$\Upsilon(10753)$ results from Belle II

第十届XYZ研讨会,长沙,2025年4月13日

殷俊吴 南开大学

trigger counters, proportional wire chambers, and scintillation hodoscopes.

assumed. Note bin width changes.

Discovery of Upsilon

Fermi Lab, E288, $\mu\mu^2$

3 years after November revolution <u>July 1, 1977</u>

$\Upsilon(10753)$ — discovery and studies

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	٦
:	:	:	;	;	:	:	:	:	:	:	;	:	:	:	:	:	:	;	;	:	:	:	:	:	;	::	ŀ
:	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	;	:	:;	1
																											1
																											1
													~		/	, .	1	,	`		2			, ,	,	`	
-	-	-					-			-	-	2	1	b	(ļ	l	J	()	ć)	ļ	ļ	Į.	·
•	•	•			•		•	•	•	•	1	-		•	7					,				,			ł
•	•	•			•		•	•	•	•	Ý	1	1	Б	(ł	()	(j	-		ſ	J).	l
																											$\left \right $
																											1
ŕ,	1		1))																					$\frac{1}{1}$
						/	_																				
																											ł
																											1
																											1
																											1
_		_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	Ī		_	_	_	_		
																	L			1							

Bottomonium?

Phys. Rev. D 101, 014020 (2020) Phys. Lett. B 803, 135340 (2020) Eur. Phys. J. C 80, 59 (2020) Phys. Rev. D 102, 014036 (2020) Prog. Part. Nucl. Phys. 117, 103845 (2021) Phys. Rev. D 104, 034036 (2021) Phys. Rev. D 105, 074007 (2022) etc...

Hybrid?

Phys. Rept. 873, 1 (2020) Phys. Rev. D 104, 034019 (2021) etc...

Tetraquark?

Phys. Lett. B 802, 135217 (2020) Chin. Phys. C 43, 123102 (2019) Phys. Rev. D 103, 074507 (2021) Phys. Rev. D 107, 094515 (2023) etc...

$\Upsilon(10753) \rightarrow \eta \Upsilon(1,2S)$

$\Upsilon(10753) \rightarrow \gamma X_b$

10753)

$\Upsilon(10753) \rightarrow \omega \chi_{bJ}$

$\Upsilon(10753) \rightarrow \omega \eta_b$

 $\Upsilon(10753) \rightarrow B^{(*)}\bar{B}^{(*)}$

total cross-section

Belle+<mark>Belle II</mark>

Shape increase at $B\bar{B}^*$ threshold. Suggestive of something?

$J/\psi(1S)$ hadrons	seen
$J/\psi\pi^+\pi^-$	$< 4 imes 10^{-1}$
$J/\psi\pi^0\pi^0$	$< 2 imes 10^{-1}$
$J/\psi\eta$	$(5.2\pm0.7$
$J/\psi\pi^0$	< 2.8 $ imes$ 1
$J/\psi\pi^+\pi^-\pi^0$	$< 2 imes 10^{-1}$

E > 20(22.5) MeV from barrel and FW endcap (BW endcap)

Tracks with p < 1 GeV, at least one with eID<0.1, $\cos \theta_{\pi\pi} < 0.98$.

Tracks with p > 3 GeV, E/p > 0.7(< 0.3) to identify $e(\mu)$

 $\Upsilon(10753) \rightarrow \eta \Upsilon(2S)$

Clear signal is seen. Project to $M(\eta \rightarrow \gamma \gamma / \pi^+ \pi^- \pi^0)$

Fit to $M(\eta \rightarrow \gamma \gamma / \pi^+ \pi^- \pi^0)$ simultaneously.

Significance: 6.4σ

	Ε	$N_{ m sig}$	significance	ϵ_2/ϵ_3	$(1+\delta)$	$ 1 - \Pi ^2$	$\sigma_B ~({ m pb})$
	10.653	$(3.71^{+1.6}_{-1.3}) \times 10^3$	4.2σ	0.192/0.151	0.881	0.929	$1.11\substack{+0.49 \\ -0.39}$
REI	10.701	$(0.00^{+1.0}_{-0.0}) \times 10^3$	DR-EI	0.130/0.070	1.834	0.928	$0.00\substack{+0.31 \\ -0.00}$
	10.745	$(3.25^{+1.6}_{-1.2}) \times 10^3$	4.8σ	0.171/0.140	0.687	0.930	$0.45\substack{+0.22 \\ -0.17}$
	10.805	$(1.52^{+1.4}_{-0.9}) \times 10^3$	2.8σ	0.166/0.147	0.848	0.931	$0.36\substack{+0.32 \\ -0.21}$

Profiled likelihood distributions from the fit/count results to individual energy point.

Unbinned maximum likelihood fit to the σ^{Born} together with Belle measurement.

