高激发态轻强子性质的研究

刘成郗

兰州大学

合作者: 王利明, 田文鑫, 李亭彦, 刘翔

2025.4.13

第十届XYZ研讨会

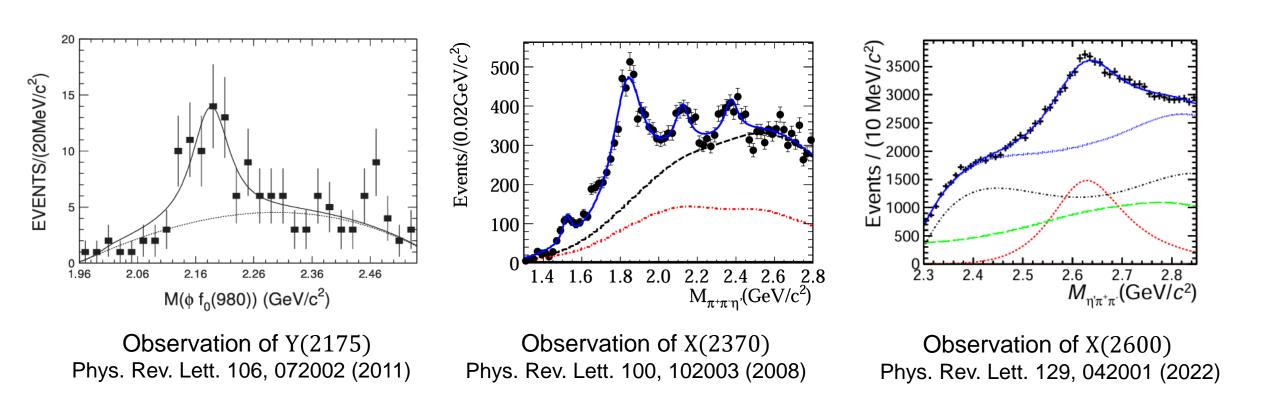
C.X.Liu, L.M.Wang, T.Y.Li and X.Liu, Phys. Rev. D 110, no.11, 114049 (2024) L.M.Wang, W.X.Tian, T.Y.Li, C.X.Liu and X.Liu, Phys. Rev. D 110, no.7, 074021 (2024)

