

The open charm cross section measurement at BESIII

Haolin Yang

On behalf of the BESIII collaboration

Introduction

Outline

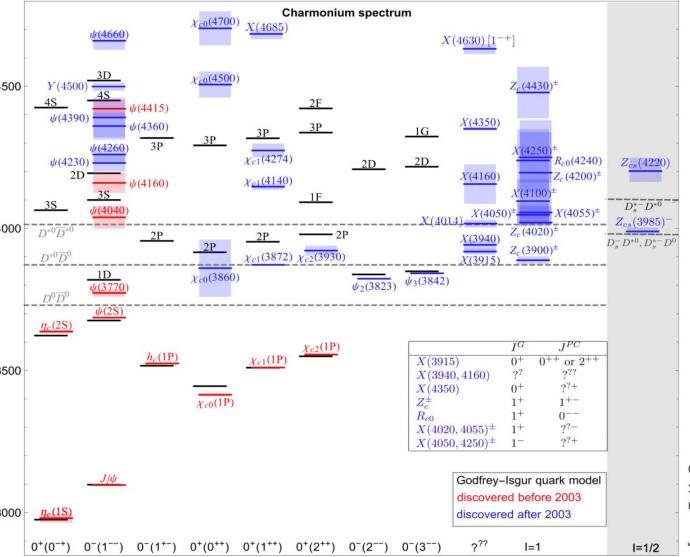
Recent results

•
$$e^+e^- \rightarrow D\overline{D}$$

PRL133, 081901 (2024)

•
$$e^+e^- \rightarrow D_s^+D_s^-$$

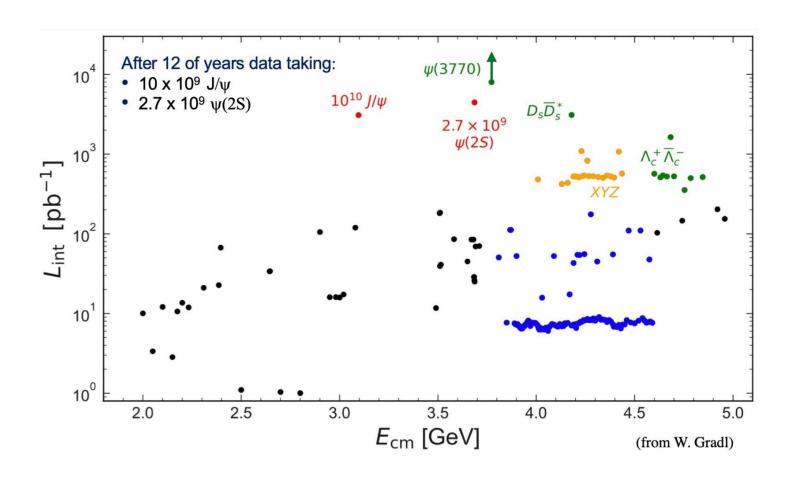
PRL 133, 261902 (2024)


•
$$e^+e^- \to D_S^{*+}D_S^{*-}$$

PRL 131, 151903 (2023)

