Spectra of low-lying 1⁻⁺ light hybrid and their two-body hadronic decays

HuangQi NNU

Based on arXiV: 2504.05818 [hep-ph]

2025-04-13, ChangSha

Outline

- Motivation
- Method
- Results
- Summary

Success of potential model in meson, baryon, and multi-quark states explanation

one gluon exchange, goldstone boson exchange, hidden local symmetry, etc.

Eur. Phys. J., C 83 (2023) 12, 1159

$$L_{QCD} = \bar{\psi}_i (i \gamma^{\mu} D_{\mu} - m_i) \psi_i - \frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu} \iff \begin{cases} D_{\mu} = \partial_{\mu} - i g_s G^a_{\mu} T^a \\ G^a_{\mu\nu} = \partial_{\mu} G^a_{\nu} - \partial_{\nu} G^a_{\mu} + g_s f^{abc} G^b_{\mu} G^c_{\nu} \end{cases}$$

 \Rightarrow one same g_s in D_μ and $G^a_{\mu\nu}$, $g^2_s = 4\pi\alpha_s$ is of \log^{-1} form

quark → constituent quark ⇒ meson, baryon

chiral constituent quark model:
$$\alpha_s = \frac{\alpha_0}{\log\left(\frac{\mu^2 + \mu_0^2}{\Lambda_0^2}\right)} \implies \text{behavior of } g_s$$
?

- \Rightarrow naive: if the behavior of g_s can be used to the quark-gluon interaction directly?
- ⇒ if properties of hybrid can be inferred directly?

Most simple hybrid: $q\bar{q}g \implies \text{How we treat } g \text{ in } q\bar{q}g$?

Phys. Rev., D 105 (2022) 5, 054503

lattice QCD: modeling effective potentials for excited gluon fields, which facilitate interactions between quarks

$$V_{q\bar{q}g}(r) = \frac{A_1}{r} + A_2 r^2 + V_0 + \xi_2 \sqrt{\frac{b}{\xi_1}},$$
 (1)

where q and \bar{q} denote the light (u, d) and strange (s) quarks. The parameters are set as $A_1 = 0.0958$ GeV, $A_2 = 0.01035$ GeV³, b = 0.165 GeV², $\xi_1 = 0.04749$, and $\xi_2 = 0.5385$. The constant V_0 varies with flavor: $V_0^{(q\bar{q})} = -0.48$ GeV, $V_0^{(q\bar{s})} = -0.40$ GeV, and $V_0^{(s\bar{s})} = -0.33$ GeV.

We solve the spinless Salpeter equation:

$$H = \sqrt{p_q^2 + m_q^2} + \sqrt{p_{\bar{q}}^2 + m_{\bar{q}}^2} + V_{q\bar{q}g}(r), \qquad (2)$$

arXiV: 2503.01443

None business with g_s

If this thing can be more interesting?

gluon becomes a constituent as quark? if yes, how much is its mass?

Schwinger mechanism:

 $m_g \approx \frac{1}{2} m_p, m_{u/d} \approx \frac{1}{3} m_p, m_s \approx 526 \, MeV \Rightarrow familar \, values$

Few Body Syst. 63 (2022) 2, 42

Treating hybrid as a three-body problem

Keep the same model parameters as previous meson spectra calculations

Just adding only one parameter m_g : constituent gluon mass

Research object: 1^{-+} light hybrid $\begin{cases} exotic\ quantum\ number \\ theoretical\ results\ for\ crosscheck \\ \pi_1(1400/1600), \eta_1(1855), \pi_1(2015)\ as\ candidates \end{cases}$

Method

Three-body problem: GEM method

Derived from QCD Lagrangian

$$\hat{H} \; = \; rac{\hat{p}_{q,ar{q}}^2}{2\mu_{q,ar{q}}} + rac{\hat{p}_{qar{q},g}^2}{2\mu_{qar{q},g}} + \hat{V}_{qar{q}} + \hat{V}_{qg} + \hat{V}_{ar{q}g},$$

