

Theoretical study of hadronic molecular states with quark composition $bc\overline{s}\overline{q}$

刘文颖 东南大学

合作: 陈华星, 王恩, Eulogio Oset

Contents

Motivation

- Coupled Channel Bethe-Salpeter Equation
- Numerical Results

♦ Summary

Contents

Motivation

- Coupled Channel Bethe-Salpeter Equation
- Numerical Results

Summary

The double charmed tetraquark state T_{cc}

The distribution of the $D_0D_0\pi^+$ mass

• The BW mass and width of T_{cc}

$$M_{\rm BW} = M_{D^{*+}} + M_{D^0} - (273 \pm 61 \pm 5^{+11}_{-14}) \text{ keV},$$

 $\Gamma_{\rm BW} = 410 \pm 165 \pm 43^{+18}_{-38} \text{ keV}.$

 Considering the experimental resolution produces the resonance

$$m_{\text{pole}} = M_{D^{*+}} + M_{D^0} - (360 \pm 40^{+0}_{-4}) \text{ keV},$$

 $\Gamma_{\text{pole}} = 48 \pm 2^{+0}_{-14} \text{ keV}.$

• quantum numbers, $(I)J^P = (0)1^+$

The possible heavy quark partner of Z_{cs}/T_{cc} states

➤ In the heavy quark limit, the *b/c* quark could be considered as a rest color resource, so the two different quark components could have similar properties.

 $T_{bc\overline{s}}:bc\overline{s}\overline{q}$

The hidden-charm tetraquark state $Z_{cs}(3985)$

• In 2021, $Z_{cs}(3985)$, the possible strange partner of $Z_c(3900)$ was reported by BESIII Collaboration.

$$M_{Z_{CS}} = 3982.5^{+1.8}_{-2.6} \pm 2.1$$

 $\Gamma_{Z_{CS}} = 12.8^{+5.3}_{-4.4} \pm 3.0$

• $M_{Z_{CS}} - M_{D_S^*} - M_{\overline{D}} \sim 2 \text{ MeV}$

Is $Z_{cs}(3985)$ a molecular state?

 K^+ recoil-mass spectra in $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

The possible heavy quark partner of Z_{cs}/T_{cc} states

 $T_{b\bar{c}\bar{s}}$: $b\bar{c}q\bar{s}$

The possible heavy quark partner of T_{cc} states

P: pseudoscalar meson, V: vector meson

The possible heavy quark partner of Z_{cs} states

Contents

Motivation

- Coupled Channel Bethe-Salpeter Equation
- Numerical Results

Summary

Workflow

BS-eq

Bethe-Salpeter equation in coupled channels

$$T = V + VGT$$

$$T = \frac{V}{1 - VG}$$

Loop function

Bethe-Salpeter equation:

$$T_{PP/VP/VV}(s) = \frac{V_{PP/VP/VV}(s)}{1 - V_{PP/VP/VV}(s)G(s)}$$

> Loop function:

$$G_{ii}(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_1^2 + i\epsilon} \frac{1}{(p-q)^2 - m_2^2 + i\epsilon}.$$

$$G_{ii}(s) = \int_0^{q_{\text{max}}} \frac{d^3q}{(2\pi)^3} \frac{\omega_1 + \omega_2}{2\omega_1\omega_2} \frac{1}{s - (\omega_1 + \omega_2)^2 + i\epsilon}$$

Cutoff regularization

 q_{max} is generally taken to be 400-600 MeV, when dealing with hidden-charm molecular states.

Loop function

 \triangleright Looking for poles s_p of T on complex plane,

$$s_p = a + b i$$

$$\downarrow$$
Width

$$G_{ii}^{II}(s) = G_{ii}(s) + i \frac{k}{4\pi\sqrt{s}},$$
 $k(s) = \sqrt{(s - (m_1 + m_2)^2)(s - (m_1 - m_2)^2)}/(2\sqrt{s})$

Coupling constants are defined as the residue of the amplitude at the poles:

$$T_{ij}(s) = \frac{g_i g_j}{s - s_p^2}$$
 $g_i^2 = \lim_{\sqrt{s} \to s_p} (s - s_p^2) T_{ii}(s)$

Vector meson exchange formalism

Feynman diagrams for the interactions between charmed (-strange) mesons and bottom(-strange) mesons

Vertices involving *P* and *V* within the Local Hidden Gauge

$$\begin{split} \mathcal{L}_{VPP} &= -ig \langle [P, \partial_{\mu}P] V^{\mu} \rangle, \\ \\ \mathcal{L}_{VVV} &= ig \langle (V^{\mu} \partial_{\nu} V_{\mu} - \partial_{\nu} V^{\mu} V_{\mu}) V^{\nu} \rangle, \\ \\ \mathcal{L}_{VVVV} &= \frac{g^2}{2} \langle V_{\mu} V_{\nu} V^{\mu} V^{\nu} - V_{\nu} V_{\mu} V^{\mu} V^{\nu} \rangle. \end{split}$$

