The $B \rightarrow DDh$ analyses in the LHCb experiment

朱琳萱 (中国科学院大学) On behalf of the LHCb collaboration

4/14/2025

LHCb experiment in Run 1-Run 2

Excellent vertex and IP, decay time resolution:

• $\sigma(\text{IP}) \approx 20 \ \mu\text{m}$ for high- p_{T} tracks

•
$$\sigma(\tau) \approx 45$$
 fs for $B_s^0 \to J/\psi \phi$ and $B_s^0 \to D_s^- \pi^+$ decays
Very good momentum resolution:

• $\delta p/p \approx 0.5\% - 1\%$ for $p \in (0,200)$ GeV

• $\sigma(m_B) \approx 24$ MeV for two-body decays

- Run 1: $3 \, \text{fb}^{-1}$
- Run 2: 6 fb^{-1}
- Run 3: almost 9.56 fb^{-1}

Hadron and Muon identification

• $\epsilon_{K \to K} \approx 95\%$ for $\epsilon_{\pi \to K} \approx 5\%$ up to 100 GeV

•
$$\epsilon_{\mu \to \mu} \approx 97\%$$
 for $\epsilon_{\pi \to \mu} \approx 1 - 3\%$

• > 99%

Outline

Charm-strange mesons

- Exotic charm-strange mesons
- Charmonia states

Charm-strange mesons

- D_s^{**} spectroscopy
- <u>Phys. Rev. D 89, 074023</u>
- Relativistic quark model
- Some discrepancies between predicted and measured masses

$B^0 \to D^- D^+ K^+ \pi^-$

- <u>Phys. Rev. Lett. 126 (2021) 122002</u>
- Statistics: 5.4 fb⁻¹
- $m(K^+\pi^-) < 750 \text{ MeV}$
- No D^+D^- structure
- $B^0 \rightarrow D^- R(D^+ K^+ \pi^-)$
- $R(D^+K^+\pi^-) \to DK_0^*(700)^0$

Resonances	J ^P
$D_{s1}(2536)^+$	1+
$D_{s0}(2590)^+$??
NR	0-

$B^0 \rightarrow D^- D^+ K^+ \pi^-$

- $D_{s0}(2590)^+ \to D^+ K^+ \pi^-$
- $J^{\bar{P}} = 0^{-} > 10 \sigma$
- Pole mass: $m_R = 2591 \pm 6 \pm 7$ MeV ٠
- Pole width: $\Gamma_R = 89 \pm 16 \pm 12$ MeV
- θ_{D_s} : Angle between D^+ and the opposite direction of B^0 in the D_{sI}^+ rest frame
- Strong candidate for $D_s(2^1S_0)$

LHCb (a)

2.8

 $m_{D^+K^+\pi^-}$ [GeV]

2.6

- Data

 $D_{s1}^{(2536)^+}$ ----- NR

3.2

3.4

- Fit $D_{s0}(2590)^+$ LHCb (b)

0.65

0.7

 $m_{K^+\pi^-}$ [GeV]

0.75

60

30

 $D_{s1}(2460)^+ \to D_s^+ \pi^+ \pi^- \text{ in } B \to \overline{D}^{(*)} D_s^+ \pi^+ \pi^-$

- Babar and CLEO discovered the $D_{s0}^*(2317)^+$ and $D_{s1}(2460)^+$ states
 - Phys. Rev. Lett. 90, 242001
 - Phys. Rev. D 68, 032002
- The 100 MeV lower mass compared with quark model prediction
 - Phys. Rev. D, 1985, 32
 - $M(D_{s1}(2460)^+) M(D_{s0}^*(2317)^+) \approx M(D^*) M(D)$
- Lower mass makes decaying to $D^{(*)}K$ impossible, dominant isospin violating decay of $D_s^{(*)+}\pi^0$, very small width
- Their nature?
- Isospin conserving decay $D_{s1}(2460)^+ \rightarrow D_s^+ \pi^+ \pi^-$ to a sizable rate

- <u>Rept.Prog.Phys. 80 (2017) 7, 076201</u>
- Hadronic molecule?
- Tetraquark state?
- Charm-strange meson w/ strong couple-channel effect?

