

Existence of $\mathbf{0}^{--}\bar{\boldsymbol{D}}_{\boldsymbol{s}}\boldsymbol{D}\boldsymbol{K}$ on nature of $\boldsymbol{D}_{\boldsymbol{s}\boldsymbol{0}}^*$ (2317)

arxiv:2501.11358

吴天伟(中山大学)

Collaborators: Liu-Ming Zhu and Li-sheng Geng

2025.0414@长沙

Exotic hadronic states

Normal hadron:

meson: quark-antiquark pair

baryon: 3 quarks

Exotic hadron state:

1. Glueball

Composed of gluons

2. Hybrid

Composed of quarks and gluons

3. Multiquark state

Composed of multi quarks(>3)

4. Hadronic molecule

Composed of 2 or more hadrons

Hadronic molecules

F.K. Guo, et al. Rev.Mod.Phys.90.015004

X(3872)Belle P_c states $T_{cc}(3875)$ ndidates/(2 MeV) $Yield/(500 \text{ keV}/c^2)$ **LHCb** $9 \, \text{fb}^{-1}$ background 4200 4250 4300 4350 4400 4450 4500 4550 4600 3.87 3.88 3.89 $\left[\text{GeV}/c^2 \right]$ $m_{{
m D}^0{
m D}^0\pi^+}$

X(3872), $T_{cc}(3875)$, P_c pentaquarks, $D_{s0}*(2317)$ are interpreted as hadronic molecules.

Many XYZ particles are close to two hadron mass thresholds.

Three-body molecules

T.W. Wu, et al. Science Bulletin 67 (2022) 1735-1738

Study mainly focus on:

Existence (mass\structure)

Decay (channel\partial width)

Production (B.F.\events)

From two-body to three-body 3 > 2+1 > 1+1+1

Three-body molecules

T.W. Wu, et al. Science Bulletin 67 (2022) 1735-1738

M.Z. Liu, et al. Phys.Rept. 1108 (2025) 1-108

Three-body molecules based on two-body candidates

$$\Upsilon(1S)/\Upsilon(2S) \to R^{++} + \text{anything}, R^{++} \to D^+ D_s^{*+}$$

 $e^+e^- \to R^{++}$ + anything at $\sqrt{s} = 10.520/10.580/10.867$ GeV, $R^{++} \to D^+D_s^{*+}$

Doubly charmed more difficult to produce.

Features of $ar{m{D}}_{m{S}}m{D}m{K}$ system

How to find and verify three-body molecules?

√ No mixture of conventional hadrons

0⁻⁻ exotic quantum numbers

√ Two-body system can not bind

Suppressed by the OBE model or OZI rule

✓ Produced in both e^+e^- and pp collisions

Hidden charm/strange state easier to observe

$D_{s0}^*(2317)$

Ds0(2317), discovered by BABAR, CLEO and D0.

T. Barnes, et al. Phys. Rev. D 68, 054006

@PDG (Expe.)

Mass: 2317.7 MeV

Width: < 3.8 MeV

Partner D_{s1} : 2460 MeV $M(D_{s1})-M(D_{s0})=140$ MeV

@Quark model (Theo.)

Mass: 2480 MeV

Width: 270-990 MeV

Partner D_{s1}: 2560 MeV

 $M(D_{s1})-M(D_{s0})=80 \text{ MeV}$

Explanations of Ds0*(2317)

M. Altenbuchinger et al. Phys.Rev.D 89, 014026

DK pole position@ChPT

TABLE V. Pole positions $\sqrt{s} = M - i\frac{\Gamma}{2}$ (in units of MeV) of charm mesons dynamically generated in the HQS UChPT.

(S, I)	$J^P=0^+$	$J^{P} = 1^{+}$		
(1, 0)	2317 ± 10	2457 ± 17		
(0, 1/2)	$(2105 \pm 4) - i(103 \pm 7)$	$(2248 \pm 6) - i(106 \pm 13)$		

Z. Yang et al. PhysRevLett.128.112001

68 % DK+32 % **c\$@LQCD**

ChPT, Lattice and Exp. all surport that the D_{s0} (2317) is a DK molecule or at least has a large DK component.