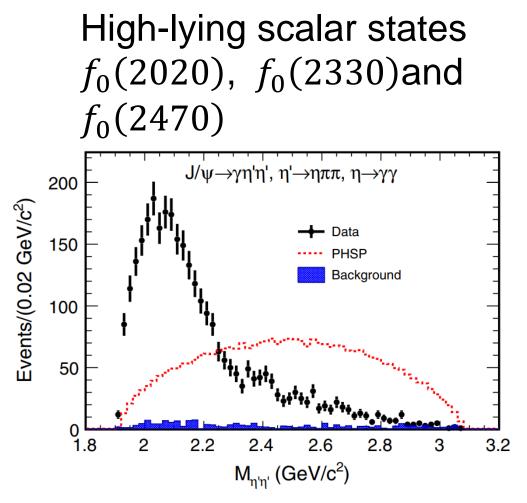
Outline

1. Background

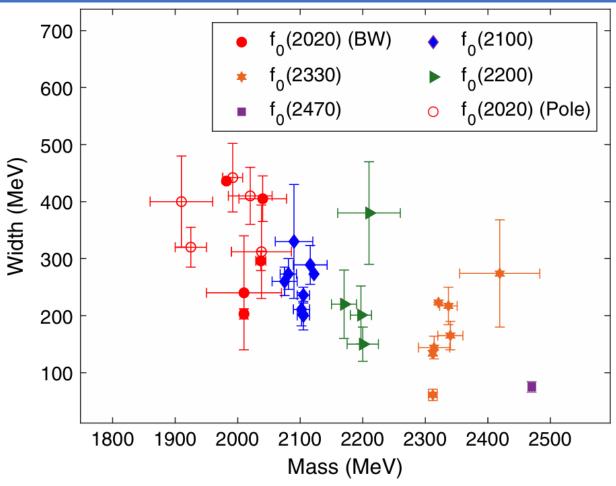
2. Mass spectrum

3. Decay behaviors


4. Summary

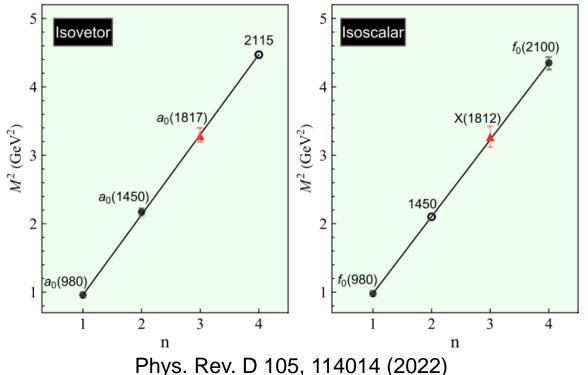

Background

New observed high-lying states



We propose that it is an appropriate time to establish high-lying mesons

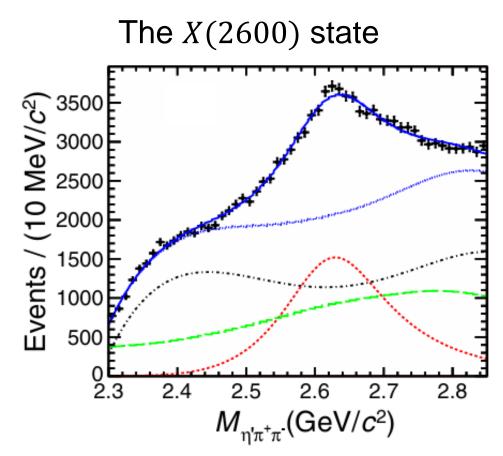
High-lying scalar states


Phys. Rev. D 105, 072002 (2022)

This mess situation should be clarified by further studies

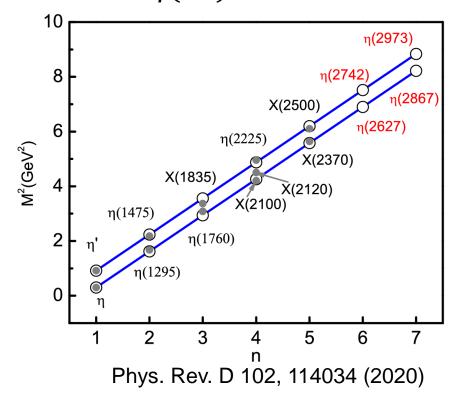
Our previous work of scalar mesons

Low-lying scalar mesons family including new observed $a_0(1817)$



← Our prior
 research focused on
 selected low-mass
 scalar meson states

These high-lying states also have not been established in our work →


$ullet f_0(2020) egin{array}{cccc} & 0^+(0^{++}) & & & & & & & & & & & & & & & & & & &$
$\pi_2(2100)$ 1 $^-(2^{-+})$
$f_0(2100) \hspace{3cm} 0^+(0^{++})$
$f_2(2150)$ $0^+(2^{++})$
$ ho(2150)$ 1 $^{+}(1^{})$
• $\phi(2170)$ $0^-(1^{})$
$f_0(2200) \hspace{1.5cm} 0^+(0^{++})$
$f_{J}(2220) \hspace{1.5cm} 0^{+}(2^{++}$
or $4^{++})$
$\omega(2220)$ $0^-(1^{})$
$\eta(2225)$ $0^+(0^{-+})$
$ ho_3(2250)$ 1 $^+(3^{})$
• $f_2(2300)$ $0^+(2^{++})$
$f_4(2300)$ $0^+(4^{++})$
$f_0(2330) \qquad \qquad 0^+(0^{++})$
• $f_2(2340)$ $0^+(2^{++})$
$ ho_5(2350)$ 1 $^+(5^{})$
$X(2370)$ $?^{?}(?^{??})$
$f_0(2470) \hspace{3.1em} 0^+(0^{++})$

New observed X(2600)

Phys. Rev. Lett. 129, 042001 (2022)

The quantum numbers J^{PC} of the X(2600) could be either 0^{-+} or 2^{-+} . In our previous work, it is proposed as an $\eta(6S)$ state

The possibility of the X(2600) being a pseudotensor meson with $J^{PC} = 2^{-+}$ still needs to be examined

The η_2 family

The summary table in the PDG includes the $\eta_2(1645)$ and $\eta_2(1870)$ states

The $\eta_2(2030)$ and $\eta_2(2250)$ are listed as further states

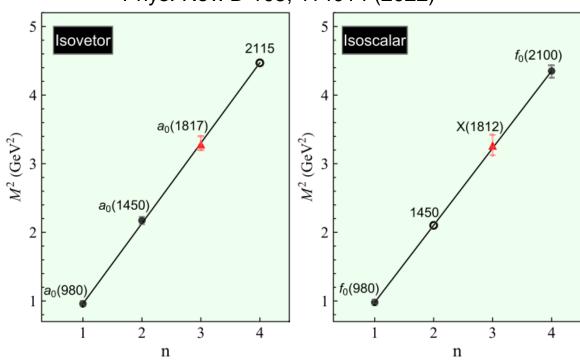
Including the previously discussed X(2600), there are five isoscalar pseudotensor states awaiting classification

$\eta_2(1645)$	$I^G(J^{PC})$ = $0^+(2^{-+})$	
$\eta_2(1645)$ MASS		1617 ± 5 MeV
$\eta_2(1645)$ WIDTH		181 ± 11 MeV
, ,		
$\eta_2(1870)$	$I^G(J^{PC})$ = $0^+(2^{-+})$	
$\eta_2(1870)$ MASS		$1842\pm 8~{ m MeV}$
$\eta_2(1870)$ WIDTH		225 ± 14 MeV

J^{PC}	Mass M	Width Γ
	(MeV)	(MeV)
2-+	$2267 {\pm} 14$	290±50
2-+	(2030)	(205)
2-+	(1860)	(250)

