Tri-meson state $\bar{B}\bar{B}^*\bar{B}^*$

${\sf Cheng}{\sf -}{\sf Rong}\;{\sf Deng}^1$

¹School of Physical Science and Technology Southwest University, Chongqing, China

The 10th Symposium on XYZ hadrons, Changsha, April 11-15, 2025

- Background
- Quark model
- Wave functions (WF)
- Natures of dimension T_{bb}
- **5** Tri-mension H_{bbb} from T_{bb}
- Summary

・ロト ・回ト ・ヨト

1.1 Classification of hadrons

Conventional hadrons

• Exotic hadrons

• Discoveries in experiments

- Staring from 2003, new hadronic states XYZ, P_c , P_{cs} and T_{cc}
- Exhibiting exotic properties.
- Theoretical descriptions
 - Excited charmonium
 - Compact multiquark states
 - cc̄-gluon hybrid
 - Hadron molecular states
 - Threshold effect
 -
 - Still far away from a unified picture

The most popular one is hadron molecular states, such as $X(3872)(D\bar{D}^*)$, $T_{cc}(3875)$ (DD^*) and P_c ($\Sigma\bar{D}^{(*)}$),.....

(日) (同) (三) (三) (三)

1.3 Multi-hadron states

- In nuclear physics
 - Efimov effect, deuteron (np), deuteron+p(n) \rightarrow ${}^{3}H_{e}$ (${}^{3}H$),.....
- Similarly, in hadron physics

Figure 1: Multi-hadron states. Taken from Sci.Bull. 67, 1735 (2022).

• More theoretical predictions can be found in Phys. Rept. 1108, 1 (2025)

2.1 Model Hamiltonian

Model Hamiltonian

$$H_n = \sum_{i=1}^n \left(m_i + \frac{\mathbf{p}_i^2}{2m_i} \right) - T_c + \sum_{i>j}^n \left(V_{ij}^{oge} + V_{ij}^{con} + V_{ij}^{obe} + V_{ij}^{\sigma} \right)$$

• One-gluon-exchange and quark confinement

$$V_{ij}^{oge} = \frac{\alpha_s}{4} \lambda_i^c \cdot \lambda_j^c \left(\frac{1}{r_{ij}} - \frac{2\pi\delta(\mathbf{r}_{ij})\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j}{3m_i m_j} \right), \ V_{ij}^{con} = -a_c \lambda_i^c \cdot \lambda_j^c r_{ij}^2$$

• One Goldstone boson exchange

$$\begin{split} V_{ij}^{obe} &= V_{ij}^{\pi} \sum_{k=1}^{3} \mathbf{F}_{i}^{k} \mathbf{F}_{j}^{k} + V_{ij}^{K} \sum_{k=4}^{7} \mathbf{F}_{i}^{k} \mathbf{F}_{j}^{k} + V_{ij}^{\eta} (\mathbf{F}_{i}^{8} \mathbf{F}_{j}^{8} \cos \theta_{P} - \sin \theta_{P}) \\ V_{ij}^{\chi} &= \frac{g_{ch}^{2}}{4\pi} \frac{m_{\chi}^{3}}{12m_{i}m_{j}} \frac{\Lambda_{\chi}^{2}}{\Lambda_{\chi}^{2} - m_{\chi}^{2}} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \left(Y(m_{\chi} r_{ij}) - \frac{\Lambda_{\chi}^{3}}{m_{\chi}^{3}} Y(\Lambda_{\chi} r_{ij}) \right), \ \chi = \pi, \ K, \ \eta = 0 \end{split}$$

• σ -meson exchange

$$V_{ij}^{\sigma} = -\frac{g_{ch}^2}{4\pi} \frac{\Lambda_{\sigma}^2 m_{\sigma}}{\Lambda_{\sigma}^2 - m_{\sigma}^2} \left(Y(m_{\sigma} r_{ij}) - \frac{\Lambda_{\sigma}}{m_{\sigma}} Y(\Lambda_{\sigma} r_{ij}) \right)$$

Cheng-Rong Deng (SWU)

2.2 Model parameters

• Meson spectrum and adjustable parameters

State	D	D^*	Ds	D_s^*	Ē	\bar{B}^*	\bar{B}_s	\bar{B}_s^*
Model prediction	1867	2002	1972	2140	5259	5301	5377	5430
PDG	1869	2007	1968	2112	5280	5325	5366	5416
$\langle r^2 \rangle^{\frac{1}{2}}$	0.68	0.82	0.52	0.69	0.73	0.77	0.57	0.62

Mass unit in MeV and root-mean-square unit in fm.