Summary and outlook

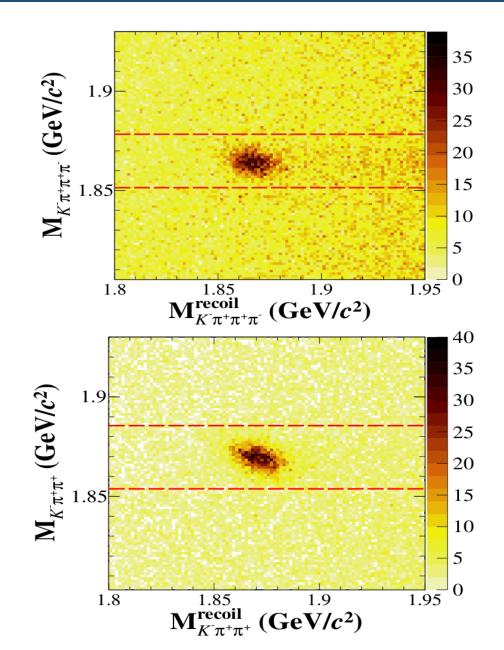
Introduction

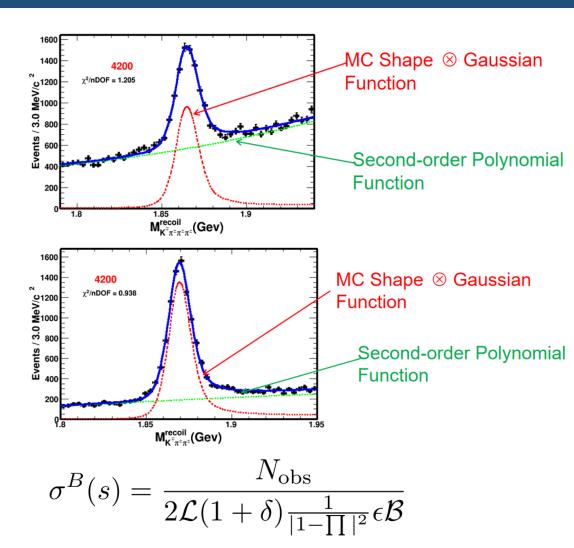

A series of vector charmonium states above the charm meson threshold $\psi(4040)(3S)$, $\psi(4160)(1D)$, and $\psi(4415)(4S)$ are consistent with the potential model.

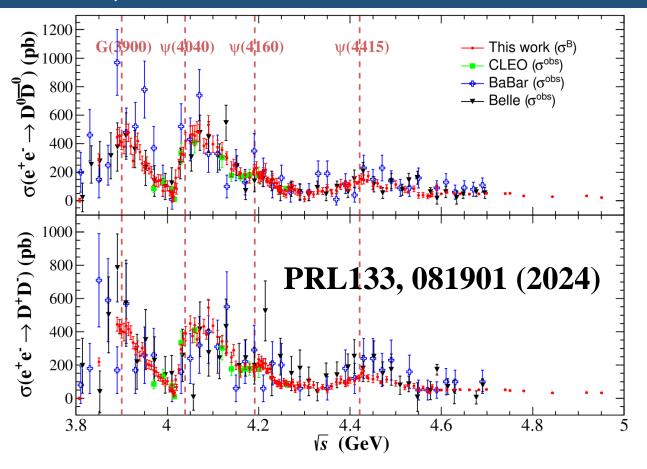
In the past two decades, unexpected vector charmonium-like resonance structures have been observed in hidden-charm final states, such as Y(4230), Y(4360) and Y(4660).

Open charm process dominates at 4~5 GeV

Searching for more final states of charmonium-like decay above the open-charm threshold.

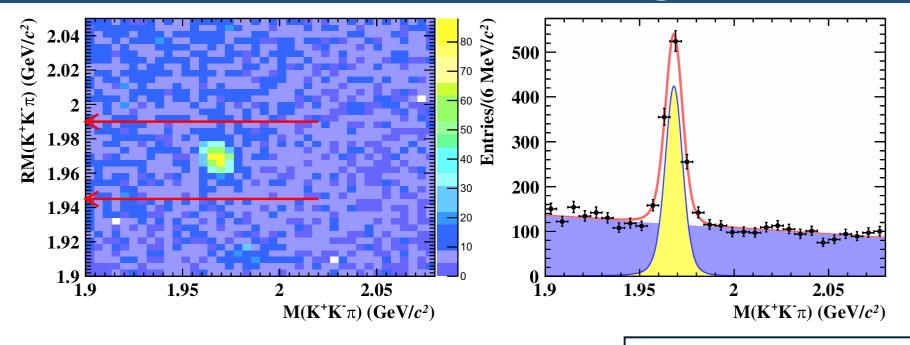

BESIII Data Samples


46 XYZ energy points 104 R-scan energy points corresponding in total to an integrated luminosity of 22.9 fb^{-1}


$e^+e^- o D^0 \overline D^0$, D^+D^-

- \sqrt{S} from 3.80 to 4.95 GeV
- Integrated luminosity $20 fb^{-1}$
- Single tag D0 (D+) is reconstructed via $K^-\pi^+\pi^+\pi^-(K^-\pi^+\pi^+)$ mode
- D-mass window cut
 - $|M_{K\pi\pi\pi} M_{D^0}| < 14 \text{ MeV}/c^2$
 - $|M_{K\pi\pi} M_{D^+}| < 16 \text{ MeV}/c^2$

