

Recent studies on pentaquark states from LHCb

Yuxiang Song (Tsinghua Univ.)

10th XYZ workshop

April 14, 2025

Review of main results before 2024

- \geq 2015 Run1: $P_{c\bar{c}}(4380)^+ \& P_{c\bar{c}}(4450)^+$ observed from Amplitude Analysis
- \geq 2019 Run1&2: 1D fit to $\cos\theta_{P_{c\bar{c}}}$ -weighted $J/\psi p$ projections
 - $P_{c\bar{c}}(4312)^+$ observed. $P_{c\bar{c}}(4450)^+$ resolved into $P_{c\bar{c}}(4440)^+$ & $P_{c\bar{c}}(4457)^+$
 - $P_{c\bar{c}}(4380)^+$ need to be confirmed. (1D fit not sensitive to broader resonance)

 \triangleright 2021: Evidence of pentaquark with strangeness $P_{c\bar{c}s}(4459)^0 \rightarrow J/\psi \Lambda$

Review of main results before 2024

- \geq 2022: Evidence of $P_{c\bar{c}}(4337)$, while $P_{c\bar{c}}(4312)^+$, $P_{c\bar{c}}(4380)^+$ not seen
- \triangleright 2023: Observation of $P_{c\bar{c}s}(4338)$ in $B^+ \to J/\psi \overline{\Lambda} p$ decay

Evidence of $P_{c\bar{c}}$ in $B_s^0 \to J/\psi p\bar{p}$

PRL 128(2022) 062001

$$M_{P_c} = 4337^{+7}_{-4} {}^{+2}_{-2} \text{ MeV},$$

$$\Gamma_{P_c} = 29^{+26}_{-12}{}^{+14}_{-14} \text{ MeV},$$

$$P_{c\bar{c}s}$$
 in $B^+ \to J/\psi \overline{\Lambda} p$

PRL131 (2023) 031901

$$M(P_{c\bar{c}s}) = 4338.2 \pm 0.7 \pm 0.4 \text{MeV}$$

 $\Gamma(P_{c\bar{c}s}) = 7.0 \pm 1.2 \pm 1.3 \text{MeV}$

Review of main results before 2024

- The mass of pentaquarks is found to be close to charm-baryon and charm-meson mass threshold
 - ❖ Popular theories: molecular states
 - Other hypothesis (Compact pentaquark, kinematic effects like triangle singularity,...) are not ruled out

- >A rough sketch of theoretical predictions
 - Mass and width are consistent with experiment results within uncertainties
 - Most calculations suggest $J^P(P_{c\bar{c}}(4312)^+) = \frac{1}{2}^-$
 - $*J^P(P_{c\bar{c}}(4440)^+) & J^P(P_{c\bar{c}}(4457)^+)$ controversial between molecular models and others
 - **\$1-2** orders of magnitude difference on $\frac{B(P_{c\overline{c}(s)} \to \Sigma_c(\Xi_c)\overline{D})}{B(P_{c\overline{c}(s)} \to J/\psi p(\Lambda))}$

>Lots of possibilities need to be checked by experiments

PRD (2022) 105: 014029

PRD (2019) 100: 011502

LHCb detector

➤ Single-arm forward. Specially designed for heavy-flavour physics.

IJMPA 30 (2015) 1530022

Excellent tracking and vertexing

> Excellent PID

•
$$\epsilon_{PID}(K) \approx 95\%$$
@MisID $(\pi \rightarrow K) \approx 5\%$

•
$$\epsilon_{PID}(\pi) \approx 97\%$$
@MisID $(\pi \rightarrow \mu) \approx 3\%$

Contents of this talk

1. Latest results from LHCb

- \triangleright Pentaguarks search in pp prompt production
 - Search for pentaquarks in open-charm final states

