Pion Electroproduction Kaon Photoproduction Eta Photoproduction Eta-Prime Photoproduction Pion-Deuteron (elastic) Pion-Deuteron to Proton+Proton**

INS DAC Services [SAID Program]

- The SAID Partial-Wave Analysis Facility is based
- New features are being added and will first appear always welcome.

Instructions for Using the Partial-Wave Analyses

The programs accessible with the left-hand side navigation t available through the SAID program. Contact a member of c If you enter choices which are unphysical, you may still get garbage out' rule). Please report unexpected garbage-out to t

Note: These programs use HTML forms to run the SAID co setup first. The output is an (edited) echo of an interactive se SSH version. If the default example fails to clarify the specif mail message).

All programs expect energies in MeV units. All of the soluti Some are unstable beyond their upper energy limits. Extrapc Increments: The programs will not allow an arbitrary numb

 Partial-wave amplitudes with strong phases! •Data driven, model independent. Circumvent N*, more precise strong phases.

CPV via $N\pi$ rescatterings

•Tree:

•Penguin:

- •Short-distance •Long-distance weak decays
- •weak phases strong phases

$\mathcal{A} = \mathcal{S}^{1/2} \mathcal{A}_0$

- Different chirality
- different helicity
- different partial waves
- ➡ PWA interference
- difference of strong phases
- **CPV**

J.P.Wang, **FSY**, 2407.04110

 $N\pi \rightarrow N\pi, N\pi\pi$

	decay processes	Scenarios	global CPV	CPV of $\cos\theta < 0$	CPV of $\cos \theta > 0$
$N\pi ightarrow \Delta^{++}\pi^{-}$		$\mathbf{S1}$	5.9%	8.0%	3.6%
$m_{N\pi} \in [1.2, 1.9] \text{GeV}$	$\Lambda_b^0 ightarrow (\Delta^{++}\pi^-) K^-$	$\mathbf{S2}$	5.8%	6.3%	5.3%
		$\mathbf{S3}$	5.6%	4.3%	7.0%
		$\mathbf{S1}$	-4.1%	-5.4%	-2.4%
	$\Lambda_b^0 ightarrow (\Delta^{++}\pi^-)\pi^-$	S2	-3.9%	-3.9%	-3.9%
		$\mathbf{S3}$	-3.6%	-2.3%	-5.3%
		$\mathbf{S1}$	5.8%	8.2%	2.7%
	$\Lambda_b^0 o (p\pi^0) K^-$	S2	5.8%	8.0%	3.0%
		S3	5.8%	7.8%	3.3%
		$\mathbf{S1}$	-3.9%	-3.9%	-3.7%
	$\Lambda_b^0 o (p\pi^0)\pi^-$	S2	-3.9%	-3.8%	-4.3%
		$\mathbf{S3}$	-3.8%	-3.6%	-4.8%

CPV with $N\pi$ scatterings

S1: $f_1 = 1.1$, $g_1 = 0.9$, S2: $f_1 = g_1 = 1.0$, and S3: $f_1 = 0.9$, $g_1 = 1.1$

J.P.Wang, **FSY**, 2407.04110 (CPC2024) 19

	decay processes	Scenarios
$N\pi \to \Delta^{++}\pi^-$		$\mathbf{S1}$
$m_{N\pi} \in [1.2, 1.9] \text{GeV}$	$\Lambda_b^0 ightarrow (\Delta^{++}\pi^-) K^-$	S2
		$\mathbf{S3}$

•LHCb: 2503.16954 aligns with the measurement in this work.

Phys. C48 (2024) 101002, arXiv:2407.04110.

CPV with $N\pi$ scatterings

- a model-independent investigation of angular distributions [36] or utilising scattering data to extract the hadronic amplitude [28]. Applying this method using $\pi^+ n \to p \pi^+ \pi^$ scattering data [37], an estimate of the CP asymmetry in $\Lambda_b^0 \to R(p\pi^+\pi^-)K^-$ decays
 - [28] J.-P. Wang and F.-S. Yu, CP violation of baryon decays with $N\pi$ rescatterings, Chin.

Dalitz CPV with $N\pi$ rescatterings

- •More predictive power.
- •All information are in the Dalitz plots
- In some regions, the local CPV could reach 20% or even 30%.

J.P.Wang, **FSY**, 2407.04110

- Observation of gravitational waves
 - => not only confirm the General Relativity,
 - => but also open the Multi-messenger era of

cosmology.

- •Meson -> Baryon : More is different.
- •New QCD dynamics: exclusive baryon.
- •New challenges and opportunities.

New horizon

Summary

- Baryon CPV is now firstly observed in $\Lambda_h \to p K^- \pi^+ \pi^-$
- It is a new horizon in particle physics.
- We find that the partial-wave CPVs are large but cancelled, resulting in small CPV of baryon decays.
- We propose a new CPV mechanism via $N\pi$ rescatterings. Our prediction is manifested by LHCb.

Backup (I)

Most interesting CPV

$A_{CP}(\Lambda_b^0 \to R(p\pi^+\pi^-)K^-) = (5.4 \pm 0.9 \pm 0.1)\%$ 6.0σ

LHCb, arXiv: 2503.16954

Region (1)

Region (2)

Region (3)

Introduction on CP violation

Kobayashi-Maskawa mechanism: mixing among three generations of quarks

•One weak phase in the CKM mixing matrix

• Particle \neq Anti-particle

$$V_{\rm CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Introduction on CP violation

Definition:
$$A_{CP} = \frac{\Gamma(i \to f) - \Gamma(\bar{i} \to \bar{f})}{\Gamma(i \to f) + \Gamma(\bar{i} \to \bar{f})} = \frac{|A_j|}{|A_j|}$$

$$A_{f} = |a_{1}|e^{i(\delta_{1}+\phi_{1})} + |a_{2}|e^{i(\delta_{2}+\phi_{2})}$$
$$\overline{A}_{\overline{f}} = |a_{1}|e^{i(\delta_{1}-\phi_{1})} + |a_{2}|e^{i(\delta_{2}-\phi_{2})}$$

$$A_{CP} = -\frac{2|a_1a_2|\sin(\delta_2 - \delta_1)\sin(\phi_2 - \phi_1)}{|a_1|^2 + |a_2|^2 + 2|a_1a_2|\cos(\delta_2 - \delta_1)\cos(\phi_2 - \phi_1)}$$

- CPV conditions: 1. At least two amplitudes
 - 2. with different weak phases
 - 3. with different strong phases