Quark mass and Λ_0 unit in MeV, a_c unit in MeV·fm⁻², r_0 unit in MeV·fm and α_0 is dimensionless.

Parameter	$m_{u,d}$	m _s	m _c	m_b	ac	$lpha_0$	Λ_0	<i>r</i> ₀
Value	280	512	1602	4936	40.78	4.55	9.17	35.06

Applied to the T⁺_{cc}, the model can match the experimental data well.
 C.R. Deng and S.L. Zhu, T⁺_{cc} and its partners, Phys. Rev. D 105, 054015 (2022);

C.R. Deng and S.L. Zhu, Decoding the double heavy tetraquark state T_{cc}^+ , Science Bulletin, 67, $\frac{1}{2}522_{\bigcirc Q, \bigcirc C}$

Cheng-Rong Deng (SWU)

.

3.1 WF of bottomed meson

• WF of bottomed meson

$$\Phi_{IJ}^{\bar{B}^{(*)}} = \chi_{c} \otimes \eta_{i} \otimes \psi_{s} \otimes \phi_{I_{r}m_{r}}(\mathbf{r})$$

Color part

$$\chi_c = \frac{1}{\sqrt{3}} (r\bar{r} + g\bar{g} + b\bar{b})$$

Isospin part

$$\eta_i = b\bar{u}, \ b\bar{d}$$

Spin part

$$S=0: \quad \psi_s=rac{1}{\sqrt{2}}(\uparrow\downarrow-\downarrow\uparrow); \quad S=1: \quad \psi_s=\downarrow\downarrow, \quad rac{1}{\sqrt{2}}(\uparrow\downarrow+\downarrow\uparrow), \quad \uparrow\uparrow$$

• Orbit part, Gaussian expansion method

$$\phi_{l_rm_r}(\mathbf{r}) = \sum_{n_r=1}^{n_{rmax}} c_{n_r} N_{n_r l_r} r^{l_r} e^{-\nu_{n_r} r^2} Y_{l_rm_r}(\hat{\mathbf{r}}), \quad \mathbf{r} = \mathbf{r}_b - \mathbf{r}_{\bar{q}}$$

メロト メロト メヨト メ

3.2 Two configurations of T_{bb}

Diquark configuration

Meson-meson configuration

イロト イヨト イヨト イ

- Diquark configuration: compact, color force.
- Meson-meson configuration: relative loose, residual interactions.

3.3 WF of di-meson state T_{bb}

• WF of di-meson state T_{bb} $(B^{(*)}\bar{B}^*)$

$$\Psi_{l_{12}J_{12}}^{T_{bb}} = \sum_{\xi} c_{\xi} \mathcal{A}_{12} \left\{ \left[\Phi_{l_{1}J_{1}}^{\bar{B}^{(*)}} \Phi_{l_{2}J_{2}}^{\bar{B}^{*}} \right]_{l_{12}}^{J_{12}} \phi_{l_{\rho}m_{\rho}}(\boldsymbol{\rho}) \right\}.$$

• $\xi = \{I_1, I_2, J_1, J_2,\}$ and c_{ξ} can be determined by the model dynamics.

