ω meson from lattice QCD

燕浩波

With 刘川, 刘柳明, 孟雨, 邢瀚洋 Maxim Mai, Marco Garofalo, Ulf-G. Meißner, Carsten Urbach

Based on:

- 1. Yan et al., PRL 133 (2024) 211906, Editors' Suggestion
- 2. Yan et al., PRD 111 (2025) 014503
- 3. Yan et al., arXiv 2504.xxxx on OpTion
- 4. Yan et al., arXiv 250x.xxxx on coupled channel $D_0^*(2300)$

Apr 13, 2025

Introduction

- Many resonances decay into three-body states
- LHCb discovered a tetraquark candidate $T_{cc}(3875) \rightarrow DD^* \rightarrow DD\pi$ in 2022¹

- \bullet Previous lattice studies lifted the pion mass and study the two-body DD^* scattering^2 and found the corresponding pole
- The real three-body scattering problem relies on the two-body $D\pi$ scattering amplitudes as an input
- Lattice QCD is the only way to calculate observables at low energy from the first principle
- We need to know how to solve 1. two-body and 2. three-body problems
- ¹LHCb collaboration, NP 18 (2022) 751

²Padmanath et al., PRL 129 (2022) 032002; Chen et al., PLB 833 (2022) 137391; Lyu et al., PRL 131 (2023) 161901; Collins et al., PRD 109 (2024) 094509

Introduction 1: Two-body: $D_0^* \rightarrow D\pi$

• A broad resonance $D_0^* \to D\pi$ was found by Belle collboration³ in 2004

• Puzzles on $D_0^*(2300)$

$$m_{D_0^*} \approx m_{D_{*0}^*}$$

•
$$m_{D_0^*}^{\text{ChPT}} \ll m_{D_0^*}^{\text{exp}}$$

could be explained by UChPT where the two-pole structure is proposed⁴

 $\bullet\,$ Should be tested on the lattice at a series of ${m_\pi}^{\rm 5}$

³Satpathy *et al.*, PRB 159 (2003) 553.

⁴For *e.g.*, Albaladejo *et al.*, PLB 767 (2017) 465.

⁵See previous lattice works in [Moir:2016srx, Gayer:2021xzv]

Short introduction to lattice QCD

• Turn off the weak and electromagnetic interactions,

$$\mathcal{L}_{\text{QCD}} = \bar{\psi} \left(i \left(\gamma^{\mu} D_{\mu} \right) - m \right) \psi - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a} \rightarrow \mathsf{discretizing}$$

• Two-point function is calculated by

$$\langle \Omega | O(t) O^{\dagger}(0) | \Omega \rangle = \frac{1}{Z} \int \mathcal{D}[\psi, \bar{\psi}] \mathcal{D}[U] \mathrm{e}^{-S_F[\psi, \bar{\psi}, U] - S_G[U]} (O(t) O^{\dagger}(0)) [\psi, \bar{\psi}, U]$$

• On the other hand,

$$\begin{split} \langle \Omega | O(t) O^{\dagger}(0) | \Omega \rangle &= \langle \Omega | O(t) \sum_{n} \frac{1}{2E_{n}} | E_{n} \rangle \langle E_{n} | O^{\dagger}(0) | \Omega \rangle \\ &= \frac{1}{2E_{1}} | \langle \Omega | O(t) | E_{1} \rangle |^{2} e^{-E_{1}t} + \text{exited states} \end{split}$$

• Towers of finite-volume energy levels E_n encode the interactions

Short introduction to lattice QCD – Operator construction

- Now, how to build these operators O, so that we create $D\pi$ from the vacuum?
- Symmetry broken $O(3) \rightarrow O_h$ or even smaller group
- A package **OpTion**⁶ (**Op**erator construc**Tion**) has been developed to construct general *N*-hadron operators. It is widely used and has become a routine tool in the CLQCD collaboration

OpTion (Public)			
		⇔ Code +	About
wittscien Possible to print also JLS with partial w		🕚 12 Commits	OpTion (Operator construction) is a Mathematica package for building
Manual			operators in lattice QCD.
DpTion			
🖿 Tests			Readme MiTlicense
D .gitignore			
			ជំ 7 stars © 1 watching
C OpTional			
			Releases 1
II README 🐵 MIT license			OpTion 10.0 (Linest) an Aug 21, 2024
OpTion			Packages
license HIT Nethernetics 10.x11.x12.x13.x			Publish your first package
OpTion (Operator construction) is a Mathematica package for operator construction in lattice QCD.			Languages

• e.g. $D(+p_z)\pi(-p_z) - D(-p_z)\pi(+p_z)$ transforms as the T_1^- irrep

⁶https://github.com/wittscien/OpTion

Haobo Yan (PKU PHY)

Lattice setup

configuration	volume	a/fm	$m_\pi/{ m MeV}$	$N_{\rm cfgs}$
C48P14	$48^3 \times 96$	0.10530(18)	135.5(1.6)	259
F32P21	$32^3 \times 64$	0.07746(18)	210.9(2.2)	459
F48P21	$48^3 \times 96$	0.07746(18)	207.2(1.1)	222
F32P30	$32^3 \times 96$	0.07746(18)	303.2(1.3)	567
F48P30	$48^3 \times 96$	0.07746(18)	303.4(9)	201
H48P32	$48^3 \times 144$	0.05187(26)	317.2(0.9)	274