 $\frac{A_f|^2 - |\overline{A}_{\overline{f}}|^2}{|\overline{A}_f|^2 + |\overline{A}_{\overline{f}}|^2}$

- $V_{\rm CKM} \leftrightarrow V^*_{\rm CKM}$
- $\phi_{1,2}$: weak phases, flip signs under $A_f \leftrightarrow \overline{A}_{\overline{f}}$ $\delta_{1,2}$: strong phases, keep signs under $A_f \leftrightarrow \overline{A}_{\overline{f}}$

CP violation in baryons

•Hyperon:

-SM estimates: $O(10^{-4}) \sim O(10^{-5})$

-BESIII [Nature 2022]: $A^{\alpha}_{CP}(\Lambda^0 \to p\pi^-) = (2.5 \pm 4.8) \times 10^{-3}$, and $\Xi^- \to \Lambda^0 \pi^-$

- Charmed baryon:
 - -SM estimates: $O(10^{-3}) \sim O(10^{-4})$

- •Bottom baryon:
 - -SM estimates: O(10%)
 - -LHCb reported 3σ evidence of CPV in $\Lambda_b \to p\pi\pi\pi$ [Nature Physics 2017]

 $-A_{CP}(\Lambda_{h}^{0} \to p\pi^{-}) = (0.2 \pm 0.8 \pm 0.4) \%,$

-LHCb [JHEP 2018]: $A_{CP}(\Lambda_c \to pK^+K^-) - A_{CP}(\Lambda_c \to p\pi^+\pi^-) = (3.0 \pm 9.1 \pm 6.1) \times 10^{-3}$

$$A_{CP}(\Lambda_b^0 \to pK^-) = (-1.1 \pm 0.7 \pm 0.4)\%$$

More is different

Baryons are very different from mesons!!

$$\mathcal{M} = \bar{u}_p \left(S + P \gamma_5 \right) u_{\Lambda_b}$$

Non-zero spin, more information from polarizations and partial waves

Fu-Sheng Yu

More is different

- Baryons are very different from mesons!!
 - Non-zero spin, more information from polarizations and partial waves
 - •Three valence quarks, need at least two hard gluons

- •SCET: leading-power is one order of magnitude smaller than the total one
 - •Leading power: $\xi_{\Lambda}(0) = -0.012$ [W.Wang, 2011]
 - •Total form factor: $\xi_{\Lambda}(0) = 0.18$ [Y.L.Shen, Y.M.Wang, 2016]

Fu-Sheng Yu

Long-time long-distance

strong interaction

 $\langle f | \mathcal{H}_W | i
angle$

L. Wolfenstein, Phys. Rev. D 43, 151 (1991). Extensively studied in heavy flavor physics

$$\rangle = \sum_{a} \langle f | a \rangle \langle a | \mathcal{H}_{W} | i \rangle$$

$$i \qquad f + \sum_{a} \mathcal{M}_{W} \left(a \right) \left(f + \sum_{a} \mathcal{M}_{W} \right) \left(f + \sum_{a} \mathcal{M}_{W$$

Rescatterings: Data driven

• Rescattering mechanism for CPV in $B^- \rightarrow (z)$ Model-independent analysis of $\pi\pi \rightarrow K\bar{K}$ data [Bediaga, Frederico, Lourenco, 2013; H.Y.Cheng, C.K.Chua, 2020; Álvarez Garrote, Cuervo, Magalhães, Peláez, PRL2023

$$\begin{pmatrix} A(B^{-} \to \pi^{+} \pi^{-} P^{-}) \\ A(B^{-} \to K^{+} K^{-} P^{-}) \end{pmatrix}_{\text{S-wave}}^{\text{FSI}} = S^{1/2} \begin{pmatrix} A(B^{-} \to \pi^{+} \pi^{-} P^{-}) \\ A(B^{-} \to K^{+} K^{-} P^{-}) \end{pmatrix}_{\text{S-wave}}$$

• Rescattering mechanism for charm CPV. Model-independent analysis of $\pi\pi \to K\bar{K}$ data [Bediaga, Frederico, Magalhaes, PRL2023; Pich, Solomonidi, Silva, PRD2023].

$$|\Delta A_{CP}^{\text{short-distance}}| < 2 \times 10^{-4}$$
 V.S. $\Delta A_{CP}^{\text{FSI}} = -(6.4 \pm 1.8) \times 10^{-4}$

$$(\pi^+\pi^-)K^-, (K^+K^-)K^-$$

CPV via $N\pi$ rescatterings $\mathcal{A} = \mathcal{S}^{1/2} \mathcal{A}_{0}$

 $\mathcal{A} = \bar{u}_{N\pi,1/2^+} (A + B\gamma_5) u_{\Lambda_0} P_{11}$ $+ \bar{u}_{N\pi,1/2^-} (\tilde{A} + \tilde{B}\gamma_5) u_{\Lambda_k} S_{11}$ $+ q_{\mu} \bar{u}^{\mu}_{N\pi,3/2^{+}} (C + D\gamma_5) u_{\Lambda_b} P_{13}$ $+ q_{\mu} \bar{u}^{\mu}_{N\pi,3/2^{-}} (\tilde{C} + \tilde{D}\gamma_5) u_{\Lambda_b} D_{13}$ $+\cdots$.

Long-distance $\Lambda_h \to (N\pi)h \to (N\pi/N\pi\pi)h$

 $\mathcal{A}_0 = \bar{u}_{N\pi,1/2^+} (A + B\gamma_5) u_{\Lambda_h}$ $+ \bar{u}_{N\pi,1/2} (\tilde{A} + \tilde{B}\gamma_5) u_{\Lambda_h}$ $+ q_{\mu} \bar{u}^{\mu}_{N\pi,3/2^{+}} (C + D\gamma_{5}) u_{\Lambda_{b}}$ $+ q_{\mu} \bar{u}^{\mu}_{N\pi,3/2^{-}} (\tilde{C} + \tilde{D}\gamma_5) u_{\Lambda_b}$ $+\cdots$

> •Short-distance $\Lambda_h \to (N\pi)h$

 $\bar{u}_{1/2^+}(f_1^{1/2^+}\gamma_{\mu}+g_1^{1/2^+}\gamma_{\mu}\gamma_5)u_{\Lambda_h}$ $-\bar{u}_{1/2}(f_1^{1/2}\gamma_{\mu}+g_1^{1/2}\gamma_{\mu}\gamma_5)u_{\Lambda_{h}}$