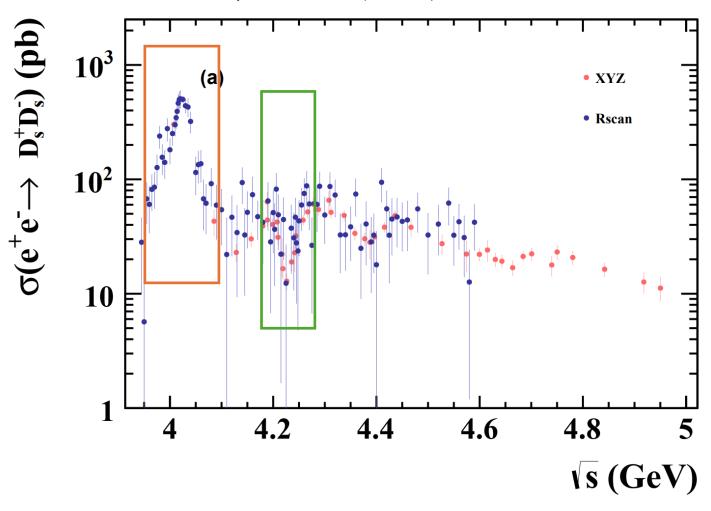
$e^+e^ightarrow D^0\overline{D}{}^0$, D^+D^-



Clear peaks of G(3900), $\psi(4040)$, $\psi(4160)$, $\psi(4260)$, $\psi(4415)$ Consistent with previous measurements

The systematics is 7.0% (6.5%) for $D^0(D^+)$ mode

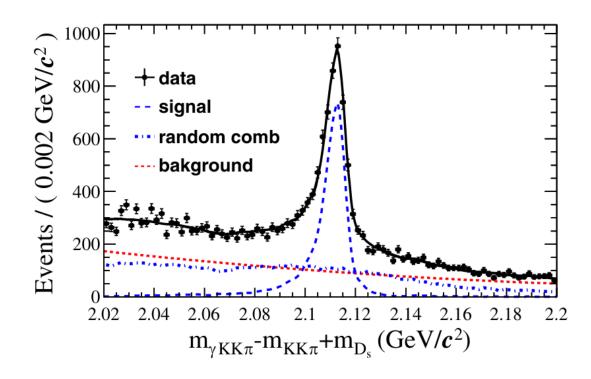
$e^+e^- \rightarrow D_S^+D_S^-$


 $signal\ MC\ shape\ \otimes\ Gaussian$ $1^{nd}\ polynomial$

- \sqrt{S} from 4.009 to 4.95 GeV
- Integrated luminosity 22.8 fb^{-1}

- $\sigma_{\rm Born} = \frac{N_{D_s}^{\rm fit} N_{D_s^{\pm}D_s^{\mp *}}}{2\mathcal{B}(D_s^{\pm} \to K^+K^-\pi^{\pm})\epsilon(1+\delta)\frac{1}{|1-\Pi|^2}\mathcal{L}}$
- Only single D_s^+ or D_s^- is reconstructed via $K^+K^-\pi^\pm$ mode
- Recoil mass window cut
- Possible peaking background of $D_s^{\pm} D_s^{*\mp}$ is subtract

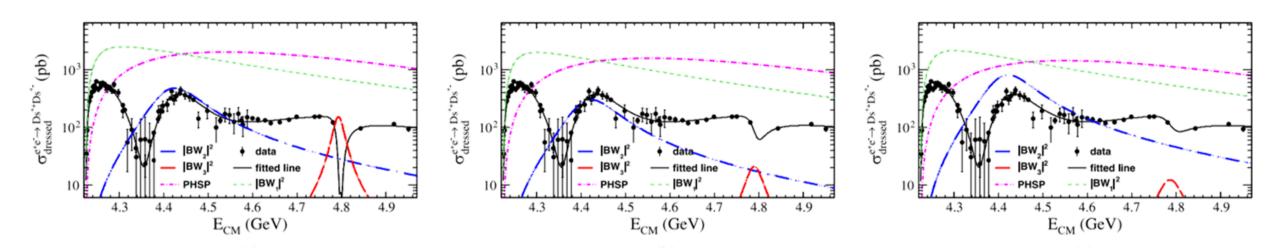
$e^+e^- \rightarrow D_S^+D_S^-$


PRL 133, 261902 (2024)

The width of ψ (4040) around 4.02 GeV is about 40 MeV, significantly smaller than the 80 \pm 10 MeV listed by the PDG

A narrow dip observed around 4.23 GeV, which closely corresponds to the $D_s^{*+}D_s^{*-}$ threshold and the peak position of the $\psi(4230)$.