PRD 110 (2024) 032001

- > Pentaquarks search from b-hadron open charm decay
 - \bullet Observation of $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$ decay EPJC 84 (2024) 575
 - \clubsuit Observation of $\Lambda_h^0 \to \Sigma_c^{(*)++} D^{*-} K^-$ decay PRD 110 (2024) L031104
 - \clubsuit Observation of $\Lambda_b^0(\Xi_b^0) \to J/\psi\Xi^-K^+(\pi^+)$ decay arXiv:2501.12779

2.Prospects of LHCb Run3

Inclusive Search for Prompt $P_{c\bar{c}}$

- Search $P_{c\bar{c}}/P_{cc}$ directly produced from pp collisions, as opposed to $P_{c\bar{c}}$ produced in b-hadron decays
- \succ Combining final states from: $(\Lambda_c^+, \Sigma_c^{++}, \Sigma_c^0, \Sigma_c^{*++}, \Sigma_c^{*0}, \Lambda_c^+ \pi^{\pm}) \otimes (D^0, \overline{D}^0, D^{\pm}, D^{*\pm})$
- >Scanned for pentaquarks up to 600 MeV away from mass threshold

➤ Consistent with background only hypothesis taking Look-Elsewhere effect into

account

Doggy Mode	remaquark	Cianal Viald	Opper Limit (×10°)	
Decay Mode	Hypothesis	Signal Yield	(90% CL)	(95% CL)
	$P_c(4312)^+$	19.78 ± 22.27	1.17	1.29
Λ_c^+ $\overline{D}{}^0$	$P_c(44440)^+$	26.91 ± 28.17	1.41	1.53
	$P_c(4457)^+$	6.20 ± 13.60	1.27	1.43
$\Lambda_c^+ \pi^+ D^{*-}$	$P_c(4440)^+$	0.00 ± 0.96	0.72	0.91
$\Lambda_c = \pi + D$	$P_c(4457)^+$	0.00 ± 1.73	0.77	0.97
Λ_c^+ $\pi^ D^{*-}$	$P_c(4440)^+$	0.00 ± 0.80	0.63	0.80
	$P_c(4457)^+$	0.00 ± 0.74	0.59	0.74
	$P_c(4312)^+$	0.00 ± 1.56	0.69	0.88
$\Lambda_c^+ \pi^+ D^-$	$P_c(44440)^+$	4.43 ± 11.67	3.71	4.24
	$P_c(4457)^+$	5.94 ± 12.68	3.13	3.61
	$P_c(4312)^+$	0.00 ± 1.42	0.67	0.86
Λ_c^+ $\pi^ D^-$	$P_c(4440)^+$	12.52 ± 15.89	3.91	4.37
	$P_c(4457)^+$	8.60 ± 12.22	3.10	3.51
Σ_0 D-	$P_c(4440)^+$	0.00 ± 2.47	0.82	1.03
Σ_c^0 D^-	$P_c(4457)^+$	0.00 ± 1.05	0.63	0.81
Σ_c^{++} D^-	$P_c(44440)^+$	0.61 ± 4.52	1.13	1.37
	$P_c(4457)^+$	0.66 ± 1.79	0.80	0.99
Σ_c^{*0} D^-	$P_c(4440)^+$	3.23 ± 3.53	1.89	2.24
	$P_c(4457)^+$	0.00 ± 3.09	0.91	1.13
Σ_c^{*++} D^-	$P_c(44440)^+$	1.20 ± 3.81	1.38	1.67
L_c D	$P_c(4457)^+$	0.00 ± 5.74	0.87	1.08

Branching fraction of $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$ decay

- ightharpoonup Directly search for $P_{c\bar{c}}^+ o \Lambda_c^+ \overline{D}^{(*)0}$ decay in $\Lambda_b^0 o \Lambda_c^+ \overline{D}^{(*)0} K^-$
- \triangleright Measured BF normalized to $\Lambda_b^0 \to \Lambda_c^+ D_s^-$
- \triangleright Compared to $\mathcal{B}(\Lambda_b \to J/\psi pK^-)$
 - $\triangleright \mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)/\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{*0} K^-) = 0.152^{+0.032}_{-0.028}$
 - $\gg \mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)/\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 K^-) = 0.049^{+0.011}_{-0.009}$