P: pseudoscalar meson, V: vector meson

P-P interaction in $bc\bar{s}\bar{q}$ system

 \triangleright Two coupled channels in $bc\bar{s}\bar{q}$ system,

Heavy vector exchange negligible

Interaction potential:

$$V_{PP}(s) = C_{PP} \times g^2(p_1 + p_3)(p_2 + p_4),$$

Coefficient matrix:

$$C_{PP} = \begin{pmatrix} J = 0 & \bar{B}_s^0 D^+ & \bar{B}^0 D_s^+ \\ \bar{B}_s^0 D^+ & 0 & \frac{1}{m_{K^*}^2} \\ \bar{B}^0 D_s^+ & \frac{1}{m_{K^*}^2} & 0 \end{pmatrix},$$

$$C_{PP}$$
: + - repulsive attractive

P-P interaction in $bc\bar{s}\bar{q}$ system

 \triangleright Two coupled channels in $bc\bar{s}\bar{q}$ system,

Heavy vector exchange negligible

Interaction potential:

$$V_{PP}(s) = C_{PP} \times g^2(p_1 + p_3)(p_2 + p_4),$$

Coefficient matrix:

$$C_{PP} = egin{pmatrix} ar{J} = 0 & ar{B}_s^0 D^+ & ar{B}^0 D_s^+ \ \hline ar{B}_s^0 D^+ & 0 & rac{1}{m_{K^*}^2} \ \hline ar{B}^0 D_s^+ & rac{1}{m_{K^*}^2} & 0 \end{pmatrix},$$
 repulsive vanished

The formation of molecular states generally requires a diagonal attractive potential

P-P interaction in $bc\bar{s}q$ system

Mass of coupled channels in $bc\bar{s}\bar{q}$ system

$ar{B}^0_{\scriptscriptstyle S} D^+$	$ar{B}^0D_s^+$
7236.6	7248.0

Similar to forming an isospin channel!

mixing of the two channels

$$|(\bar{B}D)_{s}^{+}; J = 0\rangle = \frac{1}{\sqrt{2}} (|\bar{B}_{s}^{0}D^{+}\rangle_{J=0} + |\bar{B}^{0}D_{s}^{+}\rangle_{J=0}),$$
$$|(\bar{B}D)_{s}^{-}; J = 0\rangle = \frac{1}{\sqrt{2}} (|\bar{B}_{s}^{0}D^{+}\rangle_{J=0} - |\bar{B}^{0}D_{s}^{+}\rangle_{J=0}),$$

$$C_{PP} = \begin{pmatrix} J = 0 & \bar{B}_{s}^{0}D^{+} & \bar{B}^{0}D_{s}^{+} \\ \bar{B}_{s}^{0}D^{+} & 0 & \frac{1}{m_{K^{*}}^{2}} \\ \bar{B}_{s}^{0}D_{s}^{+} & \frac{1}{m_{K^{*}}^{2}} & 0 \end{pmatrix} \longrightarrow C_{PP}' = \begin{pmatrix} J = 0 & (\bar{B}D)_{s}^{+} & (\bar{B}D)_{s}^{-} \\ (\bar{B}D)_{s}^{+} & \frac{1}{m_{K^{*}}^{2}} & \cdots & \text{Repulsive} \\ (\bar{B}D)_{s}^{-} & 0 & -\frac{1}{m_{K^{*}}^{2}} & \cdots & \text{Attractive} \end{pmatrix}$$

$$C'_{PP} = \begin{pmatrix} J = 0 & (\bar{B}D)_{s}^{+} & (\bar{B}D)_{s}^{-} \\ (\bar{B}D)_{s}^{+} & \frac{1}{m_{K^{*}}^{2}} & 0 \end{pmatrix} \xrightarrow{\text{Repulsive}} \text{Repulsive}$$

$$(\bar{B}D)_{s}^{-} & 0 & -\frac{1}{m_{K^{*}}^{2}} & -\frac{1}$$

V-P interaction in $bc\bar{s}\bar{q}$ system

 \triangleright Four coupled channels in $bc\bar{s}\bar{q}$ system,

$$ar{B}_{s}^{*0}D^{+}, \qquad ar{B}^{*0}D_{s}^{+}, \qquad ar{B}_{s}^{0}D^{*+}, \qquad ar{B}^{*0}D_{s}^{*+}$$

Vector meson exchange mechanism in VP sector

$$|(\bar{B}^*D)_s^+;J=1
angle = rac{1}{\sqrt{2}}(|\bar{B}_s^{*0}D^+
angle_{J=1}+|\bar{B}^{*0}D_s^+
angle_{J=1})$$

$$|(\bar{B}^*D)_s^-;J=1\rangle = \frac{1}{\sqrt{2}}(|\bar{B}_s^{*0}D^+\rangle_{J=1} - |\bar{B}^{*0}D_s^+\rangle_{J=1}),$$

$$|(\bar{B}D^*)_s^+;J=1\rangle = \frac{1}{\sqrt{2}}(|\bar{B}_s^0D^{*+}\rangle_{J=1} + |\bar{B}^0D_s^{*+}\rangle_{J=1})$$

$$|(\bar{B}D^*)_s^-;J=1\rangle = \frac{1}{\sqrt{2}}(|\bar{B}_s^0D^{*+}\rangle_{J=1} - |\bar{B}^0D_s^{*+}\rangle_{J=1}),$$

Four orthogonal bases in VP sector

V-P interaction in $bc\bar{s}\bar{q}$ system

$$C_{VP} = egin{pmatrix} J = 1 & ar{B}_s^{*0}D^+ & ar{B}^{*0}D_s^+ & ar{B}_s^0D^{*+} & ar{B}^0D_s^{*+} \ ar{B}_s^{*0}D^+ & 0 & rac{1}{m_{K^*}^2} & 0 & 0 \ ar{B}_s^{*0}D_s^+ & ar{m}_{K^*}^2 & 0 & 0 & 0 \ ar{B}_s^0D^{*+} & 0 & 0 & 0 & rac{1}{m_{K^*}^2} \ ar{B}_s^0D_s^{*+} & 0 & 0 & 0 & rac{1}{m_{K^*}^2} \ ar{B}_s^0D_s^{*+} & 0 & 0 & rac{1}{m_{K^*}^2} \ ar{B}_s^0D_s^{*+} & 0 & 0 & rac{1}{m_{K^*}^2} \ \end{pmatrix}$$

No diagonal attraction potential!

