

第十届XYZ研讨会·长沙

$\psi_3(3842)$ 的轻介子对衰变性质研究

报告人: 赖宝君

合作者: 白紫跃博士, 刘翔教授

arXiv:2412.09408v2

2025年4月13日

• Framework

Content

- Numerical Results
- Summary

In 2019, the LHCb Collaboration observed a new narrow charmonium state, the X(3842).

LHCb Collaboration, JHEP 07, 035 (2019).

 $m_{X(3842)} = 3842.71 \pm 0.16 \pm 0.12 \text{ MeV}/c^2$ $\Gamma_{X(3842)} = 2.79 \pm 0.51 \pm 0.35 \text{ MeV}$

Consistent with theoretical prediction of						
$\psi_3(1^3D_3)$						
$m_{\psi_3} \sim 3815 - 3863 \ { m MeV}/c^2$						
$\Gamma_{\psi_3} \sim 1 - 2 \mathrm{MeV}$						

S.F. Radford and W.W. Repko, Phys. Rev. D 75 (2007) 074031.
E. Eichten and F. Feinberg, Phys. Rev. D 23 (1981) 2724.
S. Godfrey and N. Isgur, Phys. Rev. D 32 (1985) 189.
S.N. Gupta, S.F. Radford and W.W. Repko, Phys. Rev. D 34 (1986) 201.
L.P. Fulcher, Perturbative QCD, Phys. Rev. D 44 (1991) 2079.
J. Zeng, J.W. Van Orden and W. Roberts, Phys. Rev. D 52 (1995) 5229.
D. Ebert, R.N. Faustov and V.O. Galkin, Phys. Rev. D 67 (2003) 014027.
T. Barnes and S. Godfrey, Phys. Rev. D 69 (2004) 054008.
T. Barnes, S. Godfrey and E.S. Swanson, Phys. Rev. D 72 (2005) 054026.
E.J. Eichten, K. Lane and C. Quigg, Phys. Rev. D 73 (2006) 014014 [Erratum ibid. D 73 (2006) 079903].

Confirmed by BESIII Collaboration in 2022 with a significance of 4.2 σ .

BESIII Collaboration, Phys. Rev. D 106, 052012 (2022).

There is a longstanding puzzle concerns the non- $D\overline{D}$ decay of $\psi(3770)$, which is the *D*-wave partner of $\psi_3(3842)$, with $J^P = 1^-$

Traditional theories predict it mainly decays into pure $D\overline{D}$, with non- $D\overline{D}$ suppressed by the OZI rule.

G. Li, X. H. Liu, Q. Wang, and Q. Zhao, Phys. Rev. D 88, 014010 (2013).

However, experimental data show that

$$\begin{split} & \Gamma_{\text{non}-D\bar{D}} \ / \Gamma_{\psi(3770)} = (10.9 \pm 6.9 \pm 9.2)\% \\ \text{G. Rong, D. H. Zhang, and J. C. Chen, arXiv: hep-ex/0506051.} \\ & \Gamma_{\text{non}-D\bar{D}} \ / \Gamma_{\psi(3770)} = (16.4 \pm 7.3 \pm 4.2)\% \\ \text{BES Collaboration, Phys. Rev. Lett. 97, 121801 (2006).} \\ & \Gamma_{\text{non}-D\bar{D}} \ / \Gamma_{\psi(3770)} = (14.5 \pm 1.7 \pm 5.8)\% \\ \text{BES Collaboration, Phys. Lett. B 641, 145 (2006).} \\ & \Gamma_{\text{non}-D\bar{D}} \ / \Gamma_{\psi(3770)} = (13.4 \pm 5.0 \pm 3.6)\% \\ \text{BES Collaboration, Phys. Rev. D 76, 122002 (2007).} \\ & \Gamma_{\text{non}-D\bar{D}} \ / \Gamma_{\psi(3770)} = (15.1 \pm 5.6 \pm 1.8)\% \\ \text{BES Collaboration, Phys. Lett. B 659, 74 (2008).} \\ & \Gamma_{D\bar{D}} = (100.3 \pm 1.4^{+4.8}_{-6.6})\% \\ \text{CLEO Collaboration, Phys. Rev. Lett. 96, 092002 (2006); 104, 159901 (E) (2010).} \end{split}$$