CPV via $N\pi$ rescatterings

$$\mathcal{A}(\Lambda_b \to (\mathcal{B}M)h^-)$$

Under approximations of factorization and on-shell conditions

$$\frac{1}{2^{-}} + P_{11}f_{1}^{1/2^{+}} + ...) (m_{\Lambda_{b}} - m_{N\pi})$$

$$\frac{1}{2^{-}} + P_{11}g_{1}^{1/2^{+}} + ...) (m_{\Lambda_{b}} + m_{N\pi}) \gamma_{5} u_{\Lambda_{b}}$$

$$\frac{1}{2^{\pi}a_{6}}S_{11}f_{1}^{1/2^{-}} + (a_{4} + R_{\pi}a_{6})P_{11}f_{1}^{1/2^{+}} + ...) (m_{\Lambda_{b}} - m_{N\pi})$$

$$\frac{1}{2^{\pi}a_{6}}S_{11}g_{1}^{1/2^{-}} + (a_{4} - R_{\pi}a_{6})P_{11}g_{1}^{1/2^{+}} + ...) (m_{\Lambda_{b}} + m_{N\pi})$$

strong phase difference

$d\Gamma \propto |P_{11}|^2 (|A|^2 + \kappa^2 |B|^2) + |S_{11}|^2 (|\tilde{A}|^2 + \kappa^2 |\tilde{B}|^2)$ $+2\mathcal{R}e\left[(A\tilde{A}^*+\kappa^2 B\tilde{B}^*)P_{11}S_{11}^*\right]\cos\theta$

 $a_{46\pm} = a_4 \pm R_h a_6$

J.P.Wang, **FSY**, 2407.04110

CPV via $N\pi$ rescatterings

•CPV (1): Strong phases from effective Wilson coefficients, BSS mechanism

 $|A|^{2} - |\bar{A}|^{2} \propto 2\mathcal{R}e(\lambda_{u}\lambda_{t}a_{1}a_{46+}) - 2\mathcal{R}e(\lambda_{u}^{*}\lambda_{t}^{*}a_{1}a_{46+})$ $\propto \sin(\Delta \phi_w) \sin(\Delta \delta),$

•CPV (2): Strong phase from different partial waves.

$$\mathcal{R}e\left[AP_{11}\tilde{A}^*S_{11}^*\right] - \mathcal{R}e\left[\bar{A}\bar{P}_{11}\bar{\tilde{A}}^*\bar{S}_{11}^*\right]$$
$$\propto \mathcal{R}e\left[(\lambda_u^*\lambda_t - \lambda_u\lambda_t^*)(a_{46+}P_{11})(a_1^*S_{11}^*)\right]$$
$$+ \mathcal{R}e\left[(\lambda_u\lambda_t^* - \lambda_u^*\lambda_t)(a_1P_{11})(a_{46-}^*S_{11}^*)\right]$$

Fu-Sheng Yu

Backup (II)

- CPV dynamics: LCSR, QCDF for $\Lambda_b \rightarrow p\pi, pK$?
- LCDAs of heavy and light baryons.
- QCDF for $\Lambda_h \to (N\pi)h$
- $B(D) \to (\pi\pi \to \pi\pi)\ell\nu$

• Form factors and di-hadron DAs of $\Lambda_h \to (N\pi \to p\pi^0)\ell\nu$,

Thank you!

Puzzle & Opportunities

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (0.2 \pm 0.8 \pm 0.4) \,\%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-1.1 \pm 0.7 \pm 0.4) \,\%$$

- •CPV in some B-meson decays are as large as 10%
- $\frac{f_{\Lambda_b}}{f_{u.d}}$ • LHCb is a baryon factory !!
- It can be expected that CPV in b-baryons might be observed soon !!
- 2. What processes to observe baryon CPV?

•Precision of baryon CPV measurements reaches the order 1% [LHCb, 2024]

$$\sim 0.5$$
 \longrightarrow $\frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$

Questions: 1. Why not yet observed for baryon CPV ? What dynamics ?

Theoretical approach for dynamics

- •The above crude argument needs to be justified by comprehensive QCD calculations
- •There are more non-factorizable topological diagrams, such as PC2 and the exchange diagrams PE1, PE2
- They can be calculated by PQCD based on the k_T factorization

topological diagrams

- only the leading twist of LCDAs [C.D.Lu, Y.M.Wang, et al, 2009]
- In 2022, considering high-twist LCDAs, results are consistent with Lattice QCD [J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2022]. Consistent with power counting by SCET.

	twist-3	twist-4	twist-5	twist-6	total
exponential					
twist-2	0.0007	-0.00007	-0.0005	-0.000003	0.0001
$twist-3^{+-}$	-0.0001	0.002	0.0004	-0.000004	0.002
$twist-3^{-+}$	-0.0002	0.0060	0.00004	0.00007	0.006
twist-4	0.01	0.00009	0.25	0.0000007	0.26
total	0.01	0.008	0.25	0.00007	$0.27 \pm 0.09 \pm 0.07$

$\Lambda_b \rightarrow p$ form factors in PQCD

In 2009, form factors are two orders smaller than LatticeQCD/experiments, considering

e/exp	PQCD(2009)	PQCD(2022)
0.08	0.002 ± 0.001	0.27 ± 0.12

Up-down asymmetry

- How to measure the large partial-wave CPV?
- They usually need the polarizations of baryons.
- •But the angular distributions may help.

$$\Lambda_b^0 \to p a_1(\to \pi \pi \pi) \qquad \Lambda_b^0 \to p$$
$$\frac{d\Gamma}{d\cos\theta} \supset R \ \mathcal{R}e(S^T P_2^*) \ \cos\theta$$
$$A_{UD} \equiv \frac{\Gamma(\cos\theta > 0) - \Gamma(\cos\theta < 0)}{\Gamma(\cos\theta > 0) + \Gamma(\cos\theta < 0)} = R \ \mathcal{R}e$$
$$A_{CP}^{UD} = \frac{A_{UD} + \bar{A}_{UD}}{A_{UD} - \bar{A}_{UD}}$$

J.P.Wang, Q.Qin, **FSY**, 2411.18323; J.J.Han, J.X, Yu, Y.Li, H.n.Li, J.P.Wang, Z.J.Xiao, FSY, 2409.02821 45

 $pK_1(\rightarrow K\pi\pi)$

 $e(S^T P_2^*)$

 ${\cal A}_{CP}^{UD}$ $-0.24^{+0.08}_{-0.13}$ $\Lambda_b \rightarrow pa_1^-(1260)$ $\Lambda_b \to p K_1^-(1270)$ $0.26^{+0.04}_{-0.10}$ $(\theta_K = 30^\circ)$ $\Lambda_b \to p K_1^-(1270)$ $0.40\substack{+0.04 \\ -0.09}$ $(\theta_K = 60^\circ)$