• \mathcal{A}_{12} serves as an antisymmetrization operator

$$\mathcal{A}_{12} = P_{b_1b_2}P_{\bar{q}_1\bar{q}_2}, \quad P_{b_1b_2} = 1 - P_{b_1b_2}, \ P_{\bar{q}_1\bar{q}_2} = 1 - P_{\bar{q}_1\bar{q}_2}.$$

• $\phi_{l_{
ho}m_{
ho}}(
ho)$ represents the relative motion WF between two mesons

$$\boldsymbol{\rho} = \frac{m_b \mathbf{r}_{b_1} + m_q \mathbf{r}_{\bar{q}_1}}{m_b + m_{\bar{q}}} - \frac{m_b \mathbf{r}_{b_2} + m_q \mathbf{r}_{\bar{q}_2}}{m_b + m_{\bar{q}}}$$

Also, $\phi_{l_{\rho}m_{\rho}}(\rho)$ is expressed by Gaussian expansion method.

イロン イロン イヨン イヨン

3.4 Wave functions of H_{bbb}

• Jaccobi coordinates for the trimeson state $\bar{B}\bar{B}^*\bar{B}^*$ (H_{bbb}).

• The total wave function of the tri-meson state H_{bbb}

$$\Psi_{IJ}^{H_{bbb}} = \sum_{\xi} c_{\xi} \mathcal{A}_{123} \left\{ \left[\Psi_{I_{12}J_{12}}^{T_{bb}} \Phi_{I_3J_3}^{\bar{B}^*} \right]_{I}^{J} \phi(\boldsymbol{\lambda}) \right\}.$$

• \mathcal{A}_{123} is antisymmetrization operator.

$$\begin{aligned} \mathcal{A}_{123} &= \mathcal{P}_{b_1 b_2 b_3} \mathcal{P}_{\bar{q}_1 \bar{q}_2 \bar{q}_3} \\ \mathcal{P}_{b_1 b_2 b_3} &= 1 - \mathcal{P}_{b_1 b_3} - \mathcal{P}_{b_2 b_3}, \ \mathcal{P}_{\bar{q}_1 \bar{q}_2 \bar{q}_3} = 1 - \mathcal{P}_{\bar{q}_1 \bar{q}_3} - \mathcal{P}_{\bar{q}_2 \bar{q}_3}. \end{aligned}$$

• $\phi_{l_{\lambda}m_{\lambda}}(\lambda)$ represents the relative motion WF between T_{bb} and \overline{B} $\lambda = \frac{m_b \mathbf{r}_{b_1} + m_q \mathbf{r}_{\bar{q}_1} + m_b \mathbf{r}_{b_2} + m_q \mathbf{r}_{\bar{q}_2}}{2(m_b + m_{\bar{q}})} - \frac{m_b \mathbf{r}_{b_3} + m_{\bar{q}} \mathbf{r}_{\bar{q}_3}}{m_b + m_{\bar{q}}}.$

Cheng-Rong Deng (SWU)

4.1 Methodology

- Five possible isospin-spin configurations
 - Isospin antisymmetric: $[\bar{B}\bar{B}^*]^1_0$ and $[\bar{B}^*\bar{B}^*]^1_0$
 - Isospin symmetric: $[\bar{B}^*\bar{B}^*]^0_1$, $[\bar{B}\bar{B}^*]^1_1$, and $[\bar{B}^*\bar{B}^*]^2_1$
- Solving the four-body Schrödinger equation

$$(H_4 - E_4) \Psi_{I_{12}J_{12}}^{T_{bb}} = 0$$

• Binding energy

$$\Delta E = E_4 - M_{\bar{B}^{(*)}} - M_{\bar{B}^*}$$

• Contribution from each interaction

$$\begin{split} \Delta \langle V^{\chi} \rangle &= \langle \Psi_{l_{12}J_{12}}^{\mathcal{T}_{bb}} | V^{\chi} | \Psi_{l_{12}J_{12}}^{\mathcal{T}_{bb}} \rangle - \langle \Phi_{l_{1}J_{1}}^{\bar{B}^{(*)}} | V^{\chi} | \Phi_{l_{1}J_{1}}^{\bar{B}^{(*)}} \rangle \\ &- \langle \Phi_{l_{2}J_{2}}^{\bar{B}^{*}} | V^{\chi} | \Phi_{l_{2}J_{2}}^{\bar{B}^{*}} \rangle. \end{split}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

4.2 Bound states of T_{bb}

• Bound states: $[\bar{B}\bar{B}^*]^1_0$ and $[\bar{B}^*\bar{B}^*]^1_0$

Binding energy ΔE_4 and contribution from each part unit in MeV, and the size $\langle \rho^2 \rangle^{\frac{1}{2}}$ in fm.