Wave function of $\bar{D}_S DK$ with C parity

$$\Psi^C = \frac{1}{\sqrt{2}} (\Psi_{\bar{D}_s DK} + C \Psi'_{D_s \bar{D}\bar{K}}), \quad \langle \Psi^C | (H - E) | \Psi^C \rangle = 0$$

$$C = \pm 1$$

$$\Psi'_{D_s\bar{D}\bar{K}} = \hat{C}\Psi_{\bar{D}_sDK} = \sum_{c=1,3} \Phi(r'_c, R'_c).$$

 $H = T + V + V_C$ Two-body C-parity interaction

Solve three-body problem with **GEM**

Two-body interactions

DK interaction parameterized by a constant C_a

with Contact-range EFT approach

 $DK - D_s \eta$ coupled channel interaction in matrix form

$$V_{DK-D_s\eta}^{J^P=0^+} = \begin{pmatrix} C_a & -\frac{\sqrt{3}}{2}C_a \\ -\frac{\sqrt{3}}{2}C_a & 0 \end{pmatrix}$$

 V_{DK} in a Gaussian form in coordinate space

$$V(r) = C_a \frac{e^{(r/R_c)2}}{\pi^{3/2} R_c^3},$$

With SU(3) flavor symmtry

$$C_a^{DK}: C_a^{\bar{D}_s K}: C_a^{\bar{D}_s D} \approx 1:0.5:0.1$$

DK interaction fitting $D_{S0}(2317)$

Considering $D_{S0}(2317)$ as a $DK - D_{S}\eta$ molecule + $c\bar{s}$ state

TABLE IV. $D_{s0}^*(2317)$ coupling to its constituents (in units of GeV). **Momentum space**

Couplings	$\Lambda = 0.50$	$\Lambda = 1.00$	$\Lambda = 1.50$	$\Lambda = 2.00$	$\Lambda = 0.50$	$\Lambda = 1.00$	$\Lambda = 1.50$	$\Lambda = 2.00$
$g_{D_{s0}^*DK}$	19.37	14.72	13.32	12.66	16.20	12.28	11.16	10.63
$g_{D_{s0}^*D_s\eta}$	13.23	9.54	8.40	7.86	10.42	7.70	6.89	6.50
$C_a(\mathrm{fm}^2)$	-5.78	-1.84	-1.03	-0.71	-6.96	-2.06	-1.12	-0.75
Compositeness	$\Lambda = 0.50$	$\Lambda = 1.00$	$\Lambda = 1.50$	$\Lambda = 1.00$	$\Lambda = 0.50$	$\Lambda = 1.00$	$\Lambda = 1.50$	$\Lambda = 2.00$
P_{DK}	0.92	0.90	0.89	0.88	0.65	0.63	0.62	0.62
$P_{D_s\eta}$	0.08	0.10	0.11	0.12	0.05	0.07	0.08	0.08

Coordinate space

Components of $D_{s0}^*(2317)$	$M(DK-D_s\eta)$	M(DK)	$M(c\bar{s})$ [4]	$P(c\bar{s})$	P(DK)	$P(D_s\eta)$
70% molecule+30% $c\bar{s}$	2280	2349	2406	30%	60%	10%
100% molecule	2318	2358	2406	0%	90%	10%
50% molecule+50% $c\bar{s}$	2230	2336	2406	50%	42%	8%

$$DK - D_s \eta > c\bar{s}$$
 $B_{DK} < 45 \text{ MeV}$

C-parity interaction $\bar{D}_s D_{s0}^* - D_s \bar{D}_{s0}^*$

V_C simplifies as

η exchange potential

$$V_{\bar{D}_s D_{s0}^* - D_s \bar{D}_{s0}^*}^C = -\frac{2}{3} C \frac{k^2}{f_{\pi}^2} q_0^2 Y(r, m_{eff}, \Lambda)$$

$$q_0 = m_{D_{s0}^*} - m_{D_s}, k = 0.56, \quad \Lambda = \alpha \Lambda_{QCD} + m_{eff}, m_{eff} = \sqrt{m_{\eta}^2 - (m_{D_{s0}^*} - m_{D_s})^2}.$$

Binding and weights of Jacobi channels

$0^{--} \bar{D}_s DK$ molecule:

	B.E.(0)	$P_{\bar{D}_sK-D}$	$P_{DK-\bar{D}_s}$	$P_{\bar{D}_sD-K}$
$\alpha = 1$	22^{+23}_{-14}	_	78^{-1}_{+2} %	_
$\alpha = 2$	20^{+22}_{-13}	$10^{+1}_{-1}\%$	80^{-1}_{+2} %	10^{+0}_{-1} %

FIG. 5. Mass of X as a function of the cutoff R_c .