Up-down asymmetries are large enough to be observed

J.J.Han, J.X, Yu, Y.Li, H.n.Li, J.P.Wang, Z.J.Xiao, FSY, 2409.02821

Direct CPV

$$\mathcal{M} = \bar{u}_p (S + P\gamma_5) u_{\Lambda_b} \qquad \Gamma = \frac{|\vec{p}|}{8\pi M^2} \left(|S|^2 + |P|^2 \right), \quad \bar{\Gamma} = \frac{|\vec{p}|}{8\pi M^2} \left(|\bar{S}|^2 + |\bar{P}|^2 \right)$$

$$\begin{split} S &= |S_t| e^{i\delta_{s,t}} e^{i\phi_t} + |S_p| e^{i\delta_{s,p}} e^{i\phi_p} \\ P &= |P_t| e^{i\delta_{p,t}} e^{i\phi_t} + |P_p| e^{i\delta_{p,p}} e^{i\phi_p} \\ \bar{S} &= -\left\{ |S_t| e^{i\delta_{s,t}} e^{-i\phi_t} + |S_p| e^{i\delta_{s,p}} e^{-i\phi_p} \right\} \\ \bar{P} &= |P_t| e^{i\delta_{p,t}} e^{-i\phi_t} + |P_p| e^{i\delta_{p,p}} e^{-i\phi_p} \end{split}$$

$$\begin{aligned} a_{CP}^{dir} &= \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}} = \frac{|S|^2 + |P|^2 - |\bar{S}|^2 - |\bar{P}|^2}{|S|^2 + |P|^2 + |\bar{S}|^2 + |\bar{P}|^2} \\ &= -\frac{\sin(\delta_{s,t} - \delta_{s,p}) + r\sin(\delta_{p,t} - \delta_{p,p})}{K + [\cos(\delta_{s,t} - \delta_{s,p}) + r\cos(\delta_{p,t} - \delta_{p,p})]\cos\Delta\phi} \sin\Delta\phi \end{aligned}$$

J.P.Wang, Q.Qin, **FSY**, 2411.18323

•Four strong phases Two terms of CPV

Direct and partial-wave CPVs

$$\mathcal{A}(\Lambda_b \to ph)$$

$$A_{CP}^{\text{dir}}(\Lambda_b \to ph) \equiv \frac{\Gamma(\Lambda_b \to ph) - \bar{\Gamma}(\bar{\Lambda}_b \to \bar{p}\bar{h})}{\Gamma(\Lambda_b \to ph) + \bar{\Gamma}(\bar{\Lambda}_b \to \bar{p}\bar{h})} \qquad \qquad \Gamma \propto |S|^2 + \kappa |P|^2 \qquad \qquad \kappa \approx 0.5$$

$$A_{CP}^{S\text{-wave}} \equiv \frac{|S|^2 - |\bar{S}|^2}{|S|^2 + |\bar{S}|^2}, \quad A_{CP}^{P\text{-wave}} \equiv$$

 $A_{CP}^{\text{dir}} \approx \kappa_S A_{CP}^{S\text{-wave}} + \kappa_P A_{CP}^{P\text{-wave}}$

 $=i\bar{u}_p(S+P\gamma_5)u_{\Lambda_b}$

$$\frac{|P|^2 - |\bar{P}|^2}{|P|^2 + |\bar{P}|^2}.$$

$$\kappa_{S} = \frac{|S|^{2}}{|S|^{2} + \kappa |P|^{2}} \qquad \kappa_{P} = \frac{\kappa |P|^{2}}{|S|^{2} + \kappa |P|^{2}}$$

Heavy quark limit

$$\mathcal{A}(\Lambda_b \to ph) = i \bar{u}_p (S + P\gamma)$$

 $\left\langle p(p,s') \left| \bar{u} \gamma^{\mu} b \right| \Lambda_b(P,s) \right\rangle = \bar{u} \left(p,s' \right) \left(f_1 \gamma^{\mu} + f_2 i \sigma^{\mu\nu} \hat{q}_{\nu} + f_3 \hat{q}^{\mu} \right) u \left(P,s \right),$ $\left\langle p(p,s') \left| \bar{u} \gamma^{\mu} \gamma_5 b \right| \Lambda_b(P,s) \right\rangle = \bar{u} \left(p,s' \right) \left(g_1 \gamma^{\mu} + g_2 i \sigma^{\mu\nu} \hat{q}_{\nu} + g_3 \hat{q}^{\mu} \right) \gamma_5 u \left(P,s \right),$

• In the heavy quark limit,

$$f_1 = g_1, \quad f_2 = f_3 = g_2 = g_3 = 0$$

Under factorization approximation,

 $(_5)u_{\Lambda_b}$

T. Mannel, W. Roberts and Z. Ryzak, NPB1991

$$f = \lambda a_{1,2} f_P(m_i - m_f) f_1(m_P^2),$$

$$P = \lambda a_{1,2} f_P(m_i + m_f) g_1(m_P^2),$$

Topological diagrams

 $S = \lambda_{\mathcal{T}} |S_{\mathcal{T}}| e^{i\delta_{\mathcal{T}}^S} + \lambda_{\mathcal{P}} |S_{\mathcal{P}}| e^{i\delta_{\mathcal{P}}^S},$ $P = \lambda_{\mathcal{T}} |P_{\mathcal{T}}| e^{i\delta_{\mathcal{T}}^{P}} + \lambda_{\mathcal{P}} |P_{\mathcal{P}}| e^{i\delta_{\mathcal{P}}^{P}},$

Amplitudes	$\operatorname{Real}(S)$	$\operatorname{Imag}(S)$	$\operatorname{Real}(P)$	$\operatorname{Imag}(P)$	
$\Lambda_b o p\pi^-$					
T	701.19	-51.38	967.54	-265.17	
C_2	-26.61	12.43	-41.51	0.14	
E_2	-55.01	-38.14	-36.23	62.89	
B	-4.00	9.60	-12.73	-19.93	
Tree \mathcal{T}	615.57	-67.49	877.08	-222.06	
PC_1	57.90	-1.12	1.88	-11.11	
PC_2	-5.88	-12.00	4.62	14.20	
PE_1^u	0.39	-9.47	-3.65	8.04	
PB	0.85	-1.06	-1.46	-0.53	
$PE_1^d + PE_2$	-0.55	-3.83	1.37	-0.31	
$\text{Penguin} \ \mathcal{P}$	52.71	-27.49	2.77	10.28	
		$\Lambda_b \to pK^-$			
T	853.60	-52.08	1190.21	-340.84	
E_2	-66.28	-59.48	-50.31	79.56	
Tree \mathcal{T}	787.31	-111.55	1139.90	-261.28	
PC_1	75.64	-0.82	-4.35	-13.81	
PE_1^u	0.10	-11.80	-4.76	9.93	
PE_1^d	-1.50	-7.38	1.66	2.09	
$\text{Penguin} \ \mathcal{P}$	74.23	-20.00	-7.45	-1.79	