- CLQCD ensembles with $N_{\rm f}=2+1$ Clover fermions [CLQCD, 2024]
- $\bullet~4$ different pion masses to track the chiral behavior
- 3 lattice spacings to estimate the discretization error

Finite-volume spectra at $m_\pi \approx 208 \text{ MeV}$

- Strong attraction in S-wave
- The levels are interpreted by quantization conditions: f(energy | evels, amplitude) = 0

Pole positions of $D_0^*(2300)$ as a function of m_π

• Using the scattering amplitude, we perform an analytic continuation to find poles

- Only one pole is found \rightarrow two-pole structure is to be found in coupled channel scattering
- An clear trend for the motion of one D_0^* pole is identified

bound state \rightarrow virtual state \rightarrow resonance

Introduction 2: Three-body: $\omega \rightarrow \pi \pi \pi$

- Now we have the two-body input we want to approach the three-body channel
- However, 3bd is too much more complicated (only one lattice calculation considered resonance in the history^a)
- $\bullet\,$ We take a challenge on the $\omega\,$ meson
- crucial for $T_{cc}{}^{b}$, Roper, ...

Why is this problem difficult?

- Three-body problem with resonances in two-body problem
 - $\blacktriangleright \ \pi\pi\pi \to \omega$
 - $\blacktriangleright \ \pi\pi \to \rho$
- Computationally most complicated among all isospin channel
- Complicated quantization conditions

^aMai:2021nul

^bHansen:2024ffk

ω : the first neutral vector meson (1961)¹

- The lightest hadron decaying into three particles: $\omega \rightarrow 3\pi$
- Phenomenologically interesting, for instance in the N-N interaction, muon g-2, dark matter...⁸

⁸Sakurai (1960); Erkelenz (1974); Brown and Jackson (1976); Barkov *et al.*, 1985; Connell *et al.* (1997); Bazavov *et al.* (2021).

⁷Maglic *et al.* (1961).

The methodology

- $\omega, \rho \pi, \pi \pi \pi$ operator from OpTion²
- 2bd and 3bd spectra
- Develop FVU and the pertinent EFT to parametrize the three-body force
- $\bullet\,$ Solve the integral equations and search for the ω poles

²https://github.com/wittscien/OpTion

Contraction & quantization conditions

- Insanely many diagrams (202 for only $\pi\pi\pi \to \pi\pi\pi$, only 9 for the two-body problem)
- The topologies for $\pi\pi\pi \to \pi\pi\pi$

• Quantization conditions: FVU (Finite-Volume Unitarity)

$$\begin{cases} \tilde{K}^{-1}(\sigma) - \Sigma^{FV}(\sigma) = 0\\ \det[(\tilde{K}^{-1}(s) - \Sigma^{FV}(s))E_L - (\tilde{B}(s) + \tilde{C}(s))] = 0 \end{cases}$$

• Combined fit for $\pi\pi$ and $\pi\pi\pi$ spectra for all M_{π} 's (EFT4)³

$$\begin{cases} & \checkmark \sim \frac{\sigma - M_\rho^2}{g^2} \\ & \searrow \sim \frac{s(M_\rho^2 - \sigma_q + 6g^2 f_\pi^2)(M_\rho^2 - \sigma_p + 6g^2 f_\pi^2)}{g^2 f_\pi^6 (s - M_\omega^2)} \end{cases}$$

³For a review of the EFT form, see Meißner (1988).

Finite-volume spectra revisited

- Strong **attraction** in both the $\pi\pi$ and $\pi\pi\pi$ channels
- Restricted to be below the $\omega(1420)$ region, but high-lying energies are also well-predicted

Finite-volume spectra revisited

- Strong **attraction** in both the $\pi\pi$ and $\pi\pi\pi$ channels
- Restricted to be below the $\omega(1420)$ region, but high-lying energies are also well-predicted

Pole positions of $\omega(782)$ as a function of m_{π}

- Solve the integral equation
- ω is a bound state at $M_{\pi} \approx 305 \,\mathrm{MeV}$ and a resonance at $M_{\pi} \approx 208 \,\mathrm{MeV}$
- Extrapolate to the physical pion mass, the poles agree well with the PDG values⁴

⁴See related discussions in Hoferichter (2023), Hoferichter (2019), Hoid (2020), Colangelo (2022), Colangelo (2018).

Summary

For $D_0^*(2300)$,

• An clear trend for the motion of one D_0^* pole is identified

bound state \rightarrow virtual state \rightarrow resonance

- Coupled $D\pi D\eta D_s \bar{K}$ analysis is expected soon
- The package OpTion is developed

For $\omega(782)$,

- First-ever determination of the ω -meson pole from lattice QCD
- Development of the FVU, matching EFT and FVU
- Paved the way to study heavier three-hadron resonances
- $\bullet\,$ The ρ and ω pole positions at the physical point

$$\sqrt{s_{\rho}} = (748.9(10.0) - i63.5(1.8)) \text{ MeV}$$

 $\sqrt{s_{\omega}} = (778.0(11.2) - i3.0(5)) \text{ MeV}$

@Maxim Mai and Marco Garofalo

Thank you!