Zc(3900) (and X(3872)) on the phenomenological and lattice side

Based on: PhysRevD.110.114029, 2502.05789

Kang Yu
University of Chinese Academy Science
Coauthors: Guang-Juan Wang, Jia-Jun Wu, Zhi Yang

Exp line shapes of the three exotic states

Belle PRL 91 (26): 262001

.....

ph relationship between the three states

supported by lattice study

S. Prelovsek et.al 1503.03257 G.S. Bali et.al 1110.2381.

Zc(3900) : $D\overline{D}^*$ (I=1) interaction (also couple with $\pi J/\psi$, $\rho\eta_c$)

The inclusion of $\rho\eta_c$ is implied by lattice study and recent experiment result

HALQCD 10.1088/1361-6471/aa9afd

established in *Jia-Jun Wu et.al 2306.12406* (binding energy of X3872 √ line shape of Tcc √)

hadron-hadron interactions for Zc(3900)

Production Amp for Y(4230) decay

$$e^+e^- \rightarrow \pi^+\pi^- J/\psi$$

$$e^+e^- \to \pi \rho \eta_c$$

Fitting formulas for line shape

$$b_0 \left(\sqrt{s_{\pi^- J/\psi}} - m_\pi - m_{J/\psi} \right)^{b_1} \left(\sqrt{s} - m_\pi - \sqrt{s_{\pi^- J/\psi}} \right)^{b_1}$$
 mimic $\pi \pi$ FSI

BES PhysRevLett.112.022001

$$c_0(\sqrt{s_{D^0D^{*-}}} - m_D - m_{\overline{D}^*})^{c_1}(\sqrt{s} - m_{\pi} - \sqrt{s_{D^0D^{*-}}})^{c_2}$$

mimic possible background contribution

#. par =
$$2*11+1=23$$

#. ex data ~ 250 @
$$\sqrt{s}$$
 = 4.23, 4.26 GeV

we get a $\hat{\chi}^2 \sim 1.6$ fitting results

Fitted line shape of D^0D^*- distribution

- Tree-level cascade decay $Y \to D_1 \overline{D} \to D \overline{D}^* \pi$ contributes most.
- interference between tree-level cascade decay and triangle diagram enhances.
- polynomial only contributes at the tail.

Fitted line shape of D^0D^*- distribution

I=1 OBE is relatively weak

- → tree level dominates
- → cascade decay contributes to peak most

Fitted line shape of piJ/psi distribution

- triangle diagram $Y \to \overline{D}_1 D(\to D\overline{D}^*\pi) \to \pi\pi J/\psi$ produce the peak
- polynomial produce the similar line shape of $\pi\pi$ FSI as in *BES PhysRevLett.112.022001*

Fitted line shape of piJ/psi distribution

Fitted line shape of rhoEtac distribution

peak contributed by triangle diagram

exp data from: C.Z. Yuan 10.1142/S0217751X18300181

line shape by pure triangle loop

triangle diagram = pure triangle loop + T-matrix (FSI)

$$V_{D_1} / \overline{D_1}^0 = V_{D_1} / \overline{D_1}^0 = V_{D_1$$

width of $D_1(2420)$ is taken into account

Indeed a cusp Exactly at $D\overline{D}^*$ threshold

 $\sqrt{s} - E_{\pi} - E_{D^*} - E_{D} = 0$ can hold above the $D\overline{D}^*$ threshold

However...

- for $D\overline{D}^*$, peak not close enough
- for $\pi I/\psi$, peak not high enough

pure triangle loop is not all of the story

 3798^{+25}_{-31} Virtual Reference [25] 3902(6) - 38(9)iResonance 3831^{+27}_{-38} Reference [19] Virtual 3894(6) - 30(13)i Resonance 3870 Virtual Reference [21] Reference [20] 3879 Virtual Reference [22] 3872 Virtual 3880(3) - 13(1)iReference [26] Resonance Reference [32] 3884 - 22iResonance Reference [27] 3840 Virtual Reference [62] 3839(11) Virtual

a virtual pole far below $D\overline{D}^*$ threshold in LQCD at larger m_π PhysRevLett.117.242001

Finite Volume Hamiltonian method: from ph to lat

workflow of FVH method

phenomenological model

matrix in the discretized momentum space

irreducible representation decomposition

eigenvalues of the matrix (which can be compared to lat spectra)

2502.05789

provide a systematic calculation procedure

(also address left-hand cut issue) (generalization to three-body system is in progress)

Finite Volume energy levels: Zc(3900)

all levels are close to the non-interacting levels (I=1 OBE is weak)

Prelovsek et.al PhysRevD.91.014504

"The levels appear near the noninteracting energies of the two-particle states"

HSC 10.1007/JHEP11(2017)033

"the majority of energies lie close to the non-interacting levels."

MILC, http://arxiv.org/abs/1411.1389

"The mixing is evidently too weak to produce a state distinct from the noninteracting scattering states"

Finite Volume energy levels: X(3872)

Signal of X(3872) on the lattice is reported by several lattice studies

$$c\overline{c}$$
 core $(\chi_{c1}(2P)) + D\overline{D}^*(I=0)$

MILC, http://arxiv.org/abs/1411.1389 Prelovsek et.al PhysRevLett.111.192001 HaoZheng Li 2402.14541

...

Summary

- A OBE model reproducing: the binding energy of X(3872), line shape of Zc(3900) and Tcc
- Based on the current experiment data, Zc(3900) is more likely to be a cusp in our model.
- The finite volume spectra is calculated. The results are qualitatively same as the lattice study