V-V interaction in $bc\bar{s}\bar{q}$ system

Vector meson exchange mechanism in VV sector

Interaction potential:

$$V_{VV}(s) = V_{VV}(s)^{ex} + V_{VV}(s)^{co}.$$

$$V_{VV}(s)^{ex} = C_{VV} \times g^2(p_1 + p_3)(p_2 + p_4)\epsilon_1 \cdot \epsilon_3 \epsilon_2 \cdot \epsilon_4,$$

$$C'_{VV} = \begin{pmatrix} J = 0, 1, 2 & (\bar{B}^*D^*)_s^+ & (\bar{B}^*D^*)_s^- \\ (\bar{B}^*D^*)_s^+ & \frac{1}{m_{K^*}^2} & 0 \\ (\bar{B}^*D^*)_s^- & 0 & -\frac{1}{m_{K^*}^2} \end{pmatrix}.$$

$$V_{VV}(s)^{co} = m_{K^*}^2 \cdot C_{VV} \times \begin{cases} -4g^2 & \text{for } J = 0, \\ 0 & \text{for } J = 1, \\ 2g^2 & \text{for } J = 2. \end{cases}$$

Contents

Motivation

- Coupled Channel Bethe-Salpeter Equation
- Numerical Results

Summary

Pole position and coupling

The binding energies E_B and the couplings g_i of the bound states on the physical (first Riemann) sheet for the $bc\bar{s}\bar{q}$ systems with $q_{max}=600$ MeV.

Content: $bc\bar{s}\bar{d}$	$I(J^P)$	E_B (MeV)	Channel	$ g_i $ (GeV)
$ (\bar{B}D)_s^-; J=0\rangle$	$\frac{1}{2}(0^+)$	15.7	$ar{ar{B}}^0_s D^+$	19
	2 ()	i į	$ar{B}^0D_s^+$	21
$ (ar{B}^*D)_s^-;J=1 angle$	$\frac{1}{2}(1^+)$	17.3	$ar{B}_s^{*0}D^+$	20
	_	i i	$ar{B}^{*0}D_s^+$	21
$ (ar{B}D^*)_s^-;J=1 angle$	$\frac{1}{2}(1^+)$	I 16.4 I	$ar{B}^0_s D^{*+}$	20
	_		$ar{B}^0D_s^{*+}$	23
$ (ar{B}^*D^*)_s^-;J=0 angle$	$\frac{1}{2}(0^+)$	13.6	$ar{B}_{\scriptscriptstyle S}^{*0}D^{*+}$	19
	_	i i	$ar{B}^{*0}D_s^{*+}$	21
$ (\bar{B}^*D^*)_s^-;J=1\rangle$	$\frac{1}{2}(1^+)$	18.2	$ar{B}_s^{*0}D^{*+}$	21
	_	+ +	$ar{B}^{*0}D_{s}^{*+}$	23
$ (ar{B}^*D^*)_s^-;J=2 angle$	$\frac{1}{2}(2^+)$	20.5	$ar{B}_s^{*0}D^{*+}$	22
	2	\/	$ar{B}^{*0}D_s^{*+}$	24

- Six bound state in $bc\bar{s}\bar{q}$ system with cutoff parameter $q_{max} = 600$ MeV.
- 1 pole generated from the P-P interaction,
 2 poles generated from the V-P interaction and
 3 poles generated from the V-V interaction.
- > No width.
 - Not consider the width of the initial and final states.
 - Not consider the box diagrams with Kaon exchange.

Pole position and coupling

The pole position s_p of the virtual states on the second Riemann sheet for the $bc\bar{s}\bar{q}$ systems with $q_{max}=400$ MeV.

Content: $bc\bar{s}\bar{d}$	$I(J^P)$	Pole	Channel	Threshold
$\overline{ (ar{B}D)_s^-;J=0 angle}$	$\frac{1}{2}(0^+)$	7235.2 + i0	$ar{B}^0_s D^+$	7236.6
,	-		$ar{B}^0D_s^+$	7248.0
$ (ar{B}^*D)_s^-;J=1 angle$	$\frac{1}{2}(1^+)$	7284.9 + i0	I $ar{B}_s^{*0}D^+$	7285.1
			$ar{B}^{*0}D_s^+$	7293.1
$ (\bar{B}D^*)_s^-;J=1\rangle$	$\frac{1}{2}(1^+)$	7375.7 + i0	$ar{B}^0_s D^{*+}$	7377.2
	_		$ar{B}^0D_{\scriptscriptstyle S}^{*+}$	7391.9
$ (ar{B}^*D^*)_{\scriptscriptstyle \mathcal{S}}^-;J=0 angle$	$\frac{1}{2}(0^+)$	7423.0 + i0	I $ar{B}_s^{*0}D^{*+}$	7425.7
	I		$ar{B}^{*0}D_{\scriptscriptstyle S}^{*+}$	7436.9
$ (\bar{B}^*D^*)_s^-;J=1\rangle$	$\frac{1}{2}(1^+)$	7425.4 + i0	$ar{B}_s^{*0}D^{*+}$	7425.7
	_		$ar{B}^{*0}D_{\scriptscriptstyle S}^{*+}$	7436.9
$ (ar{B}^*D^*)_s^-;J=2 angle$	$\frac{1}{2}(2^+)$	7425.6 + i0	$ar{B}_s^{*0}D^{*+}$	7425.7
		\	$ar{B}^{*0}D_s^{*+}$	7436.9

- d ➤ No bound state pole on the first Riemann sheet.
 - > six virtual state near threshold on the second Riemann sheet (++) in $bc\bar{s}\bar{q}$ system has been found with cutoff parameter $q_{max} = 400$ MeV.