- Double-bump line shape in $m(\pi\pi)$ if $D_{s1}(2460)^+$ is a D^*K hadronic modecule
 - Commun. Theor. Phys. 75 055203
- The multiplet including $T_{c\bar{s}}(2900)^{++}$, $T_{c\bar{s}}(2900)^{0}$, and $T_{cs0}(2900)^{0}$ could be the radial excitation of a lighter multiplet containing $D_{s0}^{*}(2317)^{+}$
 - 2900 2317 = 583 MeV similar as $M(\psi(2S)) M(\psi(1S))$
 - Phys. Rev. D **110**, 034014

4/14/2025

- arXiv:2411.03399
- Statistics: $9.0 \, \mathrm{fb}^{-1}$
- $B^0 \to D^- D_{s1}(2460)^+$
- $B^+ \rightarrow \overline{D}^- D_{s1}(2460)^+$
- $B^0 \to D^{*-}D_{s1}(2460)^+$
- Amplitude fit
 - Isobar approach
 - TF-PWA software link
- The model $f_0(500) + f_0(980)$ and $\pi\pi$ K-matrix cannot describe the data well
- The model in paper <u>Commun. Theor. Phys. 75 055203</u> also cannot describe the data well

- Model w/o exotic contribution
 - $f_0(500) + f_0(980) + f_2(1270)$
 - *f*₀(500): relativistic Breit-Wigner (RBW)
 - $f_0(980)$: Flatte model
 - $f_2(1270)$: RBW w/ mass and width fixed
 - Note that the pole of $f_0(980)$ and $f_2(1270)$ are far away from kinematic limit of $m(\pi\pi)$

- Model w/ exotic contribution
 - $f_0(500) + T_{c\bar{s}}^{++} + T_{c\bar{s}}^0$
 - $T_{c\bar{s}}$ tested with two models
 - RBW
 - *K*-matrix (scattering length approxmation)
 - $\begin{pmatrix} \gamma & \beta \\ \beta & \gamma_2 \end{pmatrix}$
 - $\frac{\beta^2 \rho_{DK} + i\gamma_2 (i\gamma \rho_{DK} 1)}{\beta^2 \rho_{DK} \rho_{D_S \pi} + (i\gamma \rho_{DK} 1) (i\gamma_2 \rho_{D_S \pi} 1)}$
 - Scattering length

•
$$a = \frac{1}{8\pi\sqrt{s_{\text{thr}}}} \left(\gamma + i\beta^2 \rho_{D_s\pi}(s_{\text{thr}}) \right)$$

- $f_0(500) + f_0(980) + f_2(1270)$
 - Large contribution from $f_0(980)$ and $f_2(1270)$
 - Large interference between $f_0(500)$ and $f_0(980)$ forming the double bump lineshape in $m(\pi\pi)$
 - The mass and width of $f_0(500)$ are different from the results in other processes

Resonance	Mass (MeV)	Width (MeV)	FF (%)
$f_0(500)$	$376 \pm 9 \pm 16$	$175\pm23\pm16$	$197\pm35\pm23$
<i>f</i> ₀ (980)	945.5	167	$187 \pm 38 \pm 43$
$f_2(1270)$	1275.4	186.6	$29 \pm 2 \pm 1$

- $f_0(500) + T_{c\bar{s}}^{++} + T_{c\bar{s}}^0$
 - The mass and width of $f_0(500)$ agree with previous measurement better
 - Pole mass just below DK threshold
 - Scattering length: $-0.86(\pm 0.07) + 0.44(\pm 0.07)i$ fm
 - J^P favours 0⁺
 - Significance over $f_0(500) + f_0(980)$ model is larger than 10 σ
 - Isospin symmetry is conserved