- ightharpoonup Extract $P_{c\bar{c}}^+$ fit fraction in $\Lambda_b^0 \to J/\psi p K^-$ and $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$
- \blacktriangleright Test theory predictions on $\mathcal{B}(P_{c\bar{c}}^+ \to J/\psi p)/\mathcal{B}(P_{c\bar{c}}^+ \to \Lambda_c^+ \overline{D}^{(*)0})$

First observation of $\Lambda_b^0 \to \Sigma_c^{(*)++} D^{(*)-} K^-$

- ➤ Motivations
 - \triangleright Peak structures slightly below $\Sigma_c D^{(*)}$ in $\Lambda_b^0 \to J/\psi p K^-$

PRD 110 (2024) L031104

- ightharpoonup Sizeable contributions from $P_{c\bar{c}}^+ o \Sigma_c^{(*)} D^{(*)}$ decays can enhance the branching fractions of these decays
- > Statistics are small

$$\triangleright \Lambda_b^0 \to \Sigma_c^{++} D^- K^-: 480 \pm 25$$

$$\triangleright \Lambda_b^0 \to \Sigma_c^{++} D^{*-} K^-: 279 \pm 26$$

$$\triangleright \Lambda_h^0 \to \Sigma_c^{*++} D^- K^-: 243 \pm 17$$

$$\triangleright \Lambda_b^0 \to \Sigma_c^{*++} D^{*-} K^-: 116 \pm 15$$

➤ No obvious peaking structures

Branching fractions of $\Lambda_b^0(\Xi_b^0) \to J/\psi\Xi^-K^+(\pi^+)$

- ightharpoonup Motivations: $P_{c\bar{c}}(J/\psi p: c\bar{c}uud) \rightarrow P_{c\bar{c}s}(J/\psi \Lambda: c\bar{c}sud) \rightarrow P_{c\bar{c}ss}(J/\psi \Xi^-: c\bar{c}ssd)$
- ➤ Yields:
 - $> \Xi_h^0 \to J/\psi \Xi^- \pi^+: 107 \pm 12$
 - $\triangleright \Lambda_b^0 \rightarrow J/\psi \Xi^- K^+$: 84 ± 10
- ➤ Branching fractions:

$$\geq \frac{\mathcal{B}(\Lambda_b^0 \to J/\psi \Xi^- K^+)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda)} = (1.17 \pm 0.14 \pm 0.08) \times 10^{-1}$$

- $\geq \frac{\mathcal{B}(\Xi_b^0 \to J/\psi \Xi^- \pi^+)}{\mathcal{B}(\Xi_b^0 \to J/\psi \Xi^-)} = (11.9 \pm 1.4 \pm 0.6) \times 10^{-2}$
- ➤ No obvious peaking structures

arXiv:2501.12779

LHCb Run3 and beyond

- ➤Run3: plan to collect \sim 15 fb⁻¹ pp data (Statistics \sim 2 × Run1&2)
- ➤ Full software trigger
 - > Trigger efficiency greatly improved for fully hadron final states
 - $\geq 2-3 \times \text{for open charm final states}$
- ➤ Higher statistics in upgrade boosts exotics studies @ LHCb
 - ➤ Evidence of some states/decay modes→Observation
 - > Search for new decay modes of observed pentaquark states(e.g. in open charm decays)
 - \triangleright Determine J^P and other properties of pentaquark states

Summary

- >LHCb experiments has published new results:
 - ➤ Search for prompt pentaquarks
 - ►BF measurements of $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$
 - First observation of $\Lambda_b^0 \to \Sigma_c^{(*)++} D^{(*)-} K^-$
 - First observation of $\Lambda_b^0 \to D^+D^-\Lambda$
- ➤ LHCb Run3 will collect more data @higher efficiency especially for open charm channels
 - >Expect results in new decay channels

Thanks!