Pole position and coupling

When $q_{max} > 410$ MeV, a bound state pole appears, while it becomes a virtual state when $q_{max} < 410$ MeV.

The pole position $s_p' = s_p - m_{thr}$ of the combination $|(\bar{B}^*D^*)_s^-; J = 2 >$ as a function of the cutoff momentum $q_{max} = 300 - 800$ MeV.

Different behaviors of poles

Amplitude squared for different qmax values

$b\bar{c}s\bar{q}$ and $b\bar{c}\bar{s}q$ system

Interactions in the $b\bar{c}s\bar{q}$ and $b\bar{c}\bar{s}q$ systems

No light vector meson exchange

No deep bound pole has been found

Does this mean that $Z_{cs}(3985)$ is not a molecular state, at least not a bound state?

Evaluate width

Unpublished manuscript

Strong decay Feynman diagram for $|(\bar{B}D^*)_s; 1^+\rangle$

$$D^*(\epsilon_1, p_1) \longrightarrow D_s(q_1)$$

$$\downarrow \bar{K}(q)$$

$$\bar{B}_s(p_2) \longrightarrow \bar{B}^*(\epsilon_4, q_2)$$

Kaon exchange mechanism

Content: $bc\bar{s}\bar{q}$	$I(J^P)$	Width (MeV)	Channel
$ (\bar{B}D)_s^-; J=0\rangle$	$\frac{1}{2}(0^+)$	0	$\bar{B}_s^0 D^+$
			$\bar{B}^0 D_s^+$
$ (\bar{B}^*D)_s^-;J=1\rangle$	$\frac{1}{2}(1^+)$	0	$\bar{B}_s^{*0}D^+$
$ (D D)_s, J - 1\rangle$	$\frac{1}{2}(1)$		$\bar{B}^{*0}D_s^+$
$ (\bar{B}D^*)_s^-; J=1\rangle$	$\frac{1}{2}(1^+)$	25 ⁺⁸ ₋₁₁	$\bar{B}_s^0 D^{*+}$
			$\bar{B}^0 D_s^{*+}$
$ (\bar{B}^*D^*)_s^-; J=0\rangle$	$\frac{1}{2}(0^+)$	43^{+22}_{-23}	$\bar{B}_{s}^{*0}D^{*+}$
			$\bar{B}^{*0}D_s^{*+}$
$ (\bar{B}^*D^*)_s^-; J=1\rangle$	$\frac{1}{2}(1^+)$	36^{+15}_{-17}	$\bar{B}_{s}^{*0}D^{*+}$
			$\bar{B}^{*0}D_s^{*+}$
$ (\bar{B}^*D^*)_s^-; J=2\rangle$	$\frac{1}{2}(2^+)$	44^{+20}_{-22}	$\bar{B}_{s}^{*0}D^{*+}$
			$\bar{B}^{*0}D_s^{*+}$

Evaluate width

Unpublished manuscript

Strong decay Feynman diagram for $|(\bar{B}D^*)_s; 1^+\rangle$

$$D^*(\epsilon_1, p_1) \longrightarrow D_s(q_1)$$

$$\downarrow \bar{K}(q)$$

$$\bar{B}_s(p_2) \longrightarrow \bar{B}^*(\epsilon_4, q_2)$$

Kaon exchange mechanism

$$|(\bar{B}D^*)_{s}; 1^{+}\rangle$$

$$i\mathcal{M}_{2} = ig_{D} ig_{B} \epsilon_{1} \cdot (q_{1} - q) \epsilon_{4}^{*} \cdot (q - p_{2}) \frac{i}{q^{2} - m_{K}^{2}} \times \frac{\Lambda^{2} - m_{K}^{2}}{\Lambda^{2} - q^{2}}$$

$$|(\bar{B}^{*}D^{*})_{s}; 0^{+}/2^{+}\rangle$$

$$i\mathcal{M}_{3} = ig_{D} ig_{B} \epsilon_{1} \cdot (q_{1} - q) \epsilon_{2} \cdot (q_{2} + q) \frac{i}{q^{2} - m_{K}^{2}} \times \frac{\Lambda^{2} - m_{K}^{2}}{\Lambda^{2} - q^{2}} \mathcal{P}_{0/2}$$

 $i\mathcal{M}_4 = \frac{-G_D'}{\sqrt{2}} ig_B \, p_1^\mu \epsilon_1^\nu q_1^\alpha \epsilon_3^{*\beta} \epsilon_{\mu\nu\alpha\beta} \, \epsilon_2 \cdot (q_2 + q) \, \frac{i}{a^2 - m_K^2} \times \frac{\Lambda^2 - m_K^2}{\Lambda^2 - a^2} \, \mathcal{P}_1$