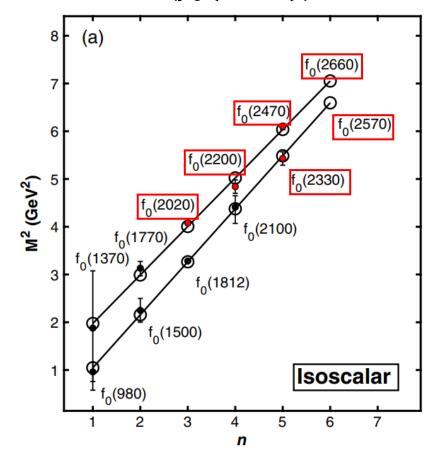
Mass spectrum

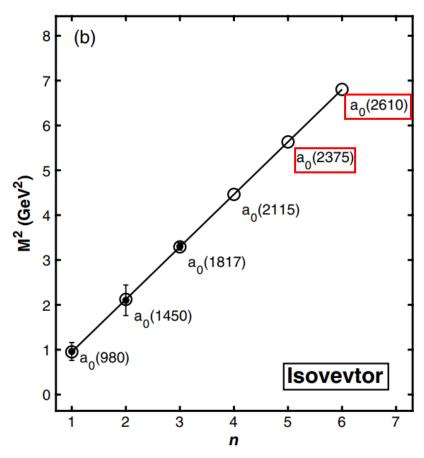
The Regge trajectories


In our previous work, we studied lowlying scalar mesons and pseudoscalar mesons using the Regge trajectory

Phys. Rev. D 102, 114034 (2020) 10 $\eta(2973)$ 8 η(2867) X(2500)η(2627) 6 $\eta(2225)$ $M^2(GeV^2)$ X(2370) X(1835) X(2120) X(2100) $\eta(1475)$ 2 $\eta(1760)$ $\eta(1295)$ 0

The Regge trajectory shows that the masses of hadrons follow a pattern that can be written as


$$M^2 = M_0^2 + (n-1)\mu^2$$


Phys. Rev. D 105, 114014 (2022)

The Regge trajectories of scalar mesons

Three Regge trajectories of the scalar mesons family: f_0 states (a) and a_0 states (b), while f_0 states can be categorized into $n\bar{n}$ states ($f_0(980)$) and $s\bar{s}$ states ($f_0(1370)$)

← The states are studied in our work

Not included $f_0(500)$ and $f_0(1710)$

 $n\bar{n}$: u and d quarks

ss̄: s quarks

The Godfrey-Isgur (GI) model

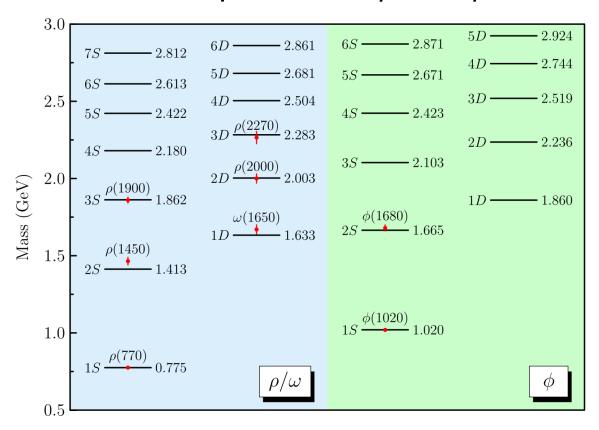
In the nonrelativistic limit, the effective potential:

$$\begin{split} \tilde{H} &= \sqrt{m_1^2 + \mathbf{p}^2} + \sqrt{m_2^2 + \mathbf{p}^2} + \tilde{V}_{\mathrm{eff}}(\mathbf{p}, \mathbf{r}), \\ V_{\mathrm{eff}}(r) &= H^{\mathrm{conf}} + H^{\mathrm{hyp}} + H^{\mathrm{so}}, \\ H^{\mathrm{conf}} &= \left[-\frac{3}{4}(c + br) + \frac{\alpha_s(r)}{r} \right] (F_1 \cdot F_2) \\ &= S(r) + G(r), \quad \uparrow \text{ Cornell potential} \\ H^{\mathrm{hyp}} &= -\frac{\alpha_s(r)}{m_1 m_2} \left[\frac{8\pi}{3} \mathbf{S}_1 \cdot \mathbf{S}_2 \delta^3(\mathbf{r}) + \frac{1}{r^3} \left(\frac{3\mathbf{S}_1 \cdot \mathbf{r} \mathbf{S}_2 \cdot \mathbf{r}}{r^2} - \mathbf{S}_1 \cdot \mathbf{S}_2 \right) \right] \\ &\times (F_1 \cdot F_2), \end{split} \qquad \text{function and momentum-dependent factor
$$\tilde{f}(r) = \int d^3 r' \rho(\mathbf{r} - \mathbf{r}') f(r'), \quad \rho(\mathbf{r} - \mathbf{r}') = \frac{\sigma^3}{\pi^{3/2}} e^{-\sigma^2(\mathbf{r})} e^{-\sigma^$$$$

$$H^{\text{so}} = H^{\text{so(cm)}} + H^{\text{so(tp)}}$$

$$\begin{split} H^{\text{so(cm)}} &= \frac{-\alpha_s(r)}{r^3} \left(\frac{1}{m_1} + \frac{1}{m_2} \right) \left(\frac{S_1}{m_1} + \frac{S_2}{m_2} \right) \cdot \boldsymbol{L}(\boldsymbol{F}_1 \cdot \boldsymbol{F}_2), \\ H^{\text{so(tp)}} &= -\frac{1}{2r} \frac{\partial H^{\text{conf}}}{\partial r} \left(\frac{S_1}{m^2} + \frac{S_2}{m^2} \right) \cdot \boldsymbol{L} \end{split}$$