$e^+e^- \rightarrow D_S^{*+}D_S^{*-}$


Signal: MC shape \otimes Gaussian Background: 1. Random combinations 2. 2^{nd} Chebyshev function

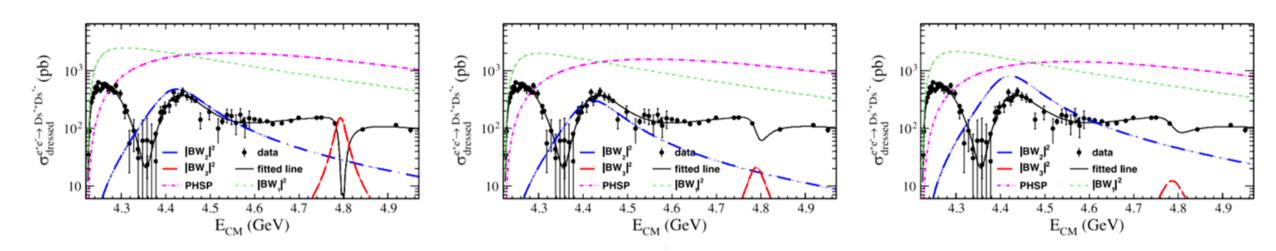
Systematic uncertainties vary from 26% to 6% The large uncertainty at lower region due to the calibration of energy

- \sqrt{S} from 4.226to 4.95 GeV
- Integrated luminosity 15.8 fb^{-1}
- Resconstruct D_s^{*+} or D_s^{*-} with $D_s^{*\pm} \to D_s^{\pm} \gamma$, $D_s^{\pm} \to K^+ K^- \pi^{\pm}$
- $\left| M_{miss} m_{D_s^*} \right| < 5\sigma_{M_{miss}^{mc}}$
- Possible peaking background

$$e^+e^- \rightarrow D_s^{\pm}D_s^{*\mp}\gamma^{isr}$$
 is subtracted

$e^+e^- o D_S^{*+}D_S^{*-}$

The significances of third structure exceed 5.9 σ in all three results.


$$\sigma_{\text{dressed}} = \left| BW_1(E_{\text{c.m.}}) + \sum_{j=2}^{3} BW_j(E_{\text{c.m.}}) e^{i\phi_j} + \frac{a_0 \sqrt{\beta^3(E_{\text{c.m.}})}}{E_{\text{c.m.}}^n} e^{i\phi_0} \right|^2$$

In the nominal fit, only statistics are considered. Systematics of resonance parameters are large

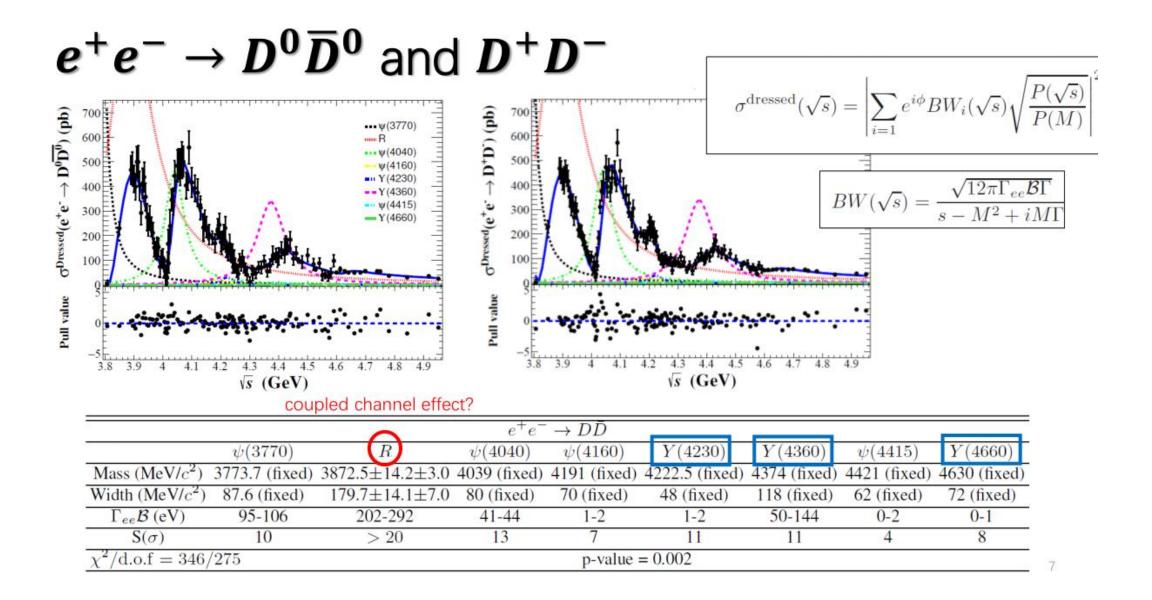
	Result 1	Result 2	Result 3	
$M_1 (\mathrm{MeV}/c^2)$	4186.8 ± 8.7	4194.1 ± 6.8	4195.6 ± 6.5	
Γ_1 (MeV)	55 ± 15	61.1 ± 8.5	61.7 ± 7.7	
$M_2 (\mathrm{MeV}/c^2)$	4414.6 ± 3.4	4411.9 ± 3.2	4411.1 ± 3.2	$\psi(4415)$
Γ_2 (MeV)	122.5 ± 7.5	120.2 ± 7.4	119.9 ± 7.3	
$M_3 (\mathrm{MeV}/c^2)$	4793.3 ± 6.7	4789.7 ± 8.7	4786.0 ± 9.4	
Γ_3 (MeV)	27.1 ± 6.5	42 ± 75	60 ± 34	