$$\Lambda = 800 - 1200 \text{ MeV}$$

 $|(\bar{B}^*D^*)_{s};1^+\rangle$

Evaluate width

Unpublished manuscript

Content: $bc\bar{s}\bar{q}$	$I(J^P)$	Width (MeV)	Channel
$ (\bar{B}D)_s^-; J = 0\rangle$	$\frac{1}{2}(0^+)$	0	$\bar{B}^0_s D^+$
		0	$\bar{B}^0 D_s^+$
$ (\bar{B}^*D)_s^-; J=1\rangle \qquad \frac{1}{2}$	$\frac{1}{2}(1^+)$	0	$\bar{B}_s^{*0}D^+$
	$\frac{1}{2}(1)$	U	$\bar{B}^{*0}D_s^+$
$ (\bar{B}D^*)_s^-; J=1\rangle$	$\frac{1}{2}(1^+)$	25+8	$\bar{B}_s^0 D^{*+}$
			$\bar{B}^0 D_s^{*+}$
$ (\bar{B}^*D^*)_s^-; J=0\rangle$	$\frac{1}{2}(0^+)$	43 ⁺²² ₋₂₃	$\bar{B}_s^{*0}D^{*+}$
			$\bar{B}^{*0}D_s^{*+}$
$ (\bar{B}^*D^*)_s^-; J=1\rangle$	$\frac{1}{2}(1^+)$	36^{+15}_{-17}	$\bar{B}_s^{*0}D^{*+}$
			$\bar{B}^{*0}D_s^{*+}$
$ (\bar{B}^*D^*)_s^-; J=2\rangle$	$\frac{1}{2}(2^+)$	44 ⁺²⁰	$\bar{B}_{s}^{*0}D^{*+}$
			$\bar{B}^{*0}D_s^{*+}$

$$\frac{\Gamma_{VP^1}}{\Gamma_{VV^0}} = 0.57^{+0.12}_{-0.06}$$

$$\frac{\Gamma_{VV^1}}{\Gamma_{VV^0}} = 0.83^{+0.10}_{-0.06}$$
 The ren
$$\frac{\Gamma_{VV^2}}{\Gamma_{VV^2}} = 1.02^{+0.06}_{-0.06}$$

The ratio of the widths remains relatively stable!

Contents

Motivation

- Coupled Channel Bethe-Salpeter Equation
- Numerical Results

♦ Summary

Summary and Outlook

- Six bound states in $bc\bar{s}\bar{q}$ system with the binding energies about 10-20 MeV has been found when cutoff parameter $q_{max} = 600$ MeV, those bound states change to virtual states when cutoff parameter $q_{max} = 400$ MeV.
- No deeply bound pole has been found in the $b\bar{c}s\bar{q}$ and $b\bar{c}s\bar{q}$ system, for there is no light vector exchange.

ightharpoonup The widths of molecule states in $bc\bar{s}\bar{q}$ system are estimated:

$$\Gamma_{|(\bar{B}D^*)_s;1^+\rangle} \simeq 25^{+8}_{-11} \text{ MeV}$$
 $\Gamma_{|(\bar{B}^*D^*)_s;0^+\rangle} \simeq 43^{+22}_{-23} \text{ MeV}$
 $\Gamma_{|(\bar{B}^*D^*)_s;1^+\rangle} \simeq 36^{+15}_{-17} \text{ MeV}$
 $\Gamma_{|(\bar{B}^*D^*)_s;2^+\rangle} \simeq 44^{+20}_{-22} \text{ MeV}$

Thanks for your attention!

报告人: 刘文颖

2025/04/13

Back-up

BS-eq within LHG

$$P = \begin{pmatrix} \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} + \frac{\pi^{0}}{\sqrt{2}} & \pi^{+} & K^{+} & \bar{D}^{0} & B^{+} \\ \pi^{-} & \frac{\eta}{\sqrt{3}} + \frac{\eta'}{\sqrt{6}} - \frac{\pi^{0}}{\sqrt{2}} & K^{0} & D^{-} & B^{0} \\ K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}} + \sqrt{\frac{2}{3}}\eta' & D_{s}^{-} & B_{s}^{0} \\ B^{-} & \bar{B}^{0} & \bar{B}_{s}^{0} & B_{c}^{-} & \eta_{b} \end{pmatrix}, \qquad V = \begin{pmatrix} \frac{\omega + \rho^{0}}{\sqrt{2}} & \rho^{+} & K^{*+} & \bar{D}^{*0} & B^{*+} \\ \rho^{-} & \frac{\omega - \rho^{0}}{\sqrt{2}} & K^{*0} & D^{*-} & B^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi & D_{s}^{*-} & B^{*0} \\ D^{*0} & D^{*+} & D_{s}^{*+} & J/\psi & B_{c}^{*+} \\ B^{*-} & \bar{B}^{*0} & \bar{B}_{s}^{*0} & B_{c}^{*-} & \Upsilon \end{pmatrix}.$$

A flavor SU(5) symmetry is assumed

BS-eq within LHG

$$V_{VV}(s)^{co} = m_{K^*}^2 \cdot C_{VV} g^2 (-2\epsilon_\mu \epsilon^\mu \epsilon_\nu \epsilon^\nu + \epsilon_\mu \epsilon_\nu \epsilon^\mu \epsilon^\nu + \epsilon_\mu \epsilon_\nu \epsilon^\nu \epsilon^\mu).$$

$$C_{VV} = \begin{pmatrix} J = 0, 1, 2 & \bar{B}_s^{*0} D^{*+} & \bar{B}^{*0} D_s^{*+} \\ \bar{B}_s^{*0} D^{*+} & 0 & \frac{1}{m_{K^*}^2} \\ \bar{B}^{*0} D_s^{*+} & \frac{1}{m_{K^*}^2} & 0 \end{pmatrix},$$