$$egin{aligned} lpha_s(\mu) &= rac{lpha_0}{\log\left(rac{\mu^2 + \mu_0^2}{\Lambda_0^2}
ight)}, \quad f : structure \ constants \end{aligned} \ V_{qar q}(oldsymbol{r}) &= V_{qar q}^{CON}(oldsymbol{r}) + V_{qar q}^{OGE}(oldsymbol{r}) + V_{qar q}^{GBE}(oldsymbol{r}), \end{aligned} \ V_{qg}(oldsymbol{r}) &= V_{qg}^{CON}(oldsymbol{r}) + V_{qg}^{OGE}(oldsymbol{r}), \end{aligned} \ V_{qg}^{CON}(oldsymbol{r}) &= V_{qar q}^{CON}(oldsymbol{r}) \ with \ oldsymbol{\lambda}_c \cdot oldsymbol{\lambda}_c^*
ightarrow ioldsymbol{\lambda}^d \cdot oldsymbol{f}^d, \end{aligned} \ V_{qg}(oldsymbol{r}) &= V_{qg}(oldsymbol{r}) \ with \ oldsymbol{\lambda}_c
ightarrow oldsymbol{\lambda}_c^* + ioldsymbol{\lambda}^d \cdot oldsymbol{f}^d, \end{aligned} \ V_{qg}(oldsymbol{r}) &= V_{qg}(oldsymbol{r}) \ with \ oldsymbol{\lambda}_c
ightarrow oldsymbol{\lambda}_c^* + ioldsymbol{\lambda}^d \cdot oldsymbol{f}^d, \end{aligned} \ V_{qg}(oldsymbol{r}) &= V_{qg}(oldsymbol{r}) \ with \ oldsymbol{\lambda}_c
ightarrow oldsymbol{\lambda}_c^* + ioldsymbol{\lambda}^d \cdot oldsymbol{f}^d, \end{aligned} \ V_{qg}(oldsymbol{r}) &= V_{qg}(oldsymbol{r}) \ with \ oldsymbol{\lambda}_c
ightarrow oldsymbol{\lambda}_c^* + ioldsymbol{\lambda}^d \cdot oldsymbol{f}^d, \end{aligned} \ V_{qg}(oldsymbol{r}) &= V_{qg}(oldsymbol{r}) \ with \ oldsymbol{\lambda}_c
ightarrow oldsymbol{\lambda}_c^* - oldsymbol{\lambda}_c^* \cdot oldsymbol{f}^d, \\ V_{qg}(oldsymbol{r}) &= \frac{\alpha_s}{2} oldsymbol{\lambda}_c \cdot oldsymbol{f}_c \ oldsymbol{f}_c - \left[\frac{2\pi}{3m_g} + \frac{\pi}{2m_q^2} \right] \delta(oldsymbol{r}) - \frac{S_q \cdot oldsymbol{L}_q}{2m_q^2 r^3} \\ &+ \frac{1}{2m_g^2 r^3} \left(oldsymbol{S}_g \cdot oldsymbol{S}_g - 3 \frac{(oldsymbol{S}_g \cdot oldsymbol{r})}{r^2} \right) \\ &- \frac{8\pi}{3m_g m_g} oldsymbol{S}_g \cdot oldsymbol{S}_q \delta(oldsymbol{r}) \ \bigg], \end{aligned}$$

Method

Wave function: Two coupling schemes

$$\psi_{q\bar{q}g}^{J,g} = \sum_{J_{q\bar{q}},S,L} \sqrt{(2J_{q\bar{q}}+1)(2L_g+1)} (-1)^{S_{q\bar{q}}+L_{q\bar{q}}+J_g+J} \times \begin{cases} S_{q\bar{q}} & L_{q\bar{q}} & J_{q\bar{q}} \\ J_g & J & L_g \end{cases} \sqrt{(2S+1)(2L+1)} \times \sqrt{(2J_{q\bar{q}}+1)(2J_g+1)} \begin{cases} S_{q\bar{q}} & L_{q\bar{q}} & J_{q\bar{q}} \\ 1 & L_{q\bar{q},g} & J_g \\ S & L & J \end{cases} \times \psi_{q\bar{q}g}^{J,LS}.$$

- (a) Excited gluon mode, commonly used
- (b) S-L coupling, easier to construct spin

Color wave function:

$$|\psi_{q\bar{q}g}^c\rangle = \frac{\delta_{ad}}{\sqrt{8}} \frac{(\lambda^a)_{bc}}{\sqrt{2}} f^{dbc} |q^b\rangle \otimes |\bar{q}^c\rangle \otimes |g^d\rangle.$$