τ_{bb}	IJР	ΔE_4	$\Delta V^{\rm conf}$	$\Delta V^{\rm coul}$	$\Delta V^{\rm cm}$	ΔT	ΔV^{σ}	ΔV^{π}	ΔV^{η}	$\langle \rho^2 \rangle^{1\over 2}$
$[\bar{B}\bar{B}^*]_0^1$	01 ⁺	-10.0	-6.3	-8.9	-14.3	33.0	-9.3	-4.4	0.2	1.07
$[\bar{B}^*\bar{B}^*]_0^1$	01 ⁺	-9.0	-6.0	-7.8	-12.3	29.4	-8.5	-3.9		1.11

- Binding energy: $\Delta E_4 \simeq -10.0$ and -9.0 MeV.
- Binding mechanisms: V^{conf} , V^{coul} , V^{cm} , V^{σ} and V^{π} .
- Compact bound state: $\langle
 ho^2 \rangle^{1 \over 2} \simeq 1.10$ fm while $ar{B}^{(*)}$ is about 0.70 to 0.80 fm.
- Unbound states: $[\bar{B}^*\bar{B}^*]_1^0$, $[\bar{B}\bar{B}^*]_1^1$, and $[\bar{B}^*\bar{B}^*]_1^2$.

・ロト ・ 日 ・ ・ 正 ・ ・

5.1 H_{bbb} from $[\bar{B}\bar{B}^*]_0^1$

• H_{bbb} from $[\bar{B}\bar{B}^*]_0^1$

Binding energy ΔE_6 relative to $\overline{B}\overline{B}^*\overline{B}^*$ and contribution from each part unit in MeV, and the sizes $\langle \rho^2 \rangle^{\frac{1}{2}}$ and $\langle \lambda^2 \rangle^{\frac{1}{2}}$ in fm.

T_{bb}	Н _{ЬЬЬ}	IJР	$\Delta E_{6(4)}$	$\Delta V^{\rm con}$	$\Delta V^{\rm coul}$	$\Delta V^{\rm cm}$	ΔT	ΔV^{σ}	ΔV^{π}	ΔV^{η}	$\langle \rho^2 \rangle^{1\over 2}$	$\langle \lambda^2 \rangle^{1\over 2}$
$[\bar{B}\bar{B}^*]_0^1$	—	01+	-10.0	-6.3	-8.9	-14.3	33.0	-9.3	-4.4	0.2	1.07	_
	$\left[[\bar{B}\bar{B}^*]_0^1 \bar{B}^* \right]_{\frac{1}{2}}^0$	$\frac{1}{2}0^{-}$	-10.2	-6.6	-9.2	-14.0	34.6	-10.8	-4.4	0.3	1.09	4.75
$[\bar{B}\bar{B}^*]^1_0$	$\left[[\bar{B}\bar{B}^*]_0^1 \bar{B}^* \right]_{\frac{1}{2}}^1$	$\frac{1}{2}1^{-}$	-10.0	-6.3	-8.9	-14.3	33.0	-9.3	-4.4	0.2	1.07	∞
	$\left[[\bar{B}\bar{B}^*]_0^1 \bar{B}^* \right]_{\frac{1}{2}}^2$	$\frac{1}{2}2^{-}$	-10.0	-6.3	-8.9	-14.3	33.0	-9.3	-4.4	0.2	1.07	∞

• Bound state: $[[\bar{B}\bar{B}^*]^1_0\bar{B}^*]^0_{\frac{1}{2}}$.