Resonance	Mass (MeV)	Width (MeV)	FF (%)
$f_0(500)$	$464 \pm 23 \pm 14$	$214\pm28\pm8$	$199^{+42}_{-47} \pm 39$
$T_{c\bar{s}}^{++/0}$	$2312 \pm 27 \pm 11$	$264 \pm 46 \pm 21$	$126^{+27}_{-17} \pm 20$

Resonance	Mass (MeV)	Width (MeV)	FF (%)
$f_0(500)$	$474 \pm 30 \pm 18$	$224 \pm 23 \pm 16$	$248^{+40}_{-54} \pm 39$
$T_{c\bar{s}}^{++/0}$	$2327 \pm 13 \pm 13$	$96 \pm 16 \pm 23$	$156^{+27}_{-38} \pm 25$

 $D_{s1}(2460)^+ \to D_s^+ \pi^+ \pi^- \text{ in } B \to \overline{D}^{(*)} D_s^+ \pi^+ \pi^-$

- Consistent results obtained w/ RBW and K-matrix model except for the width
- Assign large systematic uncertainty for the width
- $T_{c\bar{s}}$: Mass: 2327 ± 13 ± 13 MeV and width: 96 ± 16⁺¹⁷⁰₋₂₃ MeV

Outline

- Charm-strange mesons
- Exotic charm-strange mesons
- Charmonia states

$B^+ \rightarrow D^+ D^- K^+$

- Phys. Rev. D102 (2020) 112003
- Statistics: 9.0 fb^{-1}
- Various contributions

$B^+ \rightarrow D^+ D^- K^+$

- Two new tetraquark states
 - Quark component: $\bar{c}d\bar{s}u$
 - $T_{cs0}^*(2870)^0$
 - $m = 2866 \pm 7 \pm 2 \text{ MeV}$
 - $\Gamma = 57 \pm 12 \pm 4 \text{ MeV}$
 - $T_{cs1}^*(2900)^0$
 - $m = 2904 \pm 5 \pm 1 \text{ MeV}$
 - $\Gamma = 110 \pm 11 \pm 4 \text{ MeV}$
- One new charmonium state: $\chi_{c0}(3915)$

 $B^- \rightarrow D^- D^0 K_S^0$

- <u>PRL 134 (2025) 101901</u>
- Statistics: $9.0 \, \text{fb}^{-1}$
- Contributions from D_{sI} states and $T^*_{cs0}(2870)^0$

Resonances	J ^P
$D_{s2}^{*}(2573)^{-}$	0+
$D_{s1}^{*}(2700)^{-}$	1-
$D_{s1}^{*}(2860)^{-}$	2+
NR (exponential)	0+
NR (uniform)	1-
$T^*_{cs0}(2870)^0$	0+

 $B^- \rightarrow D^- D^0 K_{\rm S}^0$

- $T_{cs0}^*(2870)^0$
 - Significance: 5.3 σ
 - $m = 2883 \pm 11 \pm 8 \text{ MeV}$
 - $\Gamma = 87^{+22}_{-47} \pm 17 \text{ MeV}$
 - Consistent w/ previous measurement
- Systematics from modelling $m(D^-K_S^0)$
 - *K*-matrix
 - Higher spin $D_{s3}^*(2860)$
- $R_I[T_{cs0}^*(2870)^0] \equiv \frac{\Gamma(T_{cs0}^*(2870)^0 \to D^0 \overline{K}^0)}{\Gamma(T_{cs0}^*(2870)^0 \to D^+ K^-)} = 3.3 \pm 1.9$
- $R_{I}[T_{cs1}^{*}(2900)^{0}] \equiv \frac{\Gamma(T_{cs1}^{*}(2900)^{0} \to D^{0}\overline{K}^{0})}{\Gamma(T_{cs1}^{*}(2900)^{0} \to D^{+}K^{-})} = 0.15 \pm 0.16$
- $\frac{R_I[T_{CS1}^*(2900)^0]}{R_I[T_{CS0}^*(2870)^0]} = 0.044 \pm 0.040$
- Isospin violation