To account for relativistic effects, two modifications are introduced, a smearing function and momentum-dependent factors are


$$\tilde{f}(r) = \int d^3 r' \rho(\mathbf{r} - \mathbf{r}') f(r'), \quad \rho(\mathbf{r} - \mathbf{r}') = \frac{\sigma^3}{\pi^{3/2}} e^{-\sigma^2(\mathbf{r} - \mathbf{r}')^2},
\tilde{G}(r) \to \left(1 + \frac{p^2}{E_1 E_2}\right)^{1/2} \tilde{G}(r) \left(1 + \frac{p^2}{E_1 E_2}\right)^{1/2}
\frac{\tilde{V}_i(r)}{m_1 m_2} \to \left(\frac{m_1 m_2}{E_1 E_2}\right)^{1/2 + \epsilon_i} \frac{\tilde{V}_i(r)}{m_1 m_2} \left(\frac{m_1 m_2}{E_1 E_2}\right)^{1/2 + \epsilon_i},$$

The screening effect replaces the line potential to account for the unquenched effect

$$br \to \frac{b(1 - e^{-\mu r})}{\mu}, \ \ H^{\rm scr} = \frac{b(1 - e^{-\mu r})}{\mu} - \frac{4\alpha_s(r)}{3r} + c.$$

The mass spectrum of η_2 family

The mass spectrum of ρ , ω , ϕ

Phys. Rev. D 105, 034011 (2022)

The parameters involved in the GI model from our previous work

Parameter	Value	Parameter	Value
m_u (GeV)	0.22	m_d (GeV)	0.22
m_s (GeV)	0.424	$b (\text{GeV}^2)$	0.229
ϵ_c	-0.164	$\epsilon_{ m sos}$	0.9728
σ_0 (GeV)	1.8	s (GeV)	3.88
μ (GeV)	0.081	c (GeV)	-0.30
$\epsilon_{ m sov}$	0.262	ϵ_t	1.993

Comparison of the calculated results and the experimental data

States	This work	Experimental values
$\overline{\eta_2(1D)}$	1650	$1645 \pm 14 \pm 15$ [22]
$\eta_2(2D)$	2003	$2030 \pm 10 \pm 15$ [23]
$\eta_2(3D)$	2279	2267 ± 14 [24]
$\eta_2(4D)$	2498	•••
$\eta_2'(1D)$	1882	$1881 \pm 32 \pm 40$ [25]
$\eta_2(2D)$	2238	
$\eta_2'(3D)$	2520	
$\eta_2^{\tilde{i}}(4D)$	2764	• • •

Decay behaviors

The Quark-Pair-Creation model

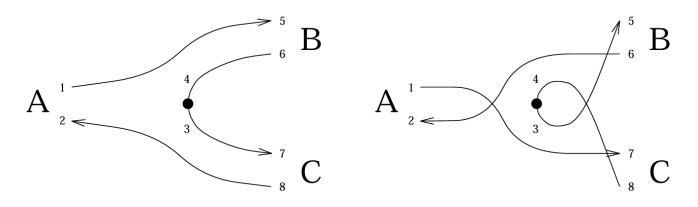
$$\langle BC|\mathcal{T}|A\rangle = \delta^{3}(\mathbf{P}_{B} + \mathbf{P}_{C})\mathcal{M}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}}$$

$$\mathcal{T} = -3\gamma \sum_{m} \langle 1m; 1 - m|00\rangle \int d\mathbf{p}_{3}d\mathbf{p}_{4}\delta^{3}(\mathbf{p}_{3} + \mathbf{p}_{4})$$

$$\times \mathcal{Y}_{1m}\left(\frac{\mathbf{p}_{3} - \mathbf{p}_{4}}{2}\right)\chi_{1,-m}^{34}\phi_{0}^{34}(\omega_{0}^{34})_{ij}b_{3i}^{\dagger}(\mathbf{p}_{3})d_{4j}^{\dagger}(\mathbf{p}_{4}).$$

$$|A(n_{A}^{2S_{A}+1}L_{AJ_{A}M_{J_{A}}})(\vec{P}_{A})\rangle \equiv \sqrt{2E_{A}}\sum_{M_{L_{A}},M_{S_{A}}}\langle L_{A}M_{L_{A}}S_{A}M_{S_{A}}|J_{A}M_{J_{A}}\rangle$$

$$|A(n_A^{2S_A+1}L_A J_{AMJ_A})(\vec{P}_A)\rangle \equiv \sqrt{2E_A} \sum_{M_{L_A}, M_{S_A}} \langle L_A M_{L_A} S_A M_{S_A} | J_A M_{J_A} \rangle$$