Direct and partial-wave CPVs of $\Lambda_h \rightarrow pA, pV$

$$\mathcal{A}^{L}(\Lambda_{b} \to pA) = \bar{u}_{p} \epsilon^{*}_{L\mu} \left(A_{1}^{L} \gamma^{\mu} \gamma_{5} + \right)$$

 $\mathcal{A}^T(\Lambda_b \to pA) = \bar{u}_p \epsilon^*_{T\mu} (A_1^T \gamma^\mu \gamma_5 + B_1^T \gamma^\mu) u_{\Lambda_b},$

$$S^L = -A_1^L, \ S^T = -A_1^T, \ P_1 \approx -$$

$$\Gamma = \frac{p_c}{4\pi} \frac{E_p + m_p}{m_{\Lambda_b}} \left\{ 2(|S^T|^2 + |P_2|^2) \right\}$$

 $A_{CP}^{dir} \approx \kappa_{S^T} A_{CP}^{S^T} + \kappa_{P_2} A_{CP}^{P_2} + \kappa_{D+S^L} A_{CP}^{D+S^L} + \kappa_{P_1} A_{CP}^{P_1}$

 $+A_2^L rac{p_p^\mu}{m_{\Lambda_1}} \gamma_5 + B_1^L \gamma^\mu + B_2^L rac{p_p^\mu}{m_{\Lambda_1}} \Big) u_{\Lambda_b},$

 $-2B_1^L - B_2^L$, $P_2 \approx B_1^T$ and $D \approx -A_1^{\bar{L}} + A_2^L$.

 $+ \frac{E_h^2}{m_1^2} (|S^L + D|^2 + |P_1|^2)$

Fu-Sheng Yu

• PQCD successfully predicted CPV in B meson decays [Keum, H.n.Li, Sanda, 2000; C.D.Lu, Ukai, M.Z.Yang, 2000].

			2000	2004
直接CP破坏(%)	GFA	QCDF	PQCD	exp.
$B \to \pi^+ \pi^-$	-5 ± 3	-6 ± 12	$+30 \pm 20$	+32 ± 4
$B \rightarrow K^+ \pi^-$	+10 ± 3	+5 ± 9	<u>-17 ± 5</u>	-8.3 ± 0.4

- under collinear factorization:
 - Endpoint

In the singularity: propagator
$$\sim 1/x_1 x_2 Q^2 \to \infty$$
 when $x_{1,2} \to 0,1$
$$M(Q^2) = \int_0^1 dx_1 dx_2 \, \phi_B(x_2,\mu^2) * T_H\left(x_1,x_2,\frac{Q^2}{\mu^2},\alpha_s(\mu^2)\right) * \phi_\pi(x_1,\mu^2)$$

- - propagator ~ $1/(x_1x_2Q^2 + k_T^2)$

$$M(Q^2) = \int_0^1 dx_1 dx_2 \int d\mathbf{k}_{1T} d\mathbf{k}_{2T} \phi_B(x_2, \mathbf{k}_{2T}, \mu^2) * T_H\left(x_1, x_2, \mathbf{k}_{2T}, \mathbf{k}_{1T}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2)\right) * \phi_{\pi}(x_1, \mathbf{k}_{1T}, \mu^2)$$

PQCD approach

• PQCD approach (based on k_T factorization): retain transverse momentum of parton k_T ,

Light-Cone Distribution Amplitudes

Pseudoscalar

$$\Phi_{\pi(K)}(q,y) = \frac{i}{\sqrt{2N_C}} \left[\gamma_5 \not\!\!\!\!/ \phi^A_{\pi(K)}(y) + m_0^{\pi(K)} \gamma_5 \phi^P_{\pi(K)}(y) + m_0^{\pi(K)} \gamma_5(\not\!\!\!/ m - 1) \phi^T_{\pi(K)}(y) \right]_{\alpha\beta},$$

Vector meson

$$\Phi_V^L(q,\epsilon_L^*,y) = \frac{-1}{\sqrt{2N_c}} \left[m_V \epsilon_L^* \phi_V(y) + \epsilon_L^* q \phi_V^t(y) + m_V \phi_V^s(y) \right]_{\alpha\beta},$$

 Λ_b baryon $(Y_{\Lambda_b})_{\alpha\beta\gamma}(x_i,\mu) = \frac{1}{8N_c} \Big\{ f^{(1)}_{\Lambda_b}(\mu) [M_1(x_i,\mu)] \Big\}$

 $M_1(x_2)$

 $M_2(x_2)$

$$(x_2, x_3)\gamma_5 C^T]_{\gamma\beta} + f^{(2)}_{\Lambda_b}(\mu)[M_2(x_2, x_3)\gamma_5 C^T]_{\gamma\beta}\Big\} [\Lambda_b(p)]_{\alpha},$$