4/14/2025

• Needs further explanation

$B^+ \rightarrow D^{*+}D^-K^+$ and $B^+ \rightarrow D^{*-}D^+K^+$

- PRL 133 (2024) 131902
- Statistics: $9.0 \, \text{fb}^{-1}$
- $B^+ \rightarrow D^{*+}D^-K^+$ and $B^+ \rightarrow D^{*-}D^+K^+$
- $B^+ \to R(D^{*\pm}D^{\mp})K^+$ The amplitude is related by C parity $B^+ \to D^{*+}D^-K^+$ $B^+ \to D^{*-}D^+K^+$ $B^+ \to RK^+, R \to \begin{pmatrix} D^{*+}D^-\\D^{*-}D^+ \end{pmatrix}$

•
$$A(x) = \frac{1+d}{2} \left[c_j A_j(x) + c_k A_k(x) \right] + \frac{1-d}{2} \left[C_j c_j A_j(x) + c_l A_l(x) \right]$$

• $j \in R(D^{*\pm}D^{\mp}); k \in R(D^{*-}K^+, D^+K^+); l \in R(D^{*+}K^+, D^-K^+)$

- It is the first time that amplitude analysis can determine the C-parity of the resonances
- Clear difference due to interference of different C-parities

$B^+ \rightarrow D^{*+}D^-K^+$ and $B^+ \rightarrow D^{*-}D^+K^+$

- Contribution from T_{cs}^* seen in one channel
- Some tension in the mass, width and fractions
- $T^*_{\bar{c}\bar{s}0}(2870)^0 \rightarrow D^{*-}K^+$ is forbidden by spinparity conservation
- Upper limits (95% CL)

Property

 $T^*_{\bar{c}\bar{s}0}(2870)^0$ mass [MeV]

 $T^*_{\bar{c}\bar{s}0}(2870)^0$ width [MeV]

 $T^*_{\bar{c}\bar{s}1}(2900)^0$ mass [MeV]

 $T^*_{\bar{c}\bar{s}1}(2900)^0$ width [MeV]

 $\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}0}(2870)^0 D^{(*)+})$

 $\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}1}(2900)^0 D^{(*)+})$

 $\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}0}(2870)^0 D^{(*)+})$

 $\overline{\mathcal{B}(B^+ \rightarrow T^*_{\overline{a}\overline{a}1}(2900)^0 D^{(*)+})}$

- $T^*_{\bar{c}\bar{s}1}(2900)^0 \to D^{*-}K^+, B^+ \to T^*_{\bar{c}\bar{s}1}(2900)^0D^+: 1.5\%$
- $T^*_{c\bar{s}1}(2900)^{++} \rightarrow D^+K^+, B^+ \rightarrow T^*_{c\bar{s}1}(2900)^{++}D^{*-}: 3.3\%$

This work

 $2914\pm11\pm15$

 $128\pm22\pm23$

 $2887 \pm 8 \pm 6$

 $92 \pm 16 \pm 16$

 $(4.5^{+0.6}_{-0.8}{}^{+0.9}_{-1.0}\pm 0.4) \times 10^{-5}$

 $(3.8^{+0.7}_{-1.0})^{+1.6}_{-1.1} \pm 0.3) \times 10^{-5}$

 $1.17 \pm 0.31 \pm 0.48$

$B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$

- Phys.Rev.D 108 (2023) 1
- Statistics: 9.0 fb⁻¹
- Contribution from excited D states and two new tetraquark states

4/14/2025

$B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ and $B^+ \to D^- D_s^+ \pi^+$