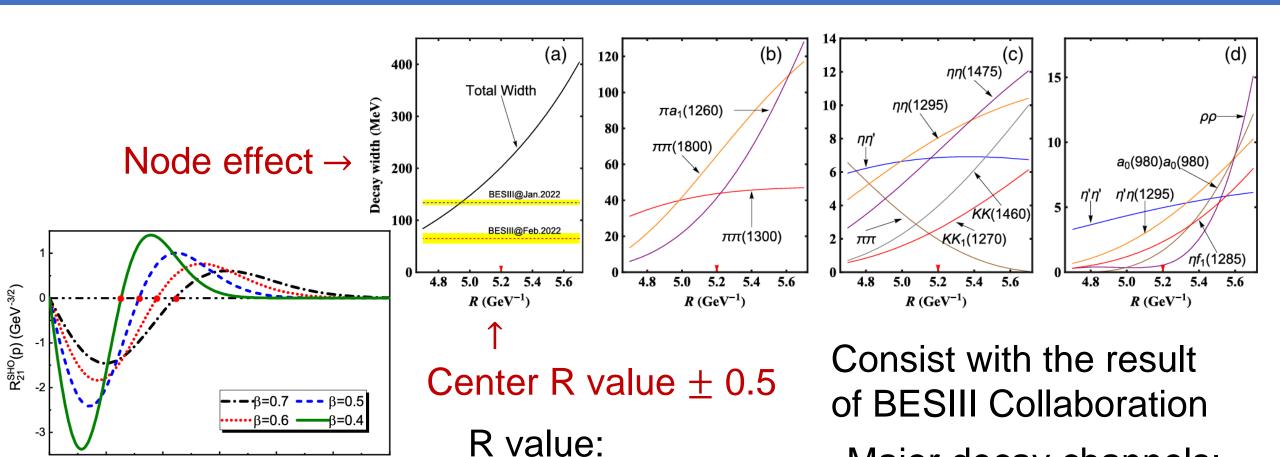

$$\times \int d^3 \vec{p}_A \ \psi_{n_A L_A M_{L_A}}(\vec{p}_A) \ \chi_{S_A M_{S_A}}^{12} \ \phi_A^{12} \ \omega_A^{12}$$

$$\times |q_1(\frac{m_1}{m_1+m_2} \vec{P}_A + \vec{p}_A) \ \bar{q}_2(\frac{m_2}{m_1+m_2} \vec{P}_A - \vec{p}_A) \rangle.$$

$$\mathcal{M}^{JL}(\mathbf{P}) = \frac{\sqrt{4\pi(2L+1)}}{2J_A+1} \sum_{M_{J_B}M_{J_C}} \langle L0; JM_{J_A} | J_A M_{J_A} \rangle$$

$$\times \langle J_B M_{J_B}; J_C M_{J_C} | J_A M_{J_A} \rangle \mathcal{M}^{M_{J_A}M_{J_B}M_{J_C}}.$$

$$\Gamma = \frac{\pi}{4} \frac{|P_E|}{m_A^2} \sum_{I,I} |\mathcal{M}^{JL}(\mathbf{P})|^2.$$


 $\gamma=7.1$ for the scalar mesons, $\gamma=6.57$ for the η_2 family

The simple harmonic oscillator (SHO) wave function

$$\phi_{\rm nlm}^p(R,p) = R_{nl}^p(R,p)Y_{lm}(\hat{P}),$$

$$R_{nl}^{p}(R,p) = (-1)^{n}(-i)^{l} R^{\frac{3}{2}+l} \sqrt{\frac{2n!}{\Gamma(n+l+\frac{3}{2})}} L_{n}^{l+\frac{1}{2}}(R^{2}p^{2}) e^{\frac{-R^{2}p^{2}}{2}} p^{l}$$

Decay behaviors of f_0 (2330)

Phys. Rev. D 101, 054029 (2020)

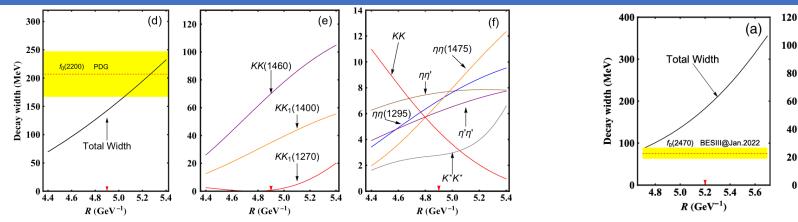
1.5

p (GeV)