53

Light-Cone Distribution Amplitudes

Proton

$$\begin{split} (\bar{Y}_{P})_{\alpha\beta\gamma}(x_{i}',\mu) &= \frac{1}{8\sqrt{2}N_{c}} \Big\{ S_{1}m_{p}C_{\beta\alpha}(\bar{N}^{+}\gamma_{5})_{\gamma} + S_{2}m_{p}C_{\beta\alpha}(\bar{N}^{-}\gamma_{5})_{\gamma} + P_{1}m_{p}(C\gamma_{5})_{\beta\alpha}\bar{N}_{\gamma}^{+} \\ &+ P_{2}m_{p}(C\gamma_{5})_{\beta\alpha}\bar{N}_{\gamma}^{-} + V_{1}(C\not\!\!\!P)_{\beta\alpha}(\bar{N}^{+}\gamma_{5})_{\gamma} + V_{2}(C\not\!\!\!P)_{\beta\alpha}(\bar{N}^{-}\gamma_{5})_{\gamma} \\ &+ V_{3}\frac{m_{p}}{2}(C\gamma_{\perp})_{\beta\alpha}(\bar{N}^{+}\gamma_{5}\gamma^{\perp})_{\gamma} + V_{4}\frac{m_{p}}{2}(C\gamma_{\perp})_{\beta\alpha}(\bar{N}^{-}\gamma_{5}\gamma^{\perp})_{\gamma} + V_{5}\frac{m_{p}^{2}}{2Pz}(C\not\!\!z)_{\beta\alpha}(\bar{N}^{+}\gamma_{5})_{\gamma} \\ &+ V_{6}\frac{m_{p}^{2}}{2Pz}(C\not\!\!z)_{\beta\alpha}(\bar{N}^{-}\gamma_{5})_{\gamma} + A_{1}(C\gamma_{5}\not\!\!P)_{\beta\alpha}(\bar{N}^{+})_{\gamma} + A_{2}(C\gamma_{5}\not\!\!P)_{\beta\alpha}(\bar{N}^{-})_{\gamma} \\ &+ A_{3}\frac{m_{p}}{2}(C\gamma_{5}\gamma_{\perp})_{\beta\alpha}(\bar{N}^{+}\gamma^{\perp})_{\gamma} + A_{4}\frac{m_{p}}{2}(C\gamma_{5}\gamma_{\perp})_{\beta\alpha}(\bar{N}^{-}\gamma^{\perp})_{\gamma} + A_{5}\frac{m_{p}^{2}}{2Pz}(C\gamma_{5}\not\!\!z)_{\beta\alpha}(\bar{N}^{+})_{\gamma} \\ &+ A_{6}\frac{m_{p}^{2}}{2Pz}(C\gamma_{5}\not\!\!z)_{\beta\alpha}(\bar{N}^{-})_{\gamma} - T_{1}(iC\sigma_{\perp P})_{\beta\alpha}(\bar{N}^{+}\gamma_{5}\gamma^{\perp})_{\gamma} - T_{2}(iC\sigma_{\perp P})_{\beta\alpha}(\bar{N}^{-}\gamma_{5}\gamma^{\perp})_{\gamma} \\ &- T_{3}\frac{m_{p}}{Pz}(iC\sigma_{Pz})_{\beta\alpha}(\bar{N}^{+}\gamma_{5})_{\gamma} - T_{4}\frac{m_{p}}{Pz}(iC\sigma_{zP})_{\beta\alpha}(\bar{N}^{-}\gamma_{5})_{\gamma} - T_{5}\frac{m_{p}^{2}}{2Pz}(iC\sigma_{\perp z})_{\beta\alpha}(\bar{N}^{+}\gamma_{5}\gamma^{\perp})_{\gamma} \\ &- T_{6}\frac{m_{p}^{2}}{2Pz}(C\sigma_{\perp z})_{\beta\alpha}(\bar{N}^{-}\gamma_{5}\gamma^{\perp})_{\gamma} + T_{7}\frac{m_{p}}{2}(C\sigma_{\perp \perp'})_{\beta\alpha}(\bar{N}^{+}\gamma_{5}\sigma^{\perp \perp'})_{\gamma} \Big\}, \end{split}$$

	twist-3	twist-4	twist-5	twist-6
Vector	V_1	V_2,V_3	V_4,V_5	V_6
Pseudo-Vector	A_1	A_2,A_3	A_4,A_5	A_6
Tensor	T_1	T_2, T_3, T_7	T_4,T_5,T_8	T_6
Scalar		S_1	S_2	
Pesudoscalar		P_1	P_2	

CPV cancellation is general phenomenon?

In unit of %	(Data fr	om PDG)	
$B \rightarrow PP$		$B \rightarrow VP$	$B \rightarrow PV$
$\mathcal{C}(B^0 \to \pi^+\pi^-) = -$	-31 <u>+</u> 3	$A_{CP}(B^0\to\rho^+\pi^-)=13\pm 6$	$A_{CP}(B^0\to\pi^+\rho^-)=-8\pm 8$
$\mathcal{C}(B^0\to\pi^0\pi^0)=-$	25 ± 20	$\mathcal{C}(B^0\to\rho^0\pi^0)=-27\pm24$	
$A_{CP}(B^0\to\pi^-K^+)=-$	-8.3 <u>+</u> 0.3	$A_{CP}(B^0\to\rho^-K^+)=20\pm11$	$A_{CP}(B^0 \to \pi^- K^{*+}) = -27 \pm 4$
$A_{CP}(B^+ \to \pi^0 K^+) =$	2.7 ± 1.2	$A_{CP}(B^+\to\rho^0K^+)=16\pm2$	$A_{CP}(B^+ \to \pi^0 K^{*+}) = -39 \pm 21$
$A_{CP}(B^+ \to \pi^+ \pi^0) =$	-1 ± 4	$A_{CP}(B^+\to\rho^+\pi^0)=3\pm10$	$A_{CP}(B^+ \rightarrow \pi^+ \rho^0) = 0.3 \pm 1.4$

•P-wave

CPV cancellation is general phenomenon?

In unit of % (Data fro	m PQCD [Chai, et. al.,2022])	
$B \rightarrow PP$	$B \rightarrow VP$	$B \rightarrow PV$
$\mathcal{C}(B^0 \to \pi^+\pi^-) = -23$	$A_{CP}(B^0\to\rho^+\pi^-)=7$	$A_{CP}(B^0\to\pi^+\rho^-)=-24$
$\mathcal{C}(B^0\to\pi^0\pi^0)=-3$	$\mathcal{C}(B^0\to\rho^0\pi^0)=-43$	
$A_{CP}(B^0\to\pi^-K^+)=-15$	$A_{CP}(B^0\to\rho^-K^+)=61$	$A_{CP}(B^0 \to \pi^- K^{*+}) = -47$
$A_{CP}(B^+ \to \pi^0 K^+) = -11$	$A_{CP}(B^+\to\rho^0 K^+)=70$	$A_{CP}(B^+ \to \pi^0 K^{*+}) = -32$
$A_{CP}(B^+\to\pi^+\pi^0)=-0.05$	$A_{CP}(B^+\to\rho^+\pi^0)=-0.6$	$A_{CP}(B^+ \to \pi^+ \rho^0) = 1.1$

•P-wave

•P-wave

Rescatterings: Hadronic loops

•CP violation can be enhanced by final-state interaction in B meson decays [Suzuki, Wolfenstein, 1999; H.Y.Cheng, C.K,Chua, Soni, 2005] and charmed baryon decays [X.G.He, C.W.Liu, 2024; C.P.Jia, H.Y.Jiang, J.P.Wang, FSY, 2024]

 Rescattering mechanism have been successfully used to predict the discovery channel of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ [FSY, Jiang, Li, Lu, Wang, Zhao, 2017]

Hierarchy to topological diagrams

In the heavy quark expansion,

$$\frac{C}{T} \sim \left| \frac{E}{T} \right| \sim O\left(\frac{\Lambda_{\rm QCD}}{m_Q}\right) \qquad \left| \frac{B}{C} \right| \sim O\left(\frac{M_{\rm QCD}}{m_Q}\right)$$

Leibovich, Ligeti, Stewart, Wise, 2004

 So we only consider the color-favored emitted tree diagram and corresponding penguin diagram.