- Two decays are related by isospin symmetry
 - Except for $D^*(2010)^-$ and $\overline{D}^*(2007)^0$
- $T^*_{c\bar{s}0}(2900)^{++}: c\bar{s}u\bar{d}$
- $T^*_{c\bar{s}0}(2900)^0: c\bar{s}\bar{u}d$
- $J^P = 0^+$
- $m = 2908 \pm 11 \pm 20 \text{ MeV}$
- $\Gamma = 136 \pm 23 \pm 13$ MeV
- Might belong to an isospin triplet

$B^+ \to D^{*-} D^+_{\scriptscriptstyle S} \pi^+$

- JHEP08 (2024) 165
- Statistics: 9.0 fb^{-1}
- Main contribution from excited charm meson
- No strong evidence of $T^*_{c\bar{s}0}(2900)^{++}$, an upper limit is set 2.3% @ 90% CL
- The statistics is also limited
- Contributions from excited D decays

4/14/2025

Outline

- Charm-strange mesons
- Exotic charm-strange mesons
- Charmonia states

$B^+ \rightarrow D^+ D^- K^+$

• One new charmonium state: $\chi_{c0}(3915)$

Charmonia spectrum · PDG

Mass (MeV)

4/14/2025

$B^+ \rightarrow D^{*+}D^-K^+$ and $B^+ \rightarrow D^{*-}D^+K^+$

 $h_c(4000)$: 1⁺⁻ $m_0 = 4000^{+17+29}_{-14-22}$ MeV $\Gamma_0 = 184^{+71+97}_{-45-61}$ MeV

$$h_c(4300)$$
: 1⁺⁻
 $m_0 = 4307.3^{+6.4+3.3}_{-6.6-4.1}$ MeV
 $\Gamma_0 = 58^{+28+28}_{-16-25}$ MeV

$$\chi_{c1}(4010): 1^{++}$$

 $m_0 = 4012.5^{+3.6+4.1}_{-3.9-3.7}$ MeV
 $\Gamma_0 = 62.7^{+7.0+6.4}_{-6.4-6.6}$ MeV

Could be QM Predictions $h_c(2P)$?

Could be QM Predictions $h_c(3P)$?

Nature still under debate

Charmonia spectrum · PDG

Mass (MeV)

4/14/2025

LHCb上B → DDh分析

Summary

- LHCb experiment has observed many new states through $B \rightarrow DDh$ decays w/ data of Run 1-Run 2
- More exotic states and their properties are expected to be observed w/ Run 3 data

Back up

$$B^0 \to D^- D^+ K^+ \pi^-$$

- $A = \sum_{k} H^{D_{sk}} d_{0,0}^{J_{D_{sk}}} (\theta_{D_s}) p^{L_{B^0}} B_{L_{B^0}} q^{L_{D_{sk}}} B_{L_{D_{sk}}} BW(m_{K^+\pi^-}) BW(m_{D^+K^+\pi^-})$
- $\Gamma^{D_{sJ}}(m_{DK\pi}) = \Gamma^{D_{sJ} \to D^*K}(m_{DK\pi}) + \Gamma^{D_{sJ} \to DK\pi}(m_{DK\pi})$
- Two-body mass-dependent width

•
$$\Gamma^{D_{SJ} \to D^*K}(m_{DK\pi}) = \Gamma^{D_{SJ} \to D^*K}(m_0) \cdot \left(\frac{q}{q_0}\right)^{2L+1} \cdot \frac{m_0}{m_{DK\pi}} \cdot B'_L(q, q_0, d)^2$$

- Constant
- $r = \Gamma^{D_{sJ} \to DK\pi}(m_0) / \Gamma^{D_{sJ} \to D^*K}(m_0)$
- Almost equally good fit quality and the same $D^+K^+\pi^-$ mass lineshape are found for different width fractions *r* in the range 0 to 1
- r cannot be determined with the current data, and is fixed to 0.5 in the fit