Method

Decay mechanism:

$$\begin{split} \hat{H}_{I} &= i \sqrt{4\pi\alpha_{s}} \frac{(\lambda^{a})_{bc}}{2} \int d^{3}\vec{x} \ \vec{q}^{c}(\vec{x}) \gamma^{\mu} q^{b}(\vec{x}) A^{a}_{\mu}(\vec{x}), \\ \hat{T} &= 3i \sqrt{\pi\alpha_{s}} (\lambda^{a})_{bc} \sum_{s,s',m} \int \frac{d^{3}\vec{p}_{1} d^{3}\vec{p}_{2} d^{3}\vec{k}}{\sqrt{2m_{g}} (2\pi)^{6}} \delta(\vec{p}_{1} + \vec{p}_{2} - \vec{k}) \\ &\times \langle 1, m; 1, -m | 0, 0 \rangle \langle 1, -m; \frac{1}{2}, s' | \frac{1}{2}, s \rangle \\ &\times d^{c\dagger}_{s'}(\vec{p}_{1}) b^{b\dagger}_{s}(\vec{p}_{2}) a^{a}_{m}(\vec{k}), \end{split}$$

Amplitude: Similar with *Phys. Lett.*, B 650, 390-400

Parameter

$GEM: r_{min} = 0.1 fm, r_{max} = 2.0 fm, n_{max} = 8$

Confinement: screened, linear, square

action parameters are consistent. Masses of π , η , K adopt experimental values, while other parameters — $m_{\sigma}=3.42$ fm⁻¹, $\Lambda_{\pi}=\Lambda_{\sigma}=4.2$ fm⁻¹, $\Lambda_{\eta}=\Lambda_{K}=5.2$ fm⁻¹, $\theta_{p}=-15^{\circ}$, $g_{ch}^{2}/(4\pi)=0.54$ — are adopted from Ref. [1]

		[Scr., Lin., Squ.]
Gluon mass	$m_g ({ m MeV})$	450
Quark masses	$m_{u,d} \; ({ m MeV})$	313
	$m_s \; ({ m MeV})$	$[\ 555 \ , \ 525 \ , \ 536 \]$
	$m_c \; ({ m MeV})$	$[\ 1752\ ,\ \ 1731\ ,\ 1728\]$
	$m_b \; ({ m MeV})$	$[\ 5100\ ,\ 5100\ ,\ 5112\]$
Confinement	$a_c~({ m MeV~fm^{-n}})$	[430 , 160 , 101]
	$\Delta ({ m MeV})$	[181.1, -131.1, -78.3]
	$\mu_c~({ m fm}^{-1})$	$[\hspace{.1cm} 0.7 \hspace{.1cm} , \hspace{.1cm} - \hspace{.1cm} , \hspace{.1cm} - \hspace{.1cm}]$
	a_s	0.777
OGE	$lpha_0$	$[\ 2.12\ ,\ \ 2.65\ \ ,\ 3.67\]$
	$\Lambda_0 \; (\mathrm{fm}^{-1})$	$[\ 0.113,\ 0.075,\ 0.033]$
	$\mu_0 \; ({\rm MeV})$	36.976
	$\hat{r}_0 \; (\mathrm{MeV} \; \mathrm{fm})$	28.17
	$\hat{r}_g ({ m MeV fm})$	34.5

TABLE III: Meson spectrum calculated by using three sets of parameters and confinement potentials (unit: MeV).

States	[Scr. , Lin. , Squ.]	Exp.
π	$[\ 132.18 \ , \ 140.08 \ , 134.87 \]$	139.57
η	[684.74 , 680.19 , 669.21]	547.86
ho	[773.92,775.33,772.26]	775.26
ω	[697.89 , 703.70 , 701.59]	782.66
K	[472.58 , 496.21 , 489.37]	493.68
K^*	[908.39,917.90,913.55]	891.67
η'	[824.19 , 832.80 , 821.47]	957.78
$h_1(1170)$	$[\ 1247.02\ ,\ 1271.19\ ,\ 1314.82\]$	1166.00
$b_1(1235)$	[1234.79 , 1250.19 , 1281.93]	1229.50
$a_1(1260)$	$[\ 1204.76\ ,\ 1213.91\ ,\ 1238.72\]$	1230.00
$f_1(1285)$	$[\ 1149.08\ ,\ 1212.92\ ,\ 1283.19\]$	1281.80
$\pi(1300)$	$[\ 1286.99\ ,\ 1345.44\ ,\ 1453.58\]$	1300.00
$K_1(1270)$	$[\ 1342.73\ ,\ 1293.69\ ,\ 1287.15\]$	1253.00
$K_1(1400)$	$[\ 1416.25\ ,\ 1425.47\ ,\ 1453.16\]$	1403.00
K(1460)	$[\ 1465.49\ ,\ 1490.60\ ,\ 1571.79\]$	1482.40

Isospin-0 states are not so good mainly due to mixing

No change on the previous parameters

Spectra

arXiV: 2503.01443: constituent gluon in 1^{-+} light hybrid should be electric if wants lowest mass

$$\Rightarrow$$
 Translating: $S_{q\bar{q}}=1$, $L_{q\bar{q}}=0$, $L_{q\bar{q},g}=1$, $J_g=1$, $J_g=1$, $J_g=1$, constituent gluon: 1^{+-}

TABLE IV: Predicted masses of 1^{-+} hybrid mesons under three sets of confinement potentials (unit: MeV).