Likelihood obtained from simultaneous fits to $M(\eta_{2/3})$. Fit the with 3 different hypotheses:

- 1. $\Upsilon(5S)$ only;
- 2. $\Upsilon(5S) + \Upsilon(10753)$
- 3. $\Upsilon(5S) + \Upsilon(10753) + \Upsilon_{new}$, default

Parameters of Υ_{new} fixed to:

 $m = 10645 \text{ MeV}/c^2, \Gamma = 9 \text{ MeV}$

obtained from $e^+e^- \rightarrow B^{(*)}\bar{B}^{(*)}$ measurement 13

- - Signal: PDF obtained from MC simulation

• Count #signal with $N_{\text{signal}} = N_{\text{SR}} - N_{\text{SB}}$

• Upper limits estimated with Feldman-Cousin method

- ° Estimate the efficiency in the assumption of $\sigma \propto 1/s$
- Born cross sections and their upper limits:

\mathbf{E}	$N_{ m SR}$	N_{SB}	$N_{ m signal}$	ϵ	$(1 + \delta)$	$ 1 - \Pi ^2$	$\sigma_B ~(\mathrm{pb})$
10.653	$0.0\substack{+1.0\\-0.0}$	$0.0\substack{+1.0\\-0.0}$	$0.0^{+1.0}_{-0.0} \ (< 2.0)$	$(23.9\pm0.4)\%$	0.895	0.929	$0.00^{+0.10}_{-0.00} (< 0.26)$
10.701	$0.0\substack{+1.0\\-0.0}$	$0.0\substack{+1.0\\-0.0}$	$0.0^{+1.0}_{-0.0} \ (< 2.0)$	$(24.0\pm0.5)\%$	0.901	0.928	$0.00^{+0.22}_{-0.00} \ (< 0.56)$
10.745	$1.0\substack{+1.4\\-0.7}$	$0.0\substack{+1.0\\-0.0}$	$1.0^{+1.4}_{-0.7} (< 3.6)$	$(23.8\pm0.2)\%$	0.906	0.930	$0.04^{+0.05}_{-0.03} \ (< 0.18)$
10.805	$0.0\substack{+1.0\\-0.0}$	$0.0\substack{+1.0\\-0.0}$	$0.0^{+1.0}_{-0.0} \ (< 2.0)$	$(24.6\pm0.3)\%$	0.912	0.931	$0.00^{+0.08}_{-0.00} \ (< 0.18)$

Search for $e^+e^- \rightarrow X_h \gamma$

In [EPJC 74, 3063(2014)], X_h was predicted to decay to

- $\gamma \Upsilon(1S)$, too difficult
- $\circ \omega \Upsilon(1S)$, searched in [PRL 130, 091902 (2023)]
- $\circ \pi^+\pi^-\chi_{bJ}$

No evident signal with $X_b \to \omega \Upsilon(1S)$

Fit with four components:

- signal 1.
- normal background 2.
- 3. fixed $\pi\pi\Upsilon(2S)$
- fixed $\omega \chi_{bJ}$ 4.
- No X_h signal is found.

Scan $m(X_b)$ to find where X_b most likely placed, which is $m(X_b) = 10.50 \text{ GeV/c}^2$

Summary

- With 20/fb $\Upsilon(10753)$ data collected with Belle II \bullet detector, we observe clear $e^+e^- \rightarrow \eta \Upsilon(2S)$ signal.
 - Not likely from $\Upsilon(10753)$
 - Higher cross section at 10.653 GeV
 - An extra resonance near $B^*\bar{B}^*$ threshold is favored by ~3.8 σ , but with parameters fixed
- No signal of $e^+e^- \rightarrow \eta \Upsilon(1S)$ nor ullet $e^+e^- \rightarrow \gamma X_h[\pi\pi\chi_{hI}]$
 - Upper limits estimated.

Thanks!

Mode	$N_{ m prod}~(imes 10^3)$	$(1+\delta)$	$\epsilon(\%)$	$\sigma_{ m B}^{ m (UL)}$
(10653.3)	30 ± 1.14) MeV			
$\eta \Upsilon(2S)$	$(3.7^{+1.6}_{-1.3}), 4.3\sigma$	0.881	19.2/15.1	$1.11\substack{+0.49\\-0.39}$
$\eta \Upsilon(1S)$	< 0.4	0.895	23.9	< 0.
γX_b	< 0.3	0.784	32.0	< 0.
(10700.9	$00\pm0.63)~{ m MeV}$			
$\eta \Upsilon(2S)$	$(0.0^{+1.0}_{-0.0})$	1.832	12.9/7.0	$0.00\substack{+0.31\\-0.00}$
$\eta \Upsilon(1S)$	< 0.4	0.901	24.0	< 0.
γX_b	< 0.1	0.803	31.3	< 0.
(10746.3)	30 ± 0.48) MeV			_
$\eta \Upsilon(2S)$	$(3.3^{+1.6}_{-1.2}), 4.2\sigma$	0.687	17.1/14.0	$0.45\substack{+0.22\\-0.17}$
$\eta \Upsilon(1S)$	< 0.9	0.906	23.8	< 0.
γX_b	< 1.4	0.817	29.8	< 0.
(10804.5	$50\pm0.70)~{ m MeV}$	DRE		
$\eta \Upsilon(2S)$	$(1.5^{+1.4}_{-0.9}), 2.8\sigma$	0.848	16.6/14.7	$0.36\substack{+0.32\\-0.21}$
$\eta \Upsilon(1S)$	< 0.4	0.912	24.6	< 0.
γX_b	< 1.3	0.833	28.2	< 0.

backup

$\Upsilon(10753)$ — discovery and studies

- A dip in the R_b distribution near 10.75 GeV
- Fit to dressed cross section of $b\bar{b}$ with three BWs.

"The results from these fits may change dramatically by including more information on each exclusive mode."

K-matrix Analysis of e^+e^- Annihilation in the Bottomonium Region

N. Hüsken,^{1,2} R.E. Mitchell,¹ and E.S. Swanson³

Phys.Rev.D 106 (2022) 9, 094013

Coupled channel analysis of high energy s poles: $\Upsilon(4S)$, $\Upsilon(10753)$, $\Upsilon(5S)$, $\Upsilon(6S)$.

Coupled channel analysis of high energy scan data using the K-matrix formalism shows four

第十届XYZ研讨会,长沙,2025年4月13日