4

 $J/\psi\pi^+\pi^-$

 $J/\psi\pi^0\pi^0$

 $J/\psi\eta$

 $\phi\eta$

 $\gamma \chi_{c1}$

 $\gamma \chi_{c0}$

 Γ_5

 Γ_6

 Γ_7

 Γ_{14}

 Γ_{101}

 Γ_{102}

The non- $D\overline{D}$ decay channels such as $J/\psi\pi\pi$, $\phi\eta$ and $\gamma\chi_{cJ}$, (J = 0, 1), their combined branching ratios total less than 2%

 $(1.93\pm0.28) imes10^{-3}$

 $(8.0\pm 3.0) imes 10^{-4}$

 $(8.7 \pm 1.2) imes 10^{-4}$

 $(3.1\pm 0.7) imes 10^{-4}$

 $(2.49\pm 0.23) imes 10^{-3}$

 $(6.9\pm 0.6) imes 10^{-3}$

• NRQCD, color-octet contributions, $\psi(3770) \rightarrow$ LH

 $\Gamma_{LH}/\Gamma_{\psi(3770)}\sim 2\%$

Z. G. He, Y. Fan, and K. T. Chao, Phys. Rev. Lett. 101, 112001 (2008).

• Hadronic loop mechanism $\Gamma_{PV} / \Gamma_{\psi(3770)} {\sim} 5\%$

Y. J. Zhang, G. Li, and Q. Zhao, Phys. Rev. Lett. 102, 172001 (2009).
X. Liu, B. Zhang, and X. Q. Li, Phys. Lett. B 675, 441 (2009).
G. Li, X. h. Liu, Q. Wang, and Q. Zhao, Phys. Rev. D 88, 014010 (2013).

Theo. studies indicate that light hadron decays (esp. PV) contributed significantly.

Hadronic loop mechanism can provide a sizable contribution.

Several similarities between $\psi_3(3842)$ and $\psi(3770)$

- $\psi_3(3842)$ and $\psi(3770)$ are D-wave partner states.
- $\psi_3(3842)$ and $\psi(3770)$ have small mass gap.
- $\psi_3(3842)$ and $\psi(3770)$ share the same dominant decay modes.

It is reasonable to infer that $\psi_3(3842)$ would also have a large non- $D\overline{D}$ branching ratio.

► Framework

In general, the processes we study can be divided The non- $D\overline{D}$ decay widths into three categories

The decay amplitudes can be expressed as follows

$$\mathcal{M} = \int rac{d^4 q}{(2\pi)^4} \mathcal{V}_1 \mathcal{V}_2 \mathcal{V}_3 \mathcal{P}_1 \mathcal{P}_2 \mathcal{P}_E \mathcal{F}^2(q^2, m_E^2),$$

 $\mathcal{F}(q^2, m_E^2)$ is dipole form factor

$$\mathcal{F}(q^{2},m_{E}^{2})=\left(rac{m_{E}^{2}-\Lambda^{2}}{q^{2}-\Lambda^{2}}
ight)^{2}$$
,

where $\Lambda = m_E + \alpha \Lambda_{\rm QCD}$, $\Lambda_{\rm QCD} = 220$ MeV and α is cutoff parameter typically on the order of 1.

$$\Gamma = \frac{1}{7} \frac{|\vec{p}_1|}{8\pi m_{\psi_3(3842)}^2} \sum_{spin} |\mathcal{M}^{\text{Total}}|^2,$$

where \vec{p}_1 is the three-momentum of the final state.

Specifically, the light-meson-pair decays of $\psi(3842)$ include the following channels

1. $\psi_3(3842) \rightarrow PP(K\overline{K})$

► Framework

3. $\psi_3(3842) \rightarrow PV(K\overline{K}^* + c.c., \omega\eta, \omega\eta' \text{ and } \rho\pi)$