- Bingding energy: $\Delta E_6(\bar{B}\bar{B}^*\bar{B}^*) = -10.2 \text{ MeV}$ and $\Delta E_6'([\bar{B}\bar{B}^*]_0^1\bar{B}^*) = -0.2 \text{ MeV}.$
- Loose two-body bound state: $[\bar{B}\bar{B}^*]_0^1$ is almost unchanged, $\langle \rho^2 \rangle^{\frac{1}{2}} = 4.75$ fm.
- Main binding mechanism: σ meson exchange.
- Unbound states: $[[\bar{B}\bar{B}^*]^1_0\bar{B}^*]^1_{\frac{1}{2}}$ and $[[\bar{B}\bar{B}^*]^1_0\bar{B}^*]^2_{\frac{1}{2}}$.

5.2 H_{bbb} from $[\bar{B}\bar{B}^*]_1^1$

• H_{bbb} from $[\bar{B}\bar{B}^*]_1^1$

T _{bb}	H _{bbb}	IJР	$\Delta E_{6(4)}$	$\Delta V^{\rm con}$	$\Delta V^{\rm coul}$	$\Delta V^{\rm cm}$	ΔT	ΔV^{σ}	ΔV^{π}	ΔV^{η}	$\langle \rho^2 \rangle^{1\over 2}$	$\langle \lambda^2 \rangle^{1\over 2}$
$[\bar{B}\bar{B}^*]_1^1$	_	01+	unbound								∞	_
	$\left[[\bar{B}\bar{B}^*]_1^1 \bar{B}^* \right]_{\frac{1}{2}}^0$	$\frac{1}{2}0^{-}$	-0.4	-2.0	-3.1	-1.1	15.2	-10.2	0.3	0.5	2.19	1.49
$[\bar{B}\bar{B}^*]^1_1$	$\left[[\bar{B}\bar{B}^*]^1_1\bar{B}^*\right]^1_{\frac{1}{2}}$	$\frac{1}{2}1^{-}$	-0.6	-3.7	-4.9	-6.7	24.2	-8.2	-1.5	0.1	2.64	1.28
	$\left[[\bar{B}\bar{B}^*]_1^1 \bar{B}^* \right]_{\frac{1}{2}}^2$	$\frac{1}{2}2^{-}$	unbound								∞	∞

- Bound states: $[[\bar{B}\bar{B}^*]_1^1\bar{B}^*]_{\frac{1}{2}}^0$ and $[[\bar{B}\bar{B}^*]_1^1\bar{B}^*]_{\frac{1}{2}}^1$.
 - Bingding energy: $\Delta E_6 = -0.4$ MeV and -0.6 MeV.
 - Loose three-body bound state: $\langle \rho^2 \rangle^{1\over 2}=2.19$ and 2.64 fm, $\langle \lambda^2 \rangle^{1\over 2}=1.49$ and 1.28 fm.
 - Main binding mechanism: σ meson exchange
- Unbound state: $[[\bar{B}\bar{B}^*]_1^1\bar{B}^*]_{\frac{1}{2}}^2$.

イロト イヨト イヨト イヨ

5.3 Others

• H_{bbb} from $[\bar{B}^*\bar{B}^*]^1_0$, $[\bar{B}^*\bar{B}^*]^0_1$, and $[\bar{B}^*\bar{B}^*]^2_1$

τ_{bb}	H _{bbb}	IJР	$\Delta E_{6(4)}$	$\Delta V^{\rm con}$	$\Delta V^{\rm coul}$	$\Delta V^{\rm cm}$	ΔT	ΔV^{σ}	ΔV^{π}	ΔV^{η}	$\langle \rho^2 \rangle^{1\over 2}$	$\langle \lambda^2 \rangle^{1 \over 2}$
$[\bar{B}^*\bar{B}^*]^1_0$	_	01+	-9.0	-6.0	-7.8	-12.3	29.4	-8.5	-3.9	0.2	1.11	-
$[\bar{B}^*\bar{B}^*]^1_0$	$\left[\bar{B}[\bar{B}^*\bar{B}^*]^1_0\right]^1_{\frac{1}{2}}$	$\frac{1}{2}1^{-}$	-9.0	-6.0	-7.8	-12.3	29.4	-8.5	-3.9	0.2	1.11	∞
$[\bar{B}^*\bar{B}^*]_1^2$	-	12+	unbound								∞	_
$[\bar{B}^*\bar{B}^*]_1^2$	$\left[\bar{B}[\bar{B}^*\bar{B}^*]_1^2\right]_{\frac{1}{2}}^2$	$\frac{1}{2}2^{-}$	unbound								∞	∞
$[\bar{B}^*\bar{B}^*]_1^0$	-	10 ⁺	unbound								∞	_
$[\bar{B}^*\bar{B}^*]_1^0$	$\left[\bar{B}[\bar{B}^*\bar{B}^*]^0_1\right]^0_{\frac{1}{2}}$	$\frac{1}{2}0^{-}$	-0.7	-3.1	-2.2	-4.4	22.5	-11.7	-1.9	0.2	2.09	1.43

