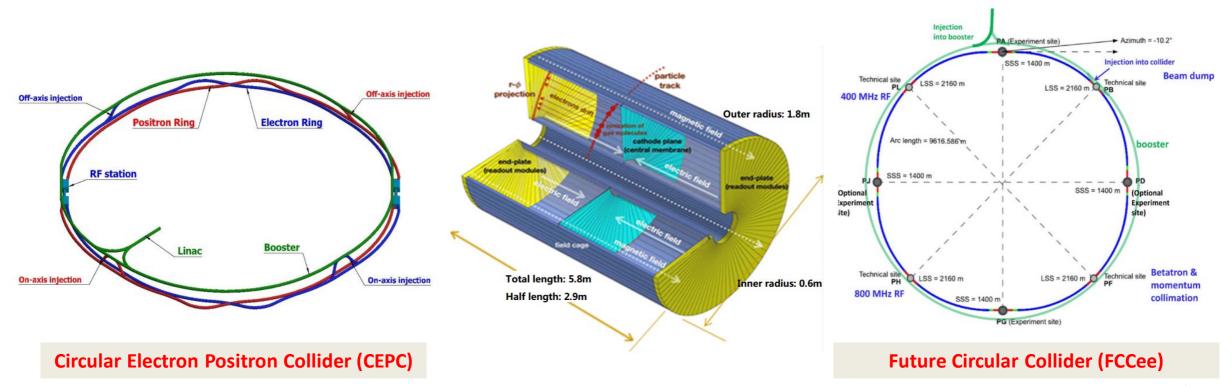


Update Status of the Baseline Gaseous Tracker Technology in the CEPC TDR

Huirong Qi

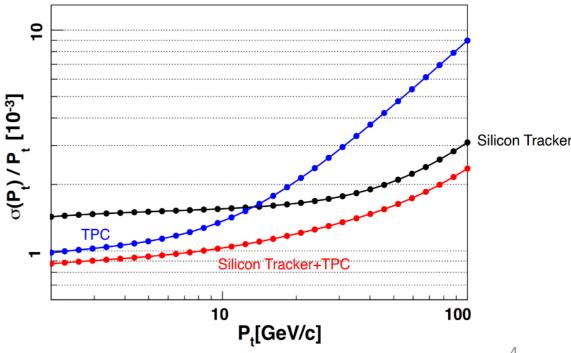

On behalf of the gaseous tracker group and some inputs from LCTPC international collaboration

Content

- Motivation and physics requirements
- Technical challenges and R&D efforts
- Detail design of CEPC TPC
- Simulated performance
- Summary

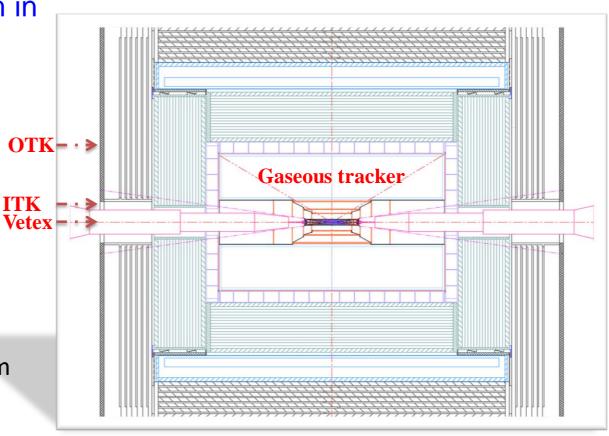
Motivation on e+e- collider

- A TPC is the main track detector for some candidate experiments at future e+e- colliders.
 - Baseline detector concept of ALICE, STAR, CEPC CDR and ILD at ILC
- TPC technology can be of interest for other future colliders (EIC, FCC-ee, KEKb...)
- Pixelated readout TPC can improve PID requirements of Flavor Physics at e+e- collider.


https://arxiv.org/abs/2203.08310

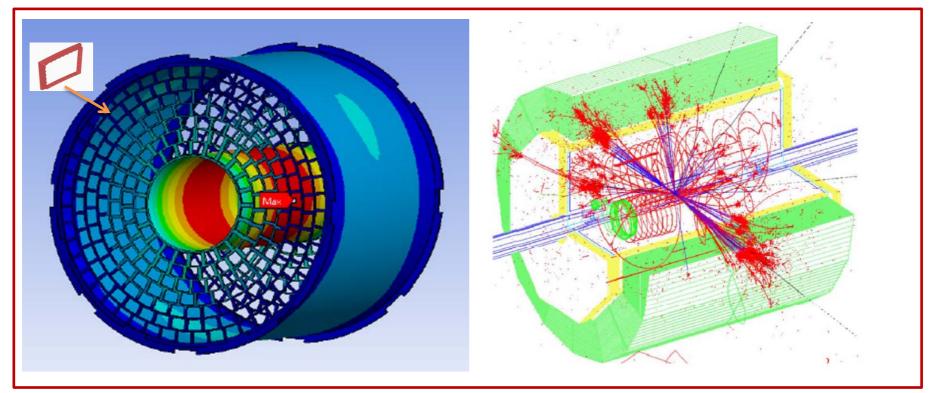
Physics requirements

- CEPC operation stages in the TDR: 10-years Higgs → 2-years Z pole → 1-year W
- Physics Requirements of the tracker
 - High momentum resolution for Higgs and Z
 - PID for the flavor physics and jet substructure