$$C_{VV} = \begin{pmatrix} J = 0, 1, 2 & \bar{B}_{s}^{*0}D^{*+} & \bar{B}^{*0}D_{s}^{*+} \\ \bar{B}_{s}^{*0}D^{*+} & 0 & \frac{1}{m_{K^{*}}^{2}} \\ \bar{B}^{*0}D_{s}^{*+} & \frac{1}{m_{K^{*}}^{2}} & 0 \end{pmatrix}, \qquad \mathcal{P}^{(0)} = \frac{1}{3}\epsilon_{\mu}\epsilon^{\mu}\epsilon_{\nu}\epsilon^{\nu} \\ \mathcal{P}^{(1)} = \frac{1}{2}(\epsilon_{\mu}\epsilon_{\nu}\epsilon^{\mu}\epsilon^{\nu} - \epsilon_{\mu}\epsilon_{\nu}\epsilon^{\nu}\epsilon^{\mu}) \\ \mathcal{P}^{(2)} = \frac{1}{2}(\epsilon_{\mu}\epsilon_{\nu}\epsilon^{\mu}\epsilon^{\nu} + \epsilon_{\mu}\epsilon_{\nu}\epsilon^{\nu}\epsilon^{\mu}) - \frac{1}{3}\epsilon_{\mu}\epsilon^{\mu}\epsilon_{\nu}\epsilon^{\nu},$$

BS-eq within LHG

$$V_{VV}(s)^{co} = m_{K^*}^2 \cdot C_{VV} \times \begin{cases} -4g^2 & \text{for } J = 0, \\ 0 & \text{for } J = 1, \\ 2g^2 & \text{for } J = 2. \end{cases} \quad C_{VV} = \begin{pmatrix} J = 0, 1, 2 & \bar{B}_s^{*0}D^{*+} & \bar{B}^{*0}D_s^{*+} \\ \bar{B}_s^{*0}D^{*+} & 0 & \frac{1}{m_{K^*}^2} \\ \bar{B}_s^{*0}D_s^{*+} & \frac{1}{m_{K^*}^2} & 0 \end{pmatrix},$$

Loop function

Loop function:

$$G_{ii}(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_1^2 + i\epsilon} \frac{1}{(p-q)^2 - m_2^2 + i\epsilon}.$$

dimensional regularization

Results

$$G(s) = \int_{0}^{q_{\text{max}}} \frac{q^{2}dq}{4\pi^{2}} \frac{\omega_{B_{c}^{(*)}} + \omega_{K^{*}}}{\omega_{B_{c}^{(*)}} \omega_{K^{*}}} \frac{1}{\sqrt{s} + \omega_{B_{c}^{(*)}} + \omega_{K^{*}}} \times \frac{1}{\sqrt{s} - \omega_{K^{*}} - \omega_{B_{c}^{(*)}} + i \frac{\sqrt{s'}}{2\omega_{K^{*}}} \Gamma_{K^{*}}(s')},$$
where $s' = (\sqrt{s} - \omega_{B_{c}^{(*)}})^{2} - \vec{q}^{2}$ and
$$\Gamma_{K^{*}}(s') = \Gamma_{K^{*}}(m_{K^{*}}^{2}) \frac{m_{K^{*}}^{2}}{s'} \left(\frac{p_{\pi}(s')}{p_{\pi}(m_{K^{*}}^{2})}\right)^{3} \times \Theta(\sqrt{s'} - m_{K} - m_{\pi}),$$

A. Feijoo, W. H. Liang and E. Oset, Phys. Rev. D 104, no.11, 114015 (2021)

Decay property of $|(\bar{B}D^*)_s; 1^+\rangle$

Unpublished manuscript

Strong decay Feynman diagram for $|(\bar{B}D^*)_s; 1^+\rangle$

$$i\mathcal{M} = G_{MM} \cdot g_{MMX} \cdot i\mathcal{M}_2$$

$$d\Gamma = \frac{1}{32\pi^2} |\mathcal{M}|^2 \frac{|\boldsymbol{p}_1|}{M^2} d\Omega$$

 G_{MM} : meson-meson loop function g_{MMX} : Coupling constant

$$D^*(\epsilon_1, p_1) \longrightarrow D_s(q_1)$$

$$\downarrow \bar{K}(q)$$

$$\bar{B}_s(p_2) \longrightarrow \bar{B}^*(\epsilon_4, q_2)$$

Kaon exchange mechanism

$$i\mathcal{M}_2 = ig_D ig_B \epsilon_1 \cdot (q_1 - q) \epsilon_4^* \cdot (q - p_2) \frac{i}{q^2 - m_K^2} \times \frac{\Lambda^2 - m_K^2}{\Lambda^2 - q^2}$$

$$\Lambda = 800 - 1200 \text{ MeV}$$

Decay property of $|(\bar{B}^*D^*)_s; 0^+/2^+\rangle$

京び リング 東京大学 アクロ 1902 南京 アクリック 1902 中 1902 中

Unpublished manuscript

Strong decay Feynman diagram for $|(\bar{B}^*D^*)_s; 0^+/2^+\rangle$

$$i\mathcal{M} = G_{MM} \cdot g_{MMX} \cdot i\mathcal{M}_3$$

$$d\Gamma = \frac{1}{32\pi^2} |\mathcal{M}|^2 \frac{|\boldsymbol{p}_1|}{M^2} d\Omega$$