- Unbound state: $\left[\bar{B}[\bar{B}^*\bar{B}^*]_0^1\right]_{\frac{1}{2}}^1$ and $\left[\bar{B}[\bar{B}^*\bar{B}^*]_1^2\right]_{\frac{1}{2}}^2$.
- Bound states: $\left[\bar{B}[\bar{B}^*\bar{B}^*]_1^0\right]_{\frac{1}{2}}^0$
 - Bingding energy: $\Delta E_6 = -0.7$ MeV.
 - Loose three-body bound state: $\langle \rho^2 \rangle^{\frac{1}{2}} = 2.09$ fm and $\langle \lambda^2 \rangle^{\frac{1}{2}} = 1.43$ fm.
 - Main binding mechanism: σ meson exchange

イロト イヨト イヨト イヨト

5.4 Spatial configuration of H_{bbb}

• Spatial configuration

Figure 3: Two-body molecule (left) and three-body molecule (right)

- Tow-body bound state: $\left[[\bar{B}\bar{B}^*]_0^1 \bar{B}^* \right]_{\frac{1}{2}}^0$
- Three-body bound states: $[[\bar{B}\bar{B}^*]^1_1\bar{B}^*]^0_{\frac{1}{2}}, \ [\bar{B}[\bar{B}^*\bar{B}^*]^0_1]^0_{\frac{1}{2}}, \ [[\bar{B}\bar{B}^*]^1_1\bar{B}^*]^1_{\frac{1}{2}}$

・ロト ・日下・ ・ ヨト・

5.5 Spectrum and coupled channel effects

Binding energy spectrum

• Coupled channel effects: $IJ^P = \frac{1}{2}0^-$, $\Delta E_6 = -11.5$ MeV, $\langle \lambda^2 \rangle^{\frac{1}{2}} = 2.20$ fm. $[[\bar{B}\bar{B}^*]_0^1\bar{B}^*]_{\frac{1}{2}}^0$ (80%), $[\bar{B}[\bar{B}^*\bar{B}^*]_1^0]_{\frac{1}{2}}^0$ (14%), $[[\bar{B}\bar{B}^*]_1^1\bar{B}^*]_{\frac{1}{2}}^0$ (6%).

• • • • • • • • • • •

5.6 Correlations of meson pairs

Figure 4: np correlation in the ${}^{3}H_{e}$ or ${}^{3}H$ and $[\bar{B}\bar{B}^{*}]_{0}^{1}$ in the tri-meson.

• np short-rang correlation, Jefferson Lab, Nature 609, 41 (2022).

• $IJ = 01^+$, np \gg nn or pp, partly overlapped, quark and gluon structures

- $[\bar{B}\bar{B}^*]^1_0$ short-rang correlation
 - $IJ = 01^+$, $[\bar{B}\bar{B}^*]^1_0(80\%) \gg [\bar{B}\bar{B}^*]^1_1$ (6%) and $[\bar{B}^*\bar{B}^*]^0_1$ (14%)
 - Partly overlapped, quark and gluon structures, such as quark delocalization effect.