1.0

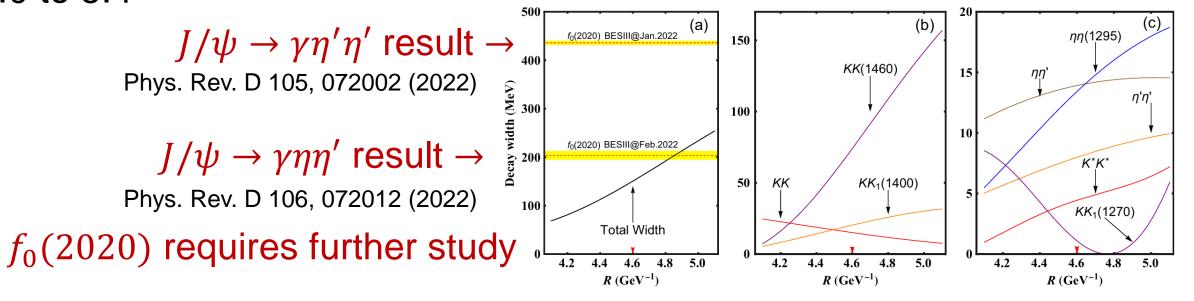
2.0

2.5


3.0

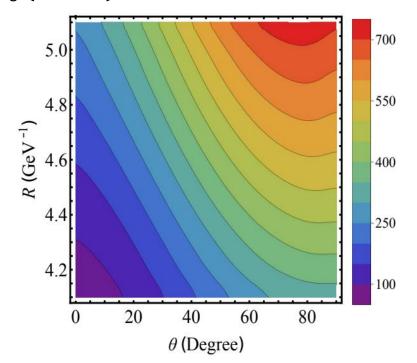
0.5

Phys. Rev. D 72, 094004 (2005) Phys. Rev. D 55, 4157 (1997)


Major decay channels: $\pi a_1(1260) \ \pi \pi(1800)$ and $\pi \pi(1300)$

Decay behaviors of other scalar states

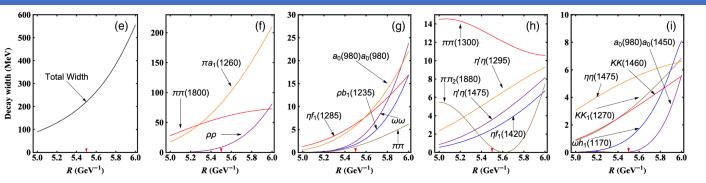
Consist with PDG data at R = 5.0 to 5.4


Consist with PDG data at R = 4.7

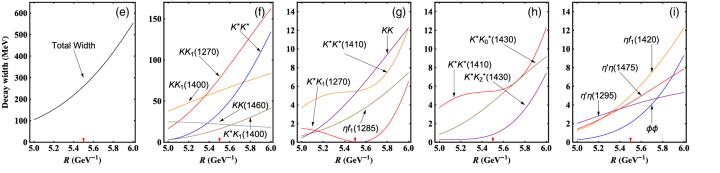
The mixing of f_0 (2020)

The mixing scheme of $f_0(2020)$

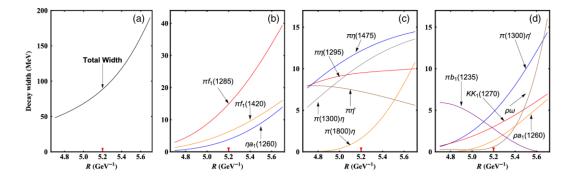
The total decay widths of the $f_0(2020)$

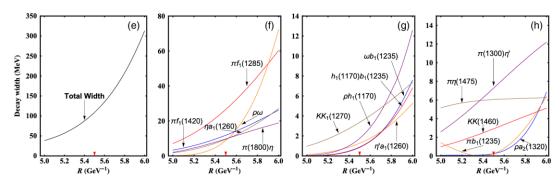

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$436 \; \pm 4 \; ^{+46}_{-49}$		¹ ABLIKIM	2022C	BES3	$J/\psi ightarrow \gamma \eta^{'} \eta^{'} ightarrow$ 4 γ 2($\pi^{+}\pi^{-}$)
$203\ \pm 9\ ^{+13}_{-11}$		² ABLIKIM	2022AS	BES3	$J/\psi(1S) \to \gamma \eta \eta^{'}$

The partial decay widths of $f_0(2020)$ when taking center R value at 4.6 GeV


Channels	$\theta = 15^{\circ}$	$\theta = 50^{\circ}$
$\pi\pi$	1.44	12.58
$\pi\pi(1300)$	10.51	92.09
$\pi\pi(1800)$	14.41	126.25
$\pi a_1(1260)$	3.01	26.40
$\eta\eta$	5.79	9.56
$\eta\eta'$	5.86	1.21
$\eta\eta(1295)$	23.50	38.79
$\eta'\eta'$	12.43	17.41
KK	20.38	22.34
$KK_1(1400)$	17.50	6.74
$KK_1(1460)$	82.75	62.64
Total width	203.92	429.40

Assuming $R = 4.6 \text{ GeV}^{-1}$ and considering $\theta = 15^{\circ}$ or 50° , we derive different decay widths as reported by BESIII collaboration