Sources	Fitting	R	$E_{\mathrm{c.m.}}$	$\sigma_{ m dressed}$	Total
$M_1 (\text{MeV}/c^2)$	8.8	2.9	28.3	5.1	30
Γ_1 (MeV)	6.7	1.9	51	11.8	53
$M_2 (\text{MeV}/c^2)$	3.5	0.6	4.0	3.0	6.1
Γ_2 (MeV)	2.6	0.2	7.6	1.0	8.1
M_3 (MeV/ c^2)	7.3	1.0	2.4	5.1	9.3
Γ_3 (MeV)	32.9	1.1	5.3	3.4	130

$e^+e^- o D_S^{*+}D_S^{*-}$

The significances of third structure exceed 5.9 σ in all three results.

$$\sigma_{\text{dressed}} = \left| BW_1(E_{\text{c.m.}}) + \sum_{j=2}^{3} BW_j(E_{\text{c.m.}}) e^{i\phi_j} + \frac{a_0 \sqrt{\beta^3(E_{\text{c.m.}})}}{E_{\text{c.m.}}^n} e^{i\phi_0} \right|^2$$


	Result 1	Result 2	Result 3
$M_1 (\mathrm{MeV}/c^2)$	4186.8 ± 8.7	4194.1 ± 6.8	4195.6 ± 6.5
Γ_1 (MeV)	55 ± 15	61.1 ± 8.5	61.7 ± 7.7
$M_2 (\mathrm{MeV}/c^2)$	4414.6 ± 3.4	4411.9 ± 3.2	4411.1 ± 3.2
Γ_2 (MeV)	122.5 ± 7.5	120.2 ± 7.4	119.9 ± 7.3
M_3 (MeV/ c^2)	4793.3 ± 6.7	4789.7 ± 8.7	4786.0 ± 9.4
Γ_3 (MeV)	27.1 ± 6.5	42 ± 75	60 ± 34

In the nominal fit, only statistics are considered. Systematics of resonance parameters are large

Sources	Fitting	R	$E_{\rm c.m.}$	$\sigma_{ m dressed}$	Total
$M_1 (\text{MeV}/c^2)$	8.8	2.9	28.3	5.1	30
Γ_1 (MeV)	6.7	1.9	51	11.8	53
$M_2 (\mathrm{MeV}/c^2)$	3.5	0.6	4.0	3.0	6.1
Γ_2 (MeV)	2.6	0.2	7.6	1.0	8.1
M_3 (MeV/ c^2)	7.3	1.0	2.4	5.1	9.3
Γ_3 (MeV)	32.9	1.1	5.3	3.4	<u>34</u>

Summary and Outlook

- Precision measurements of the cross sections of $e^+e^- \to D\overline{D}$, $D_S^+D_S^-$, $D_S^{*+}D_S^{*-}$ are presented
- Observation of numerous intriguing structures, strong coupled-channel effects need to be considered
- Hard to fit the cross sections, need more comprehensive
- In the future, coupled channels analysis is desired to including open and hidden charm, as well as charmonium and charmoniumlike resonances.
- $e^+e^- \rightarrow D_s^{*\pm}D_s^{\mp}$, is on the road

2025/4/12