

LHCb 实验上隐粲四夸克态的研究进展

中国科学院大学 任赞

第十届XYZ研讨会

2025年4月

湖南・长沙

Searching for hidden-charmed tetraquarks at LHCb

- Via charmonia $(c\bar{c})$ + light hadron/photon in B hadron decays or prompt production.
 - E.g. $B^+ \rightarrow J/\psi \phi K^+$, $B^0 \rightarrow J/\psi \phi K^0_s$,...
 - The radiative decays of $\chi_{c1}(3872)$ in $B^+ \rightarrow \chi_{c1}(3872)K^+$
 - Amplitude analysis of $B^+ \rightarrow \psi(2S)K^+\pi^+\pi^-$ decay
 - Study of exotic $J/\psi\phi$ resonances in CEP process

Recent results included in this talk!

- Via *B* to $D_{(s)}^* \overline{D}_{(s)}^{(*)} h(h')$ decays
 - Hidden-charmed tetraquark in $D_{(s)}^* \overline{D}_{(s)}^{(*)}$ system
 - Also available for searching open-charmed tetraquarks and excited convectional charmed $-\frac{u/d}{c}$ mesons in $\overline{D}_{(s)}^{(*)}h$ systems
 - → See tomorrow's talk《LHCb上B → DDh 衰变的研究》by 朱琳萱

The radiative decays of $\chi_{c1}(3872)$ in $B^+ \rightarrow \chi_{c1}(3872)K^+$

• The radiative decay of X(3872) provides an approach for distinguishing different interpretations of its nature.

The radiative decays of $\chi_{c1}(3872)$ in $B^+ \rightarrow \chi_{c1}(3872)K^+$

- The radiative decay of X(3872) provides an approach for distinguishing different interpretations of its nature.
- Measurement of the ratio

•
$$\mathcal{R}_{\psi\gamma} = \frac{\mathcal{B}\left(B^+ \to (\chi_{c1}(3872) \to \psi(2S)\gamma)K^+\right)}{\mathcal{B}(B^+ \to (\chi_{c1}(3872) \to J/\psi\gamma)K^+)} = \frac{\Gamma(\chi_{c1}(3872) \to \psi(2S)\gamma)}{\Gamma(\chi_{c1}(3872) \to J/\psi\gamma)}$$

 $\mathcal{R}^{\text{Run 1}} = 2.50 \pm 0.52^{+0.20}_{-0.23} \pm 0.06$ $\mathcal{R}^{\text{Run 2}} = 1.49 \pm 0.23^{+0.13}_{-0.12} \pm 0.03$ $\mathcal{R}^{\text{Combined}} = 1.67 \pm 0.21 \pm 0.12 \pm 0.04$

Strongly suggest that X(3872) is not a pure $D\overline{D}^*$ molecule. Contributions from compact component and/or mixture are nonnegligible

JHEP 11 (2024) 121

Amplitude analysis of $B^+ \rightarrow \psi(2S)K^+\pi^+\pi^-$ decay

- 7D amplitude analysis, using a model-building algorithm to iteratively add contributions to the total amplitude.
- More than 30k $B^+ \rightarrow \psi(2S)K^+\pi^+\pi^-$ decays are observed with > 97% signal purity.

Amplitude analysis of $B^+ \rightarrow \psi(2S)K^+\pi^+\pi^-$ decay

- Interpretation of results is not straightforward:
 - Four $X^0/\chi_{c0} \rightarrow \psi(2S)\pi^+\pi^-$ are identified and the shows some similarities to previously observed $J/\psi\phi$ resonances

JHEP 01 (2025) 054

- In $\psi(2S)\pi^{\pm}$ system, $T_{c\bar{c}1}(4430)^{\pm}$ is confirmed, J^P of $T_{c\bar{c}1}(4200)^{\pm}$ is determined to be 1⁺
- Cascade exotics decays $X^0 \to T_{c\bar{c}1}^{\pm}\pi^{\mp}$ observed
- Hidden-charm exotics with minimal quark content $c\bar{c}\bar{s}d$: $T_{c\bar{c}\bar{s}1}(4600/4900)^0 \rightarrow \psi(2S)K^+\pi^-$, may be the radial excitations of $T_{c\bar{c}\bar{s}}(4000)^0$ in $B^0 \rightarrow [J/\psi K_s^0]\phi$