 G_{MM} : meson-meson loop function g_{MMX} : Coupling constant

$$D_s^*(\epsilon_1, p_1) \longrightarrow D(q_1)$$

$$\downarrow K(q)$$

$$\bar{B}^*(\epsilon_2, p_2) \longrightarrow \bar{B}_s(q_2)$$

Kaon exchange mechanism

$$i\mathcal{M}_3 = ig_D ig_B \epsilon_1 \cdot (q_1 - q) \epsilon_2 \cdot (q_2 + q) \frac{i}{q^2 - m_K^2} \times \frac{\Lambda^2 - m_K^2}{\Lambda^2 - q^2} \mathcal{P}_{0/2}$$

$$\Lambda = 800 - 1200 \text{ MeV}$$

Decay property of $|(\bar{B}^*D^*)_s; 1^+\rangle$

Unpublished manuscript

Strong decay Feynman diagram for $|(\bar{B}^*D^*)_s; 1^+\rangle$

$$i\mathcal{M} = G_{MM} \cdot g_{MMX} \cdot i\mathcal{M}_4$$

$$d\Gamma = \frac{1}{32\pi^2} |\mathcal{M}|^2 \frac{|\boldsymbol{p}_1|}{M^2} d\Omega$$

 G_{MM} : meson-meson loop function g_{MMX} : Coupling constant

$$D_s^*(\epsilon_1,p_1)$$
 \longrightarrow $D^*(\epsilon_3,q_1)$ $\bar{B}^*(\epsilon_2,p_2)$ \longrightarrow $\bar{B}_s(q_2)$ Kaon exchange mechanism

$$i\mathcal{M}_4 = \frac{-G_D'}{\sqrt{2}} i g_B \, p_1^{\mu} \epsilon_1^{\nu} q_1^{\alpha} \epsilon_3^{*\beta} \epsilon_{\mu\nu\alpha\beta} \, \epsilon_2 \cdot (q_2 + q) \, \frac{i}{q^2 - m_K^2} \times \frac{\Lambda^2 - m_K^2}{\Lambda^2 - q^2} \, \mathcal{P}_1$$

$$\Lambda = 800 - 1200 \, \text{MeV}$$

$$\mathcal{L} = \frac{iG'}{\sqrt{2}} \epsilon^{\mu\nu\alpha\beta} \langle \delta_{\mu} V_{\nu} \delta_{\alpha} V_{\beta} P \rangle$$

Spin projection operator

Strong decay Feynman diagram for $|(\bar{B}^*D^*)_s; 1^+\rangle$

$$\begin{split} \mathcal{P}^{(0)} &= \frac{1}{3} \epsilon_{\mu} \epsilon^{\mu} \epsilon_{\nu} \epsilon^{\nu} \\ \mathcal{P}^{(1)} &= \frac{1}{2} (\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu} - \epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}) \\ \mathcal{P}^{(2)} &= \frac{1}{2} (\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu} + \epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}) - \frac{1}{3} \epsilon_{\mu} \epsilon^{\mu} \epsilon_{\nu} \epsilon^{\nu}, \end{split}$$