Backups

First observation of $\Lambda_b^0 \to D^+D^-\Lambda$

≻Motivations

JHEP 07 (2024) 140

- \triangleright Abundant charmonium structures in D^+D^- structures
- \triangleright Possibility of $P_{c\bar{s}}$ in $D\Lambda$ system, like $T_{cs1}^*(2900)^0 \& T_{cs0}^*(2900)^0$
- >~90 candidates observed while rich structures in invariant mass spectrum discovered compared to phase space

Observation of $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$ decay and BR measurements

Systematical uncertainties

EPJC 84 (2024) 575

Source / relative to	$\frac{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 K^-\right)}{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^-\right)}$ [%]	$\frac{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{*0} K^-\right)}{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^-\right)}$ $\begin{bmatrix} \% \end{bmatrix}$	$\frac{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^{*-}\right)}{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^-\right)}$ $\begin{bmatrix} \% \end{bmatrix}$
Fit model	$^{+0.5}_{-0.6}$	$^{+2.8}_{-3.0}$	$^{+3.6}_{-3.3}$
Weighting	0.1	0.1	0.0
Multiple candidates	0.0	0.0	0.1
Size of the simulated samples	0.4	0.3	0.2
Size of the generated samples	0.6	0.6	0.6
Total	0.9	$^{+2.9}_{-3.1}$	$^{+3.7}_{-3.3}$
Statistical	1.8	2.8	1.3

Systematics are studied by finding the *envelope likelihood*. JINST 10 P04015

Branching ratios

(w.r.t. to the normalization decay mode)

$$\begin{split} \frac{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^0 K^-\right)}{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^-\right)} &= 0.1908^{+0.0036}_{-0.0034} + 0.0016_{-0.0018} \pm 0.0038, \\ \frac{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{*0} K^-\right)}{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^-\right)} &= 0.589^{+0.018}_{-0.017} + 0.017_{-0.018} \pm 0.012, \\ \frac{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^-\right)}{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^{*-}\right)} &= 1.668 \pm 0.022^{+0.061}_{-0.055}, \\ \mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^-\right) &= 1.668 \pm 0.022^{+0.061}_{-0.055}, \\ \mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^-\right) &= 1.668 \pm 0.022^{+0.061}_{-0.055}, \end{split}$$

(w.r.t. to the $P_{c\bar{c}}$ -observation decay mode)

$$\begin{split} \frac{\mathcal{B}\left(\Lambda_b^0 \to J/\psi p K^-\right)}{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 K^-\right)} &= 0.152^{+0.032}_{-0.028}, \\ \frac{\mathcal{B}\left(\Lambda_b^0 \to J/\psi p K^-\right)}{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^{*0} K^-\right)} &= 0.049^{+0.011}_{-0.009}, \end{split}$$

Theory predictions on relative BF

Table 1.3 Summary of theoretical calculation of the $P_c(4312)$ decay fractions.