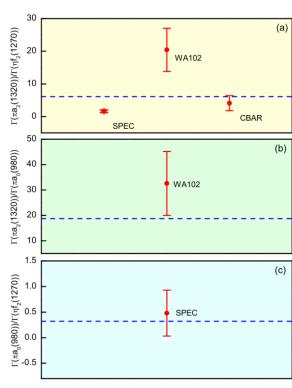

The predicted scalar mesons


 $f_0(2570)$, decay width is about 200 MeV at center R value

 $f_0(2660)$, decay width is about 300 MeV at center R value

 $a_0(2375)$, decay width is about 80 MeV at center R value

 $a_0(2610)$, decay width is about 100 MeV at center R value


The decay behaviors of η_2 family

States	This work	Experimental values
$\overline{\eta_2(1D)}$	1650	$1645 \pm 14 \pm 15$
$\eta_2(2D)$	2003	$2030 \pm 10 \pm 15$
$\eta_2(3D)$	2279	2267 ± 14
$\eta_2(4D)$	2498	• • •
$\eta_2'(1D)$	1882	$1881 \pm 32 \pm 40$
$\eta_2^{\prime}(2D)$	2238	
$\eta_2'(3D)$	2520	
$\eta_2'(4D)$	2764	•••

The mixing within the η_2 family

State	$\eta_2(1D)$			$\eta_2'(1D)$		
Decay channel	$\theta = 0^{\circ}$	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$	$\theta = 0^{\circ}$	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$
$a_2(1320)\pi$	173.3	161.8	130.0		15.3	57.2
$\rho \rho$	28.5	26.6	21.4		8.3	31.0
$\omega\omega$	7.7	7.2	5.8		2.7	10.0
$a_0(980)\pi$	7.0	6.5	5.2		0.8	3.1
$a_1(1260)\pi$	4.2	3.9	3.2		2.4	8.9
KK^*	2.6	10.1	20.7	79.8	60.4	39.7
K^*K^*				29.5	32.8	30.0
$\eta f_2(1270)$				0.2	1.8	9.4
Total width	223.3	216.1	186.3	109.5	123.5	189.3
Exp	180	$0^{+40}_{-21}\pm25$		221 :	\pm 82 \pm 4	4

The mixing angles θ for all η_2 meson states are constrained to $\theta < 30^{\circ}$

The branching ratio of $\eta_2(1870)$

The η_2 mesons

The $\eta_2(2030)$ and $\eta_2(2250)$ are currently listed as tentative state in the PDG

State		$\eta_2(2D)$			$\eta_2'(2D)$	
Decay channel	$\theta = 0^{\circ}$	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$	$\theta = 0^{\circ}$	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$
$\pi a_2(1700)$	91.7	85.5	68.7	\	7.1	26.4
$\pi a_2(1320)$	51.7	48.3	38.8	\	6.3	23.6
$\rho b_1(1235)$	20.6	19.2	15.4	\	4.9	18.4
$\rho\rho$	19.2	17.9	14.4	\	3.0	10.1
$\omega h_1(1170)$	6.3	5.9	4.8	\	2.3	8.5
ωω	6.0	5.6	4.5	\	1.0	3.6
$\pi a_0(1450)$	4.9	4.6	3.7	\	0.5	1.9
$a_0(980)\pi$	3.3	3.1	2.5	\	9×10^{-4}	3×10^{-3}
$\eta f_2(1270)$	3.1	3.0	2.5	2×10^{-2}	0.1	2.9
$a_1(1260)\pi$	2.2	2.1	1.6	\	3×10^{-2}	0.1
<i>KK</i> *(1410)	1.3	4.8	9.6	44.0	27.3	17.2
KK^*	0.4	2.7	6.7	23.4	24.1	17.7
K^*K^*	0.2	0.3	0.8	17.9	18.0	15.3
$KK_2^*(1430)$	0.1	0.3	0.8	35.7	39.8	35.9
$KK_0^*(1430)$	4×10^{-2}	6×10^{-3}	0.1	7.0	6.0	5.7
K_1K^*	\	\	\	8.9	7.2	6.4
$\omega\omega(1420)$	\	\	\	\	0.6	2.2
Total width	211.0	203.3	174.9	136.9	148.2	195.9
Exp	205 :	± 10 ± 15	[23]		\	