Image: A math a math

5.6 Correlations of meson pairs

ullet Two-body bound state of $[\bar{B}_1\bar{B}_2^*]^1_0$ and \bar{B}_3^*

$$\left[[\bar{B}_1 \bar{B}_2^*]_0^1 \bar{B}_3^*]_{\frac{1}{2}}^0 = \left[[\bar{B}_1 \bar{B}_3^*]_0^1 \bar{B}_2^*]_{\frac{1}{2}}^0 + \left[\bar{B}_1 [\bar{B}_2^* \bar{B}_3^*]_0^{0,2} \right]_{\frac{1}{2}}^0, \ \Delta E{=}{-}0.2 \text{ MeV} \right]_{\frac{1}{2}}^0$$

• Three-body bound states of $\bar{B}_1\bar{B}_2^*\bar{B}_3^*$, $[\bar{B}_1\bar{B}_2^*]_1^1$ and $[\bar{B}_2^*\bar{B}_3^*]_1^0$ are unbound.

$$\begin{split} & \left[[\bar{B}_1 \bar{B}_2^*]_1^1 \bar{B}_3^* \right]_{\frac{1}{2}}^0 = \frac{1}{\sqrt{3}} \left(\left[[\bar{B}_1 \bar{B}_3^*]_0^1 \bar{B}_2^* \right]_{\frac{1}{2}}^0 + \left[\bar{B}_1 [\bar{B}_2^* \bar{B}_3^*]_0^{0,2} \right]_{\frac{1}{2}}^0 \right), \ \Delta \mathsf{E}{=}{-}0.4 \ \mathsf{MeV} \\ & \left[\bar{B}_1 [\bar{B}_2^* \bar{B}_3^*]_1^0 \right]_{\frac{1}{2}}^0 = \frac{1}{\sqrt{3}} \left(\left[[\bar{B}_1 \bar{B}_2^*]_0^1 \bar{B}_3^* \right]_{\frac{1}{2}}^0 + \left[[\bar{B}_1 \bar{B}_3^*]_0^1 \bar{B}_2^* \right]_{\frac{1}{2}}^0 \right), \ \Delta \mathsf{E}{=}{-}0.7 \ \mathsf{MeV} \\ & \left[[\bar{B}_1 \bar{B}_2^*]_1^1 \bar{B}_3^* \right]_{\frac{1}{2}}^1 = \frac{1}{\sqrt{3}} \left(\left[[\bar{B}_1 \bar{B}_2^*]_0^1 \bar{B}_3^* \right]_{\frac{1}{2}}^1 + \left[\bar{B}_1 [\bar{B}_2^* \bar{B}_3^*]_0^1 \right]_{\frac{1}{2}}^1 \right), \ \Delta \mathsf{E}{=}{-}0.6 \ \mathsf{MeV}. \end{split}$$

• Binding mechanism: $[\bar{B}\bar{B}^*]^1_0$, the orbital components of the pair $[\bar{B}\bar{B}^*]^1_0$ encompasses not only the ground state but also angular excitations

・ロン ・回 と ・ ヨン・

6. Summary

Summary

• Four bound isospin-spin configurations, $\Delta E \in (-1.0,0)$ MeV.

³*H* or ³*H_e*-like two-body state: $[[\bar{B}\bar{B}^*]_{1}^{0}\bar{B}^*]_{\frac{1}{2}}^{0}$ Loose three-body state: $[[\bar{B}\bar{B}^*]_{1}^{1}\bar{B}^*]_{\frac{1}{2}}^{0}$, $[\bar{B}[\bar{B}^*\bar{B}^*]_{1}^{0}]_{\frac{1}{2}}^{0}$, and $[[\bar{B}\bar{B}^*]_{1}^{1}\bar{B}^*]_{\frac{1}{2}}^{1}$

- After coupling of the configurations with $\frac{1}{2}0^-$, $\Delta E = -1.5$ MeV $[[\bar{B}\bar{B}^*]_0^1\bar{B}^*]_{\frac{1}{2}}^0$ (80%), $[\bar{B}[\bar{B}^*\bar{B}^*]_1^0]_{\frac{1}{2}}^0$ (14%), $[[\bar{B}\bar{B}^*]_1^1\bar{B}^*]_{\frac{1}{2}}^0$ (6%).
- Strong correlation meson pair [\$\bar{B}B^*]_0^1\$, responsible for the binding mechanism of trimeson state \$\bar{B}B^*B^*\$.

Thank you for your attention!

Image: A math a math