High momentum muons from the Z recoiling against Higgs: 20~90GeV Hadrons: most of them < 20GeV 10^6 CEPC Preliminary 10^6 CEPC Preliminary momenta of charges momenta of charges 10⁵ 10^5 10^3 10^3 $e+e- \rightarrow Z \rightarrow qq$ 91GeV 10 $e+e-\rightarrow ZH (mmH)$ 10 240 GeV 10⁻¹ 100 10⁻¹ **50 50** 100 P(GeV/c) P(GeV/c)

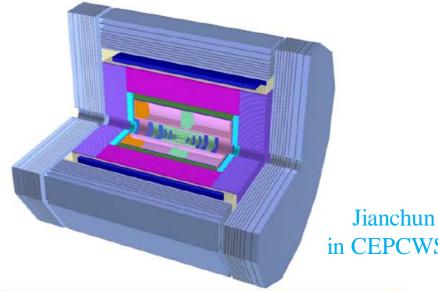
Calibration: Low luminosity Z at 3T Approximately 10³⁵cm⁻²s⁻¹ 1%-20% of high luminosity Z

Large gaseous tracker


- The detector adopts a hybrid tracking system in CEPC ref-TDR.
- Large gaseous tracker
 - PID of charged hadrons:
 - Benefit flavor tagging and jet substructure study
 - Reduce combination background
 - Quasi-continuous tracking: track finding
 - Ultra light material budget
 - Improved performance at the low momentum (<15GeV/c)</p>
 - The total materials (\sim 0.65% X_0) is equivalent to about 1 layer of a silicon tracker detector.

Schematic diagram of the detector

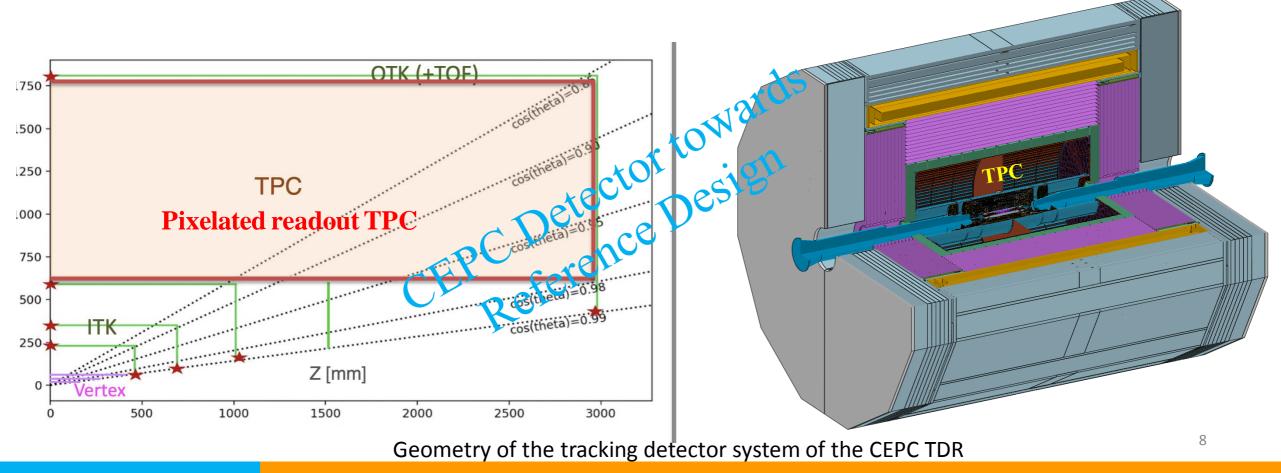
TPC Detector Technology


- Precision 3D track reconstruction with Ultra light material budget
 - High spatial resolution (~100 μm) with thousands of hits per track
 - High precision tracking and High Particle Identification resolution (~3%)
 - Operation at Higgs (3T) and Tera-Z (2T); Modular design and easy to install
- Considering the technical challenges, detector performance, and risk in constructing the detector

Status of TPC in LCTPC and CEPC

• January 2024, the CEPC community initiated the technical comparison and selection, balancing factors including R&D efforts, detector performance, cost, power consumption and construction risks.

System	Technologies		
System	Baseline	For comparison	
Beam pipe	Ф20 mm		
LumiCal	SiTrk+Crystal		
Vertex	CMOS+Stitching	CMOS Pixel	
	CMOS SiDet ITrk		
Tracker	Pixelated TPC	PID Drift Chamber	
	AC-LGAD OTrk	SSD / SPD OTrk	
		LGAD ToF	
ECAL	4D Crystal Bar	PS+SiPM+W, GS+SiPM, etc	
HCAL	GS+SiPM+Fe	PS+SiPM+Fe, etc	
Magnet	LTS	нтѕ	
Muon	PS bar+SiPM	RPC	
TDAQ	Conventional	Software Trigger	
BE electr.	Common	Independent	


Jianchun Wang's talk in CEPCWS at Hangzhou.