Decays of $0^{--}D_sDK$ molecule

Triangle diagrams of the strong decays

$$i\mathcal{M}_{a} = g_{XD_{s0}^{*}\bar{D}_{s}}g_{D_{s0}^{*}D_{s}\eta}g_{\psi\bar{D}_{s}D_{s}} \int \frac{d^{4}q}{(2\pi)^{4}} (k_{2}^{\mu} - q^{\mu}) \frac{1}{k_{1}^{2} - m_{D_{s0}^{*}}^{2}} \frac{1}{k_{2}^{2} - m_{\bar{D}_{s}}^{2}} \frac{1}{q^{2} - m_{D_{s}}^{2}} \varepsilon_{\mu}(p_{2})F(q^{2}),$$

$$i\mathcal{M}_{b} = g_{XD_{s0}^{*}\bar{D}_{s}}g_{D_{s0}^{*}D_{s}\eta}g_{\bar{D}_{s}D_{s}^{*}\eta} \int \frac{d^{4}q}{(2\pi)^{4}} q^{\mu} \frac{1}{k_{1}^{2} - m_{D_{s0}^{*}}^{2}} \frac{1}{k_{2}^{2} - m_{\bar{D}_{s}}^{2}} \frac{1}{q^{2} - m_{\eta}^{2}} \varepsilon_{\mu}(p_{2})F(q^{2}),$$

$$i\mathcal{M}_{c} = g_{XD_{s0}^{*}\bar{D}_{s}}g_{D_{s0}^{*}DK}g_{\bar{D}_{s}D^{*}K} \int \frac{d^{4}q}{(2\pi)^{4}} q^{\mu} \frac{1}{k_{1}^{2} - m_{D_{s0}^{*}}^{2}} \frac{1}{k_{2}^{2} - m_{\bar{D}_{s}}^{2}} \frac{1}{q^{2} - m_{K}^{2}} \varepsilon_{\mu}(p_{2})F(q^{2}),$$

$$\Gamma = \frac{1}{2J+1} \frac{1}{8\pi} \frac{|\vec{p}|}{M^2} |\vec{\mathcal{M}}|^2 \qquad F(q,\Lambda,m) = (\frac{\Lambda^2 - m_E^2}{\Lambda^2 - q^2})^2$$

Partial decay widths

$$X \to J/\psi \eta \sim 10^1 \quad X \to \bar{D}_s D_s^* \sim 10^2 \quad X \to \bar{D}^* D \sim 10^3$$

$$X \rightarrow \bar{D}_s D_s^* \sim 10^2$$

$$X \to \bar{D}^*D \sim 10^3$$

Dominent decay:
$$X o ar{D}^*D$$

Productions of 0^{--} $\bar{D}_s DK$ molecule

$$\mathcal{A}(B \to D_{s0}^* \bar{D}^*) = \frac{G_F}{\sqrt{2}} V_{cb} V_{cs} a_1 f_{D_{s0}^*} \{ -q_1 \cdot \varepsilon(q_2) (m_{D^*} + m_B) A_1 \left(q_1^2 \right) + (k_0 + q_2) \cdot \varepsilon(q_2) q_1 \cdot (k_0 + q_2)$$

$$\frac{A_2 \left(q_1^2 \right)}{m_{D^*} + m_B} + (k_0 + q_2) \cdot \varepsilon(q_2) [(m_{D^*} + m_B) A_1 (q_1^2) - (m_B - m_{D^*}) A_2 (q_1^2) - 2m_{D^*} A_0 (q_1^2)] \},$$

Most promising process: $B^+ \rightarrow (X \rightarrow D^{*-}D^+)K^+ \sim 10^{-6}$

LHC integrated luminosity: 50 fb⁻¹ Events: 10 350 fb⁻¹ 100

Summary:

arxiv:2501.11358

- igwedge 4310 MeV $oldsymbol{0}^{--}$ $ar{oldsymbol{D}}_{oldsymbol{s}} oldsymbol{D} oldsymbol{K}$ exotic molecule is predicted on the nature of $oldsymbol{D}_{oldsymbol{s}0}^*(2317)$ as a molecule and $oldsymbol{c}\,ar{oldsymbol{s}}$ mixture
- $m{\lambda}$ Main decay $m{X} \to ar{m{D}}^* m{D}$ with several MeV width
- ightharpoonup Production process $m{B} o (m{X} o m{ar{D}}^* m{D}) m{K}$ with 10^{-6} branching fraction

Experiment searches are strongly recommanded!