States(I)	$ m M_{Scr.}$	$ m M_{Lin.}$	$ m M_{Squ.}$
$qar{q}g(1)$	1608.4	1631.3	1652.4
	1890.2	1987.1	2130.1
	2087.0	2294.5	2600.5
$qar{q}g(0)$	1596.2	1614.7	1627.2
$sar{s}g(0)$	1974.6	1927.9	1957.8
$qar{s}g(rac{1}{2})$	1793.9	1785.2	1830.9
	·	·	·

- 1. Ground states are consistent
- 2. First excited states have two modes?
- $\Rightarrow \theta \approx 28.8^{\circ} \Rightarrow 3$. There's another $\eta_1(1640)$?

Decays

States Channels [Scr. , Lin. , Squ	.] [[46], [50]]
$\pi_1(1600)$ $b_1(1235)\pi$ [53.3, 69.7, 88.0	0] [244, 56.6]
$f_1(1285)\pi$ [9.0, 11.5, 13.6	8] [15 , 8.4]
$ ho\pi$ [1.0 , 1.3 , 1.4	[2 , -]
Total [63.3, 82.5, 103]	.0] [261 , 65]
$\eta_1(1640) \ a_1(1260)\pi \ [35.5, 45.8, 58.3]$	3] [55 , 29.3]
$\pi(1300)\pi$ [2.9 , 1.5 , 0.1	[5, 0.4]
Total [38.4 , 47.3 , 58.4	4] [60, 29.7]
$\eta_1'(1855)$ $a_1(1260)\pi$ [11.0 , 16.6 , 24.5]	5] [- , 18.1]
$f_1(1285)\eta$ [6.4 , 6.7 , 8.6	[-, 5.6]
$\pi(1300)\pi$ [4.3 , 3.5 , 2.4	4] [- , 1.1]
$K_1(1270)ar{K}\ [176.0\ , 160.8\ , 228]$	8.0] [157 ,162.5]
$K^*ar{K}$ [1.0 , 1.4 , 1.6	[2 , -]
Total [198.7, 189.0, 265]	5.1] [159 ,187.3]
$K_1(1^{-+})$ $K\pi$ [0.6 , 0.8 , 1.3	3] [1 , -]
$K^*\pi$ [1.3 , 1.6 , 2.3	3] [3 , -]
$K^*\eta$ [0.2 , 0.2 , 0.4	1] [1 , -]
$K_1(1270)\pi$ [36.5, 46.1, 46.5	5] [106, -]
$K_1(1400)\pi$ [0.0 , 0.0 , 2.2	[2] [146, -]
$h_1(1170)K$ [6.8 , 3.6 , 5.8	3] [16 , -]
$K(1460)\pi$ [1.4 , 1.0 , 0.5	[2, -]
Total [46.8 , 53.3 , 59.0	0] [275, -]

- 1. Most of the decay widths are consistent
- 2. Width of $\pi_1(1600) \rightarrow b_1(1235)\pi$ are totally different
- 3. Mixing of $K_1(1^1P_1)$ and $K_1(1^3P_1)$ for K_1 states
- 4. No $\eta\eta'$ decay channel for $\eta_1(1855)$, OMGigodeta
- 5. Narrow width of ground π_1 hybrid?
- 6. Find $\eta_1(1855)$ on $K_1(1270)\overline{K}$ channel?
- 7. Find ground K_1 hybrid on $K_1(1270)\pi$ channel?
- 8. Verify $\eta_1(1640)$ on $a_1(1260)\pi$ channel ?

Summary

- Proper constituent gluon mass as the last piece to construct hybrid?
- Nearly everything are constituent well with the same meson parameters.
- $\pi_1(1600)$ and $\eta_1(1855)$, or decay mechanism, need to be studied further.
- Verify $\eta_1(1640)$ on $a_1(1260)\pi$ channel and K_1 hybrid on $K_1(1270)\pi$ channel.
- Studies on other quantum numbers should be done to see if it's coincidence.

Thank you ~