► Framework

The effect Lagrangians related to each vertex as follow

$$\begin{split} \mathcal{L}_{\psi_{3}DD} &= ig_{\psi_{3}DD}\psi_{3}^{\mu\alpha\beta} \big(\partial_{\alpha}\partial_{\mu}D^{\dagger}\partial_{\beta}D - \partial_{\alpha}D^{\dagger}\partial_{\beta}\partial_{\mu}D\big), \\ \mathcal{L}_{D_{(s)}^{(*)}D_{(s)}^{(*)}P} &= ig_{DD^{*}P} \big(D_{\mu}^{*\dagger}D - D^{\dagger}D_{\mu}^{*}\big)\partial^{\mu}P \\ &- g_{D^{*}D^{*}P}\varepsilon_{\mu\nu\alpha\beta}D^{*\dagger\nu}\partial^{\beta}D^{*\alpha}\partial^{\mu}P' \\ \mathcal{L}_{D_{(s)}^{(*)}D_{(s)}^{(*)}V} &= -ig_{DDV}D_{i}^{\dagger}\overleftarrow{\partial}^{\mu}D^{j}(V_{\mu})_{j}^{i} \\ &- 2f_{DD^{*}V}\varepsilon_{\mu\nu\alpha\beta}\partial^{\nu}(\mathcal{V}^{\beta})_{j}^{i} \left(D_{i}^{*\dagger\mu}\overleftarrow{\partial}^{\alpha}D^{j} - D_{i}^{\dagger}\overleftarrow{\partial}^{\alpha}D^{*\mu j}\right) \\ &+ ig_{D^{*}D^{*}V}D_{i}^{*\dagger\nu}\overleftarrow{\partial}^{\mu}D_{\nu}^{*j}(\mathcal{V}_{\mu})_{j}^{i} \\ &+ 4if_{D^{*}D^{*}V}D_{i}^{*\dagger\mu} \big[\partial_{\mu}\mathcal{V}^{\nu} - \partial^{\nu}\mathcal{V}_{\mu}\big]_{j}^{i}D_{\nu}^{*j}, \end{split}$$

Numerical Results

- Decay width has a strong dependence on α .
- Hadronic loop can contribute a sizable branching ratio.

TABLE II: The branching ratios (\mathcal{BR}) of $\psi_3(3842)$ decays into allowed *PP*, *PV*, and *VV* final states for specific values of the α parameter.

$\mathcal{BR}(\%)$	$\alpha = 1.00$	$\alpha = 1.25$	$\alpha = 1.50$	$\alpha = 1.75$	$\alpha = 2.00$
$K\bar{K}$	0.02	0.08	0.28	0.77	1.83
$\omega\eta$	0.01	0.03	0.09	0.26	0.64
$\omega\eta'$	0	0	0.01	0.02	0.06
$ ho\pi$	0.06	0.29	1.02	2.93	7.21
$Kar{K}^*$	0.01	0.07	0.26	0.74	1.83
$K^*ar{K}^*$	0.01	0.02	0.11	0.33	0.87
Total	0.10	0.50	1.77	5.06	12.43

- $\rho\pi$ channel dominant the light meson pairs decay.
- Further demonstrates the similarity with $\psi(3770)$.

Numerical Results

FIG. 4: The α parameter dependence of the ratios $\mathcal{BR}(i)/\mathcal{BR}(\rho\pi)$. Here, *i* represent the different final states of *PP*, *PV*, and *VV*.

 $\mathcal{BR}(K\bar{K})/\mathcal{BR}(\rho\pi) = (2.5 - 3.0) \times 10^{-1},$ $\mathcal{BR}(\omega\eta)/\mathcal{BR}(\rho\pi) = 8.9 \times 10^{-2},$ $\mathcal{BR}(\omega\eta')/\mathcal{BR}(\rho\pi) = (8.4 - 8.6) \times 10^{-3},$ $\mathcal{BR}(K\bar{K}^*)/\mathcal{BR}(\rho\pi) = 2.5 \times 10^{-1},$ $\mathcal{BR}(K^*\bar{K}^*)/\mathcal{BR}(\rho\pi) = (9.5 - 12.0) \times 10^{-2}.$ $\mathcal{BR}(\omega\eta)$: $\mathcal{BR}(\omega\eta') \approx 10$: 1 $\alpha = 1$ $\mathcal{BR}(K\bar{K}): \mathcal{BR}(K\bar{K}^*): \mathcal{BR}(K^*\bar{K}^*) = 3.2:2.7:1.0$ $\alpha = 2$ $\mathcal{BR}(K\bar{K}): \mathcal{BR}(K\bar{K}^*): \mathcal{BR}(K^*\bar{K}^*) = 2.1:2.1:1.0$

- Ratios have a weak dependence on α .
- Provide useful references for experiments.

► Summary

- Due to its similarities with $\psi(3770)$, $\psi_3(3842)$ very likely has a sizable non- $D\overline{D}$ decay branching ratio.
- By computing the hadronic loop contributions, our results confirm the inferred decay properties of $\psi_3(3842)$.
- Our results indicate the $\rho\pi$ channel dominant the light meson pairs decay.
- Despite a lack of relevant experimental data, the characteristic ratios we present still serve as valuable references for experiments.
- We hope our findings will aid future experiments, such as LHCb and BESIII, in further confirming $\psi_3(3842)$ and exploring its non- $D\overline{D}$ decay.

Thank you!