Model	$\frac{\mathcal{B}(\boldsymbol{P}_{c}^{+} \to \boldsymbol{\Sigma}_{c} \overline{\boldsymbol{D}})}{\mathcal{B}(\boldsymbol{P}_{c}^{+} \to \boldsymbol{p} \boldsymbol{J} / \boldsymbol{\psi})}$	$\frac{\mathcal{B}(\boldsymbol{P}_{c}^{+} \to \boldsymbol{\Sigma}_{c} \overline{\boldsymbol{D}}^{*})}{\mathcal{B}(\boldsymbol{P}_{c}^{+} \to \boldsymbol{p} \boldsymbol{J} \boldsymbol{h} \boldsymbol{\psi})}$	Remarks
Moleculer	0.51 ± 1.69 , 0.38 ± 1.06 and 0.25 ± 1.65	N.A.	ERE, results depend on the total compositeness $X = 1, 0.8, 0.5^{[102]}$
Molecular	4.54	0.67	HQSS, coupled channels, assume $I = \frac{1}{2}$, $J^P = \frac{1}{2}^-$, subtraction constant $a(1 \text{ GeV}) = -2.09^{[125]}$
Compact pentaquark	0(forbidden)	0(forbidden)	Extended chromomagnetic, assume $I(J^P) = \frac{1}{2} (\frac{1(3)}{2})^{[126]}$
Molecular	allowed	N.A.	HQSS, no estimated values in the paper ^[127]
Molecular	0(forbidden)	0(forbidden), prefer $\Lambda_c \overline{D}^*$	Effective Lagrangian, relativistic (f_1, f_3) and no-relativistic (f_2, f_3) form-factors, f_i is cut-off dependent, assume $J^P = \frac{1}{2}^{-[115]}$
Molecular	0(forbidden), prefer $\Lambda_c^+ \overline{D}^{*0}$	N.A.	Fierz rearrangement, assume $J^P = \frac{1}{2}^{-[111]}$
Molecular	0(forbidden)	0(forbidden), prefer $\eta_c N$	HQSS, chiral unitary, coupled channels, assume $J^P = \frac{1}{2}^-$, depends one a_μ and $q_{\rm max}^{[128]}$

Model	$\frac{\mathcal{B}(\boldsymbol{P}_{c}^{+} \to \boldsymbol{\Sigma}_{c} \overline{\boldsymbol{D}})}{\mathcal{B}(\boldsymbol{P}_{c}^{+} \to \boldsymbol{p} \boldsymbol{J} h \psi)}$	$\frac{B(P_c^+ \to \Sigma_c \overline{D}^*)}{B(P_c^+ \to pJhy)}$	Remarks
Moleculer	N.A.	0.16 ± 0.47 , 0.20 ± 0.44 , and 0.11 ± 0.25	ERE, results depend on the total compositeness $X = 1, 0.8, 0.5^{[102]}$
Molecular	0.15	2.28	HQSS, coupled channels, assume $I = \frac{1}{2}$, $J^P = \frac{1}{2}^-$, subtraction constant $a(1 \text{ GeV}) = -2.09^{[125]}$
Compact pentaquark	For $\Sigma_c^* \overline{D}: 0.16t$	1.9t	Extended chromomagnetic, assume $I(J^P) = \frac{1}{2}(\frac{3}{2}^-), t = \frac{\mathcal{B}(P_c^+ \to \Lambda_c \overline{D}^+)}{\mathcal{B}(P_c^+ \to pJ/\psi)},$ this article predicts the $\mathcal{B}(P_c^+ \to \Lambda_c \overline{D}^+)$ as baseline ^[126]
Molecular	N.A.	suppressed if compared with $P_c(4312)^+$ and $P_c(4450)^+$	HQSS, $J^P = \frac{3}{2}$, no estimated values in the paper ^[127]
Molecular	113(25), 5.7(0.3)	N.A., and for $\Sigma_c^* \overline{D}$:26.7(270), 1.5(4.1)	Effective Lagrangian, relativistic (f_1, f_3) and no-relativistic (f_2, f_3) form-factors, f_i is cut-off dependent, assume $J^P = \frac{1}{2}^- \left(\frac{3}{2}^-\right)^{[115]}$
Molecular	For $\Sigma_c^{++}D^-$: $0.04t$; For $\Sigma_c^+\overline{D}^0$: $0.08t$	0, prefer $\Lambda_c^+ \overline{D}^0$: 1.2 t	Fierz rearrangement, assume $J^P = \frac{1}{2}^-$, depends on $t \ge 1^{[111]}$
Molecular	0.04	0(forbidden)	HQSS, chiral unitary, coupled channels, assume $J^P=\frac{1}{2}$, depends one a_μ and $q_{\rm max}^{~~[128]}$