Resonance	J^P	$m_0 [{ m MeV}]$	$\Gamma_0 [{ m MeV}]$	$\Delta(-2\ln\mathcal{L})$	$\Delta N_{ m par}$	Sign. $[\sigma]$	⁼ Stat only
$\chi_{c0}(4475)$	0+	$4475{\pm}~7~{\pm}12$	$231{\pm}19{\pm}32$	675	6	> 20 (19)	_
$\chi_{c1}(4650)$	1^{+}	$4653 {\pm} 14 {\pm} 27$	$227{\pm}26{\pm}22$	286	6	15 (13)	
$\chi_{c0}(4710)$	0^{+}	$4710{\pm}~4~{\pm}5$	$64\pm$ 9 ±10	255	6	14 (10)	
$\eta_{c1}(4800)$	1^{-}	$4785 \pm 37 \pm 119$	$457 {\pm} 93 {\pm} 157$	382	8	17 (12)	
$T^*_{c\bar{c}1}(4055)^+$	1^{-}	4054 (fixed)	45 (fixed)	81	2	8 (7)	_
$T_{c\bar{c}1}(4200)^+$	1+	$4257 \pm 11 \pm 17$	$308{\pm}20{\pm}32$	842	16	$> 20 \ (> 20)$	
$T_{c\bar{c}1}(4430)^+$	1^{+}	$4468 {\pm} 21 {\pm} 80$	$251{\pm}42{\pm}82$	305	10	15(8)	
$T_{c\bar{c}\bar{s}1}(4600)^0$	1^{+}	$4578 {\pm} 10 {\pm} 18$	$133{\pm}28{\pm}69$	287	8	15 (12)	_
$T_{c\bar{c}\bar{s}1}(4900)^0$	$^{1^{+}}$	$4925{\pm}22{\pm}47$	$255 {\pm} 55 {\pm} 127$	177	4	12 (8)	
$T^*_{c\bar{c}\bar{s}1}(5200)^0$	1^{-}	$5225 \pm 86 \pm 181$	$226 \pm 76 \pm 374$	149	6	10 (8)	
$T_{c\bar{c}\bar{s}1}(4000)^+$	1+	4003 (fixed)	131 (fixed)	597	4	> 20 (14)	_

Study of exotic $J/\psi\phi$ resonances in CEP process

• CEP (central exclusive production) in pp collisions: $pp \rightarrow p + X + p$

Low-activity Lower background
Specific kinematics

HeRSCheL (high-rapidity shower counters for LHCb) \rightarrow Extend LHCb's sensitivity to $5 < |\eta| < 10$

z = 114.0m

Study of exotic $J/\psi\phi$ resonances in CEP process

• Background lineshape: determined by dataset with inverted offline multiplicity requirement

Study of exotic $J/\psi\phi$ resonances in CEP process

- Significance:
 - χ_{c1}(4140): 2.4
 - $\chi_{c1}(4274)$: 4.7
 - $\chi_{c0}(4500)$: 5.5
 - $\chi_{c1}(4685) + \chi_{c0}(4700):1.6$
- Mass and width for peaks with a significance> 3σ are measured:

Parameter [MeV]	Current analysis	Ref. [13]
$M_{\chi_{c1}(4274)}$	$4298{\pm}6{\pm}9$	$4294 \pm 4^{+3}_{-6}$
$\Gamma_{\chi_{c1}(4274)}$	$92^{+22}_{-18}\pm 57$	$53\pm5\pm5$
$M_{\chi_{c0}(4500)}$	$4512.5^{+6.0}_{-6.2}\pm 3.0$	$4474 \pm 3 \pm 3$
$\Gamma_{\chi_{c0}(4500)}$	$65^{+20}_{-16} \pm 32$	$77 \pm 6^{+10}_{-8}$

Cross-sections:

 $\sigma_{\chi_{c1}(4140)} \times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4140)} = (0.80 \pm 0.15 \pm 0.28) \text{ pb},$ $\sigma_{\chi_{c1}(4274)} \times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4274)} = (0.73 \pm 0.08 \pm 0.17) \text{ pb},$ $\sigma_{\chi_{c0}(4500)} \times \mathcal{B}_{\text{eff}}^{\chi_{c0}(4500)} = (0.42^{+0.09}_{-0.08} \pm 0.06) \text{ pb},$ $\sigma_{\chi_{c1}(4685) + \chi_{c0}(4700)}$ $\times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4685) + \chi_{c0}(4700)} = (0.14^{+0.07}_{-0.06} \pm 0.06) \text{ pb},$ $\sigma_{\text{NR}} \times \mathcal{B}_{\text{eff}}^{\text{NR}} = (0.43^{+0.24}_{-0.18} \pm 0.20) \text{ pb},$

Summary

• First observation of the radiative decay $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$ with significance 6

 $\rightarrow \chi_{c1}(3872)$ has (at least some) compact component?