 Λ_{QCD} m_Q

Tree

Color-commensurate

Exchange

Bow tie

Kinematics: Dalitz of $\Lambda_b \to (p\pi^0)K^-$

CPV in three-body decays of B mesons

LHCb, 2206.07622

•Penguin:

- Short-distance
 Long-distance weak decays
 - •weak phase strong phase

CPV from $N\pi$ **scatterings**

: $\mathcal{S}^{1/2}\mathcal{A}_{0}$

 $\mathcal{A}(\Lambda^0 \to p\pi^-) = \bar{u}_p(S + P\gamma_5)u_\Lambda$

$$\alpha = \frac{|h_{+}|^{2} - |h_{-}|^{2}}{|h_{+}|^{2} + |h_{-}|^{2}} = \frac{2\mathcal{R}e(SP^{*})}{|S|^{2} + |P|^{2}}$$

- $N\pi$ scatterings

- Suggestions: processes
 - $(N\pi \to N\pi)$: $\Lambda_h^0 \to (p\pi^0)\pi^-$, $(p\pi^0)K^ (N\pi \to \Lambda \bar{K}): \Lambda_h^0 \to (\Lambda^0 K^+)\pi^-, (\Lambda^0 K^+)K^ (N\pi \to p\pi\pi): \Lambda_h^0 \to (p\pi^+\pi^-)\pi^-, (p\pi^+\pi^-)K^-$

CPV via $N\pi$ rescatterings

•Currently, only consider $N\pi \to p\pi^0$ and $N\pi \to \Delta^{++}\pi^-$ to show the results • $N\pi \to \Lambda \bar{K}$ and full analysis of $N\pi \to p\pi^+\pi^-$ will be done in the near future

$$\mathcal{A} = \bar{u}_{N\pi,1/2^{+}} (A + B\gamma_{5}) u_{\Lambda_{b}} P_{11}$$
$$+ \bar{u}_{N\pi,1/2^{-}} (\tilde{A} + \tilde{B}\gamma_{5}) u_{\Lambda_{b}} S_{11}$$

$$A = (\lambda_{u}a_{1} - \lambda_{t}a_{46+})f_{1}^{\frac{1}{2}+}m_{-}$$

$$B = (\lambda_{u}a_{1} - \lambda_{t}a_{46-})g_{1}^{\frac{1}{2}+}m_{+}$$

$$\tilde{A} = (-\lambda_{u}a_{1} + \lambda_{t}a_{46-})f_{1}^{\frac{1}{2}-}m_{-} \quad a_{46\pm} = a_{4} \pm R_{h}a_{6}$$

$$\tilde{B} = (-\lambda_{u}a_{1} + \lambda_{t}a_{46+})g_{1}^{\frac{1}{2}-}m_{+}$$

$$\Lambda_{b} \to (N\pi)K^{-}: \quad \lambda_{u} = V_{ub}V_{us}^{*}, \quad \lambda_{t} = V_{tb}V_{ts}^{*}$$

$$\Lambda_{b} \to (N\pi)\pi^{-}: \quad \lambda_{u} = V_{ub}V_{ud}^{*}, \quad \lambda_{t} = V_{tb}V_{td}^{*}$$

 $m_{\pm} = m_{\Lambda_b} \pm m_{N\pi}$

$$\mathcal{A}(\Lambda_{b} \to (\mathcal{B}M)h^{-})$$

$$\mathbf{e} = \lambda_{u}f_{h}\bar{u}_{N\pi} \left[a_{1} \left(P_{11}f_{1}^{1/2^{+}} - S_{11}f_{1}^{1/2^{-}} + \cdots \right)m_{-} + a_{1} \left(P_{11}g_{1}^{1/2^{+}} - S_{11}g_{1}^{1/2^{-}} + \cdots \right)m_{+}\gamma_{5} \right] u_{\Lambda_{b}}$$

$$\mathbf{hguin} + \lambda_{t}f_{h}\bar{u}_{N\pi} \left[\left(a_{46+}P_{11}f_{1}^{1/2^{+}} - a_{46-}S_{11}f_{1}^{1/2^{-}} + \cdots \right)m_{-} + \left(a_{46-}P_{11}g_{1}^{1/2^{+}} - a_{46+}S_{11}g_{1}^{1/2^{-}} + \cdots \right)m_{+}\gamma_{5} \right] u_{\Lambda_{b}}$$

 weak phase strong phase difference difference

J.P.Wang, **FSY**, CPC48,101002(2024)

,)
,)
,)
,)
,)
,)

S1: $f_1 = 1.1$, $g_1 = 0.9$, S2: $f_1 = g_1 = 1.0$, and S3: $f_1 = 0.9$, $g_1 = 1.1$

- •All information are in the Dalitz plots
- In some regions, the local CPV could reach 20% or even 30%.

S1: $f_1 = 1.1$, $g_1 = 0.9$, S2: $f_1 = g_1 = 1.0$, and S3: $f_1 = 0.9$, $g_1 = 1.1$

Fu-Sheng Yu

- •All information are in the Dalitz plots
- In some regions, the local CPV could reach 20% or even 30%.

S1: $f_1 = 1.1$, $g_1 = 0.9$, S2: $f_1 = g_1 = 1.0$, and S3: $f_1 = 0.9$, $g_1 = 1.1$

Fu-Sheng Yu

CPV of Legendre moments

 $\Lambda_h^0 \to (\Delta^{++}\pi^-)K^- :$ $\mathscr{L}_n = (1, -0.10, 0.20, -0.05, 0.009, 0.05)$

 $\Lambda_h^0 \to (\Delta^{++}\pi^-)K^-$

S1: $f_1 = 1.1$, $g_1 = 0.9$, S2: $f_1 = g_1 = 1.0$, and S3: $f_1 = 0.9$, $g_1 = 1.1$

CPV of Legendre moments

CPV of Legendre moments

Fu-Sheng Yu

Theoretical Challenges

1. QCD dynamics for non-leptonic decays

- •One more energetic quark, one more hard gluon. Counting rule of power expansion is violated by $\alpha_{
 m c}$.
- •Factorization of $\Lambda_h \to (N\pi)h$

2. Non-perturbative inputs

- •Theoretical uncertainties are dominated by the non-perturbative input parameters, such as the light-cone distribution amplitudes (LCDA) of baryons and di-hadrons.
- •Form factors of $\Lambda_h \to (N\pi)$

3. Observables

•T-odd triple products $(\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_3$, 3σ signal in $\Lambda_b \to p\pi\pi\pi$ [LHCb2017]. Defined by kinematics, but unclear relation to the decay amplitudes. No way for theoretical explanations and predictions.