$$\mathcal{L} = g_X^0 \frac{1}{\sqrt{3}} X^{\dagger} V_1 \cdot V_2$$

$$+ g_X^1 \frac{1}{\sqrt{2}} \epsilon^{ijk} X^{i\dagger} V_1^j V_2^k$$

$$+ g_X^2 X^{ij} V_1^i V_2^j$$

$$+ h.c.$$

Decay property

Unpublished manuscript

$$|(\bar{B}D^*)_s;1^+\rangle$$

PV sector

$$|(\bar{B}^*D^*)_s;0^+\rangle$$

VV, I = 0 sector

$$\Gamma_{X'_{VP} \to \bar{B}^* D_s} \simeq 8.9^{+3.0}_{-3.9} \,\text{MeV}$$

$$\Gamma_{X'_{VP} \to \bar{B}_s^* D} \simeq 15.9^{+5.2}_{-6.9} \,\text{MeV}$$

$$\Gamma_{X'_{VR}} \simeq 24.8^{+8.2}_{-10.8} \,\mathrm{MeV}$$

$$\Gamma_{X_{VV}^0 \to \bar{B}_s D} \simeq 24.0^{+12.3}_{-12.8} \,\text{MeV}$$

$$\Gamma_{X_{VV}^0 \to \bar{B}D_s} \simeq 19.3_{-10.2}^{+9.7} \,\text{MeV}$$

$$\Gamma_{X_{VV}^0} \simeq 43.3_{-23.0}^{+22.0} \,\mathrm{MeV}$$

$|(\bar{B}^*D^*)_s;1^+\rangle$

VV, J = 1 sector

$|(\bar{B}^*D^*)_s; 2^+\rangle$

VV, J = 2 sector

$$\Gamma_{X_{VV}^1 \to \bar{B}_s^* D} \simeq 15.1_{-7.5}^{+6.6} \,\text{MeV}$$

$$\Gamma_{X_{VV}^1 \to \bar{B}_s D^*} \simeq 4.6^{+1.3}_{-1.8} \,\text{MeV}$$

$$\Gamma_{X_{VV}^1 \to \bar{B}^* D_s} \simeq 14.2_{-7.0}^{+6.1} \,\text{MeV}$$

$$\Gamma_{X_{VV}^1 \to \bar{B}D_s^*} \simeq 2.2_{-0.8}^{+0.5} \,\mathrm{MeV}$$

$$\Gamma_{X_{VV}^1} \simeq 36.1_{-17.1}^{+14.5} \,\mathrm{MeV}$$

$$|(B^*D^*)_s;2^+\rangle$$

$$\Gamma_{X_{VV}^2 \to \bar{B}_s D} \simeq 12.4^{+6.2}_{-6.6} \,\text{MeV}$$

$$\Gamma_{X_{VV}^2 \to \bar{B}D_s} \simeq 10.2^{+5.0}_{-5.4} \,\text{MeV}$$

$$\Gamma_{X_{VV}^2 \to \bar{B}_s^* D} \simeq 9.1_{-4.5}^{+4.0} \,\text{MeV}$$

$$\Gamma_{X_{VV}^2 \to \bar{B}_s D^*} \simeq 2.8_{-1.1}^{+0.8} \,\text{MeV}$$

$$\Gamma_{X_{VV}^2 \to \bar{B}^* D_s} \simeq 8.5_{-4.2}^{+3.7} \,\text{MeV}$$

$$\Gamma_{X_{VV}^2 \to \bar{B}D_s^*} \simeq 1.3_{-0.5}^{+0.3} \,\text{MeV}$$

$$\Gamma_{X_{VV}^2} \simeq 44.3_{-22.3}^{+20.0} \,\mathrm{MeV}$$

44

Production

$$S_{K^*}^{\text{mac}} = 1 - it_{K^*} \frac{1}{\sqrt{2\omega_{K^*}}} \frac{1}{\sqrt{2\omega_K}} \frac{1}{\sqrt{2\omega_{\pi}}} \frac{1}{\mathcal{V}^{3/2}} (2\pi)^4 \delta(P_{\text{in}} - P_{\text{out}}),$$
(15)

$$S_{B^*}^{\text{mac}} = 1 - it_{B^*} \frac{1}{\sqrt{2\omega_{B^*}}} \frac{1}{\sqrt{2\omega_B}} \frac{1}{\sqrt{2\omega_{\pi}}} \frac{1}{\mathcal{V}^{3/2}} (2\pi)^4 \delta(P_{\text{in}} - P_{\text{out}}).$$
(16)

FIG. 5. Diagram of the transition $K^{*+} \to K^0 \pi^+$ (left) and $B^{*+} \to B^0 \pi^+$ (right).

Let us then compare the $K^{*+} \to K^0 \pi^+$ and $B^{*+} \to B^0 \pi^+$ transitions as shown in Fig. 5. As we can see in the figure, the transitions are identical and governed by the light quarks, with the \bar{s} quark in K^{*+} and \bar{b} quark in B^{*+} playing the role of a spectator. The transition amplitudes are thus identical at the quark microscopic level, but we must take into account that when used at the macroscopic level of the K^{*+} or B^{*+} there are normalization factors $(2\omega)^{-1/2}$ which are different for the K^{*+} , K^0 or B^{*+} , B^0 fields. This is taken easily into account by constructing the S matrix at the macroscopic level. At the microscopic level we have (we follow Mandl + Shaw normalization of the fields [59])

$$S^{\text{mic}} = 1 - it \sqrt{\frac{2m_L}{2E_L}} \sqrt{\frac{2m_L'}{2E_L'}} \sqrt{\frac{1}{2\omega_{\pi}}} \frac{1}{\mathcal{V}^{3/2}} (2\pi)^4 \delta(P_{\text{in}} - P_{\text{out}}),$$
(14)

with m_L , E_L , m'_L , and E'_L the masses (constituent) of the incoming and outgoing light quarks, \mathcal{V} the volume of the box where states are normalized to unity, and ω_{π} the pion energy. At the macroscopic level we have for the K^{*+} and B^{*+}

Production

$$\frac{t_{B^*}}{t_{K^*}} \equiv \frac{\sqrt{m_{B^*} m_B}}{\sqrt{m_{K^*} m_K}} \simeq \frac{m_{B^*}}{m_{K^*}}.$$
 (17)

For a B^* at rest, as we shall assume in our evaluations, t is proportional to $\vec{\epsilon} \cdot \vec{q}$, with \vec{q} the pion momentum and $\vec{\epsilon}$ the polarization vector of the vector meson (corrections of the order of $|\vec{p}_{B^*}|/m_{B^*}$ coming next can be safety neglected). It is interesting to compare what we get in our approach to the results of Ref. [58]. In Ref. [58], the width for $B^{*+} \to B^0 \pi^+$ (or $D^{*+} \to D^0 \pi^+$) is given by

$$\Gamma = \frac{g_H^2}{6\pi \tilde{f}_\pi^2} |\vec{p}_\pi|^3, \tag{18}$$

with g_H the coupling appearing in the heavy hadron Lagrangian and $\tilde{f}_{\pi} = \sqrt{2}f_{\pi}$. For the same amplitude, our approach, considering Eq. (17), is given by

$$\Gamma = \frac{1}{6\pi} \frac{1}{m_{B^*}^2} g^2 \left(\frac{m_{B^*}}{m_{K^*}}\right)^2 |\vec{p}_{\pi}|^3.$$
 (19)

By taking $g^2/m_{K^*}^2 = (m_V/2f_\pi m_{K^*})^2 \equiv \frac{1}{4f_\pi^2}$, we have the relationship

$$\frac{g_H^2}{2} \equiv \frac{1}{4}; \qquad g_H = \frac{1}{\sqrt{2}}.$$
 (20)

The same result would appear if we use another heavy vector decay like D^* . Our approach, with the consideration of the field normalizations, leads to a g_H independent of flavor and furthermore provides a value for it of $(\sqrt{2})^{-1}$. This value is in good agreement with the latest lattice QCD result [62] for the $B^* \to B\pi$ decay

$$g_H = 0.57 \pm 0.1. \tag{21}$$

The heavy quark plays the role of a spectator at the quark level.

$$\Gamma_{D^* o D\pi} = rac{1}{6\pi} rac{q^3}{m_{D^*}^2} g_D^2$$
 $g_D = g \cdot rac{m_{D^*}}{m_{K^*}}$ $g_D^{exp} = 8.41$
 $g_B = g \cdot rac{m_{B^*}}{m}$ $g_B^{lattice} = 21.4$

$$g_D^{theo} = 9.7$$
$$g_B^{theo} = 25.9$$