 ${\cal R}_{\psi\gamma} = 1.67 \pm 0.21 \pm 0.12 \pm 0.04$

- New tetraquarks found in $B^+ \rightarrow \psi(2S)K^+\pi^+\pi^-$ partial wave analysis
 - $\rightarrow 1^+ T_{c\bar{c}\bar{s}1} (4600/4900)^0 \rightarrow \psi(2S) K^+ \pi^-$, may be the radial excitations of $T_{c\bar{c}\bar{s}} (4000)^0$ in $B^0 \rightarrow [J/\psi K_s^0] \phi$
- First observation of exotics (in $J/\psi\phi$) in CEP data @ LHC!
 - May be a new experimental opportunities to study hadron spectroscopy
- LHCb Run3 will open more opportunities for exotic studies including the hiddencharmed tetraquarks.

Thanks!

Decay channel	Fit fraction [%]
$B^+ \to \chi_{c0}(4475)K^+$	$18.45 \pm 1.31 \pm 2.92$
$B^+ \to \psi(2S) K^*(1680)^+$	$8.15 \pm 1.31 \pm 3.51$
$B^+ \to \psi(2S) K_1(1270)^+$	$7.60 \pm 0.85 \pm 1.35$
$B^+[P] \to \psi(2S) K_1(1270)^+$	$7.52 \pm 0.60 \pm 1.08$
$B^+[D] \to \psi(2S) K_1(1270)^+$	$6.81 \pm 0.45 \pm 1.18$
$B^+ \to \psi(2S) K_1(1400)^+$	$5.78 \pm 0.62 \pm 0.92$
$B^+ \to \psi(2S) K(1460)^+$	$5.26 \pm 0.48 \pm 0.87$
$B^+[P] \to T_{c\bar{c}1}(4200)^+ K^*(892)^0$	$4.60 \pm 0.54 \pm 2.17$
$B^+ \to T_{c\bar{c}\bar{s}1}(4600)^0 \pi^+$	$4.42 \pm 0.98 \pm 2.17$
$B^+ \to K_2^*(1430)^+ \psi(2S)$	$4.35 \pm 0.29 \pm 0.26$
$B^+ \to T_{c\bar{c}1}(4200)^+ K^*(892)^0$	$4.02 \pm 0.88 \pm 1.01$
$B^+ \to T_{c\bar{c}1}(4430)^+ [K^+\pi^-]_{\rm S}$	$3.41 \pm 0.54 \pm 0.78$
$B^+ \to \eta_{c1}(4800)K^+$	$3.24 \pm 0.50 \pm 0.79$
$B^+ \to \chi_{c1}(4650)K^+$	$2.89 \pm 0.45 \pm 0.45$
$B^+[D] \to T_{c\bar{c}1}(4200)^+ K^*(892)^0$	$2.78 \pm 0.33 \pm 0.61$
$B^+ \to T_{c\bar{c}\bar{s}1}(4900)^0 \pi^+$	$2.60 \pm 0.66 \pm 1.94$
$B^+[D] \to \rho(770)^0 T_{c\bar{c}\bar{s}1}(4000)^+$	$2.06 \pm 0.22 \pm 0.84$
$B^+ \to \psi(2S) K^*(1410)^+$	$1.79 \pm 0.35 \pm 0.74$
$B^+ \to \chi_{c0}(4710)K^+$	$1.73 \pm 0.28 \pm 0.40$
$B^+ \to T^*_{c\bar{c}\bar{s}1}(5200)^0 \pi^+$	$1.59 \pm 0.46 \pm 0.61$
$B^+ \to T_{c\bar{c}\bar{s}1}(4000)^+ \ [\pi^+\pi^-]_{\rm S}$	$1.24 \pm 0.23 \pm 0.34$
$B^+ \to T_{c\bar{c}1}(4430) K^*(892)^0$	$0.75 \pm 0.43 \pm 2.24$
$B^+ \to \psi(4360) K^+$	$0.64 \pm 0.14 \pm 0.12$
$B^+ \to T^*_{c\bar{c}1}(4055) \ K^*(892)^0$	$0.52 \pm 0.10 \pm 0.11$
$B^+[P] \to \psi(2S) K_1(1400)^+$	$0.48 \pm 0.18 \pm 0.40$
Sum B^+	$102.69 \pm 4.40 \pm 7.41$

	J^{PC}	Mass (MeV)	width (MeV)	Significance (σ)
X(4140)	1++	$4118 \pm 11^{+19}_{-36}$	$162 \pm 21^{+24}_{-49}$	13
X(4274)	1++	$4294 \pm 4^{+3}_{-6}$	$53 \pm 5 \pm 5$	18
X(4500)	0++	$4474 \pm 3 \pm 3$	$77 \pm 6^{+10}_{-8}$	20
X(4685)	1++	$4684 \pm 7^{+13}_{-16}$	$126 \pm 15^{+37}_{-41}$	15
X(4700)	0++	$4694 \pm 4^{+16}_{-3}$	$87 \pm 8^{+16}_{-6}$	17