State		$\eta_2(3D)$			$\eta_2'(3D)$	
Decay channel	$\theta = 0^{\circ}$	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$	$\theta = 0^{\circ}$	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$
$\pi a_2(1700)$	29.5	27.6	22.2		3.7	13.9
$\pi a_2(1320)$	18.4	17.1	13.8		3.7	13.8
$\rho\rho$	10.7	10.0	8.0		2.9	10.9
$\pi a_0(980)$	6.1	5.7	4.6		0.1	0.5
$\rho b_1(1235)$	6.1	5.7	4.6		3.1	11.7
$\pi a_1(1260)$	3.8	3.5	2.8		0.4	1.6
$\omega\omega$	3.3	3.1	2.5		1.0	3.5
$\rho\rho(1450)$	2.5	2.3	1.9		1.9	7.2
$\omega h_1(1170)$	2.4	2.2	1.8		1.4	5.1
$\omega\omega(1420)$	1.6	1.5	1.2		0.7	2.7
$\eta f_0(1500)$	1.6	1.5	1.2		1×10^{-2}	4×10^{-2}
$\eta f_2(1270)$	1.3	1.2	1.1	3×10^{-2}	0.3	1.6
$\pi a_0(1450)$	1.3	1.2	0.9		0.4	1.4
K^*K_1	0.7	0.4	0.2	5.6	12.2	10.2
<i>KK</i> *(1410)	0.2	1.6	3.9	13.5	19.7	15.0
KK^*	0.1	1.1	3.1	16.0	14.1	10.6
$KK_2^*(1430)$	0.1	0.4	1.2	20.3	26.5	22.7
$KK_0^*(1430)$	1×10^{-2}	3×10^{-2}	0.2	3.5	4.6	4.2
$KK_1(1650)$	1×10^{-2}	7×10^{-3}	4×10^{-3}	0.2	1.1	0.8
$K^*K^*(1410)$				18.9	16.8	13.9
$K^*K'_1$				5.5	5.0	4.0
$K^*K(1460)$				4.0	5.6	4.3
$\pi(1300)a_0(980)$					0.5	1.9
$a_1(1260)a_1(1260)$					0.5	2.0
Total width	89.9	84.9	76.0	101.8	142.9	177.6
Exp	29	00 ± 50 [2	24]			

The $\eta_2(4D)$ and X(2600)

Case	$f_0(1500)$	X(2600)
$Mass (MeV/c^2)$	$1498.0 \pm 4.5^{+4.0}_{-15.2}$	$2617.8 \pm 2.1^{+18.2}_{-1.9}$
Width (MeV)	$166 \pm 10^{+13}_{-26}$	$200 \pm 8^{+20}_{-17}$

Calculated decay width is significantly lower than X(2600)

This discrepancy rules out the possibility of identifying the X(2600), as a $\eta'_2(4D)$ state

Proved our earlier result
Still need further exploration

State	$\eta_2(4D)$			$\eta_2'(4D)$		
Decay channel	$\theta = 0^{\circ}$	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$	$\theta = 0^{\circ}$	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$
$\pi a_2(1700)$	18.0	16.8	13.5		2.8	10.3
$\pi a_2(1320)$	9.9	9.2	7.4		2.6	9.5
$\rho\rho(1450)$	5.2	4.8	3.9		2.8	10.4
$\pi a_0(980)$	4.7	4.4	3.5		0.3	1.1
$\rho\rho$	4.1	3.9	3.1		1.8	6.6
$\rho b_1(1235)$	3.9	3.7	2.9		2.3	8.5
$\pi a_1(1260)$	2.4	2.2	1.8		0.4	1.6
$\omega\omega(1420)$	2.1	2.0	1.6		1.0	3.8
$\omega h_1(1170)$	1.7	1.6	1.3		1.0	3.7
$\pi(1300)a_0(980)$	1.3	1.2	1.0		0.2	0.8
$\omega\omega$	1.3	1.2	1.0		0.6	2.1
$\eta f_0(1500)$	1.1	1.1	0.8		1×10^{-2}	5×10^{-2}
$\eta f_2(1270)$	0.8	0.8	0.6	1×10^{-2}	0.2	1.1
K_1K^*	0.3	0.3	0.3	4.8	9.8	7.9
$a_1(1260)a_0(980)$	0.3	0.2	0.2		0.3	1.3
$KK^*(1410)$	0.2	0.8	2.1	6.2	11.7	9.9
$K^*K^*(1410)$	0.2	0.1	0.3	20.7	13.7	11.6
$KK_2^*(1430)$	0.1	0.4	1.4	15.4	19.4	16.0
$K^*K_2^*(1430)$	0.1	0.6	1.3	6.1	11.5	9.5
K^*K^*	7×10^{-2}	0.3	1.0	11.0	15.6	12.8
KK^*	3×10^{-2}	0.7	2.1	12.9	11.6	9.0
$K_1'K^*$	2×10^{-2}	0.2	0.6	5.1	10.6	8.6
$K^*K(1460)$	2×10^{-2}	6×10^{-2}	0.1	6.1	5.7	4.4
$KK_0^*(1430)$	3×10^{-4}	4×10^{-2}	0.2	1.9	2.8	2.4
$K^*K_1(1650)$				7.1	15.8	12.7
$K_1K^*(1410)$				2.4	0.9	1.2
$K_1 K_2^* (1430)$				1.2	1.3	0.9
$a_1(1260)a_2(1320)$					0.5	1.7
$\rho(1450)b_1(1235)$					0.4	1.6
Total width	57.9	55.9	52.0	98.5	147.6	171.0

Summary

- 1. We conduct a systematic investigation of high-lying scalar and η_2 mesons.
- 2. The mass spectrums are constructed for scalar mesons and η_2 states through Regge trajectory and GI model.
- 3. Strong decay behaviors are analyzed via the QPC model, calculating partial widths and branching ratios.
- 4. The study of high-lying states may be a new task for experimental study.