 $\Lambda^0 \rightarrow p\pi^-$: completely polarized hyperon

$$\frac{d\Gamma}{d\cos\theta} \propto 1 + \alpha\cos\theta$$

Polarization in final state:

z-direction: longitudinal polarization of prote

y-direction: normal polarization of proton,

x-direction: transverse polarization of proto

General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. LEE* AND C. N. YANG

Institute for Advanced Study, Princeton, New Jersey (Received October 22, 1957)

$$\mathcal{A}(\Lambda^0 \to p\pi^-) = \bar{u}_p(S + P\gamma_5)u_\Lambda$$

$$\alpha = \frac{\left|\mathcal{H}_{+\frac{1}{2}}\right|^2 - \left|\mathcal{H}_{-\frac{1}{2}}\right|^2}{\left|\mathcal{H}_{+\frac{1}{2}}\right|^2 + \left|\mathcal{H}_{-\frac{1}{2}}\right|^2}$$

ton,
$$\alpha = \frac{2Re(S^*P)}{|S|^2 + |P|^2}$$

 $\beta = \frac{2Im(S^*P)}{|S|^2 + |P|^2}$
on, $\gamma = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$

Lee-Yang parameter, Or decay asymmetry parameter

CPV of Polarizations

Definition of CPV observables: $a_{CP} =$

$$\alpha \text{-induced CPV:} \quad a^{\alpha}_{CP} = \frac{\langle \alpha \rangle - \langle (CP) \alpha (CP)^{\dagger} \rangle}{\langle \alpha \rangle + \langle (CP) \alpha (CP)^{\dagger} \rangle} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}}$$

T-even:
$$\vec{s}_i \cdot \vec{p}$$

T-odd: $(\vec{s}_i \times \vec{s}_f) \cdot \vec{p}$

 $a^lpha_{CP} \propto [r_s \sin(\delta_{p,p}$ $a_{CP}^eta \propto [r_p \cos(\delta_{p,t}$ $a_{CP}^{\gamma} \propto [|S_t||S_p|\sin($

$$= \frac{\langle O \rangle - \langle (CP)O(CP)^{\dagger} \rangle}{\langle O \rangle + \langle (CP)O(CP)^{\dagger} \rangle}$$

$$\begin{aligned} &-\delta_{s,t}) - r_p \sin(\delta_{p,t} - \delta_{s,p})] \sin \Delta \phi \\ &-\delta_{s,p}) - r_s \cos(\delta_{p,p} - \delta_{s,t})] \sin \Delta \phi \\ &(\delta_{s,t} - \delta_{s,p}) - |P_t| |P_p| \sin(\delta_{p,t} - \delta_{p,p})] \sin \Delta \phi \end{aligned}$$

J.P.Wang, Q.Qin, **FSY**, 2411.18323

Why $\cos \delta_s$? What conditions?

- Why $\cos \delta_{\rm c}$?
 - T-odd operator Q_{-} : $TQ_{-}T^{-1} = -Q_{-}$
 - T is anti-unitary, T = UK with U a unitary operator and K a complex conjugation
- Two conditions:

(2) Q_{-} is invariant under this unitary transformation, $UQ_{-}U^{\dagger} = Q_{-}$

$$a_{CP}^{\text{T-odd}} \propto \sum_{m,n} Im(A_m^*A_n - \bar{A}_m^*\bar{A}_n) \propto C$$

$$a_{CP}^{\text{T-even}} \propto \sum_{m,n} Re(A_m^*A_n - \bar{A}_m^*\bar{A}_n) \propto Si$$

(1) For a basis of final states and a unitary transformation so that $UT |\psi_n\rangle = e^{i\alpha} |\psi_n\rangle$

 $\cos \delta_s \sin \phi_w$ $\sin \delta_s \sin \phi_w$

complimentary

J.P.Wang, Q.Qin, **FSY**, 2211.07332

Angular distributions

$$\frac{d\Gamma}{dc_{1} dc_{2} d\varphi} \propto -\frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Im} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin 2\varphi
+ \frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Re} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos 2\varphi
- \frac{4s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Im} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin \varphi
+ \frac{4s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left(\mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi$$

$$\sin\varphi = (\vec{n}_a \times \vec{n}_b) \cdot \hat{p}_b = \vec{n}_a \cdot (\vec{n}_b)$$

 $(\hat{p}_1 \times \hat{p}_2) \propto (\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_4$ S $\sin 2\varphi = 2\sin\varphi\cos\varphi\propto [(\vec{p_1}\times\vec{p_2})\cdot(\vec{p_3}\times\vec{p_4})][(\vec{p_1}\times\vec{p_2})\cdot\vec{p_4}].$

- •Angular distributions of resonant contributions are necessary. It is more clear in theory.

• Triple-product of momentum, $(\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_3$, is not good. $\sin \varphi$ with $\sin \theta_1 \cos \theta_1 \sin \theta_2 \cos \theta_2$

J.P.Wang, Q.Qin, **FSY**, 2411.18323

Suggestions for experiments

	$A_{CP}(\Lambda_b^0 \to (\Delta^{++}\pi^-)K^-)$	$A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-)$
LHCb Run 1 (3 fb^-1)	$(+4.4 \pm 2.6 \pm 0.6)\%$ LHCb, 1903.06792 $\times 1/3$	$(-0.10 \pm 0.08 \pm 0.03)\%$ LHCb, 1602.03160 $\times 1/3$
LHCb Run 2 (6 fb^-1)	$(+6 \pm 1)\%$??	(-0.18 ± 0.03 ± 0.01) % LHCb, 1903.08726

•Suggestion: measure CPV in $\Lambda_b^0 \to (p\pi^+\pi^-)K^-$. Global CPV is +6%.

- •LHCb precision reaches O(1%). It has a large possibility to observe baryon CPV very soon.