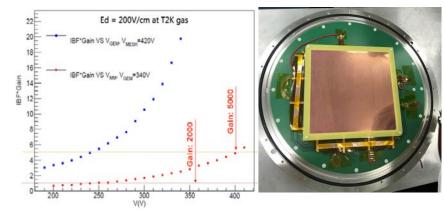
Foundations:

- CEPC Instrumentation R&D
- LHC detector upgrade projects
- other HEP experiments
- progress in HEP worldwide R&D
- development in industry

Baseline gaseous detector: Pixelated TPC

- Tracking system: Silicon combined with gaseous chamber for the tracking and PID
 - Pixelated readout TPC as the baseline gaseous detector in the CEPC ref-TDR.
 - Radius of TPC from 0.6m to 1.8m

Main Technical Challenges

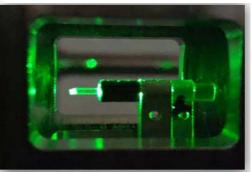

Pixelated readout TPC gaseous tracker

Critical key items

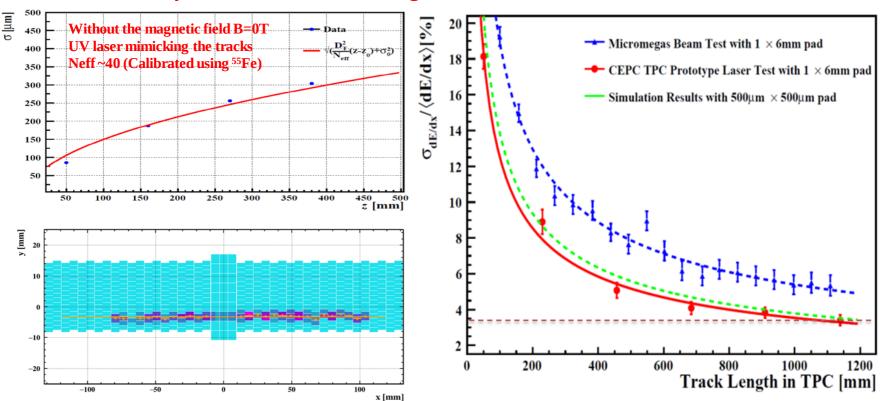
- Material budget at endcap/barrel $\sqrt{}$
- Occupancy and hit density at Tera-Z $\sqrt{}$
- Ion backflow suppression $\sqrt{}$ To meet the PID requirement $\sqrt{}$
- **Optimization of number of channels (ongoing)**
- **Acceptable power consumption (ongoing)**

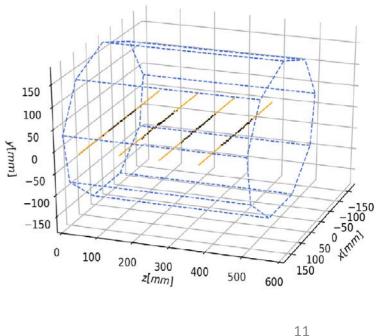
TPC prototype R&D efforts and results

- CEPC TPC detector prototyping roadmap:
 - From TPC module to TPC prototype R&D for Higgs and Tera-Z
- Achievement so far:
 - IBF X Gain ~1 @ G=2000 validation with a hybrid TPC module
 - Spatial resolution of σ_{rφ}≤100 μm and dE/dx resolution of 3.6%
 - FEE chip: reach ~3.0mW/ch with ADC and the pixelated readout R&D



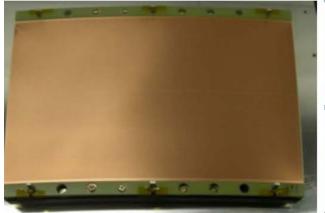
Ion suppression TPC module R&D

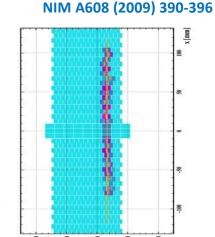




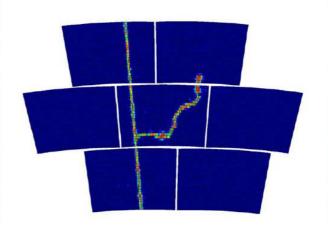
Highlights of TPC prototype R&D

- Highlights of R&D of CEPC pad-readout TPC, and toward pixelated-readout TPC
 - A lab for MPGD assembly and mass production has been set up at IHEP.
 - A TPC prototype integrated 266nm UV laser tracks has been constructed. The UV laser signals are analyzed, proving that the TPC is good for the Higgs run.


Easy-to-install modular design of Pixelated readout TPC for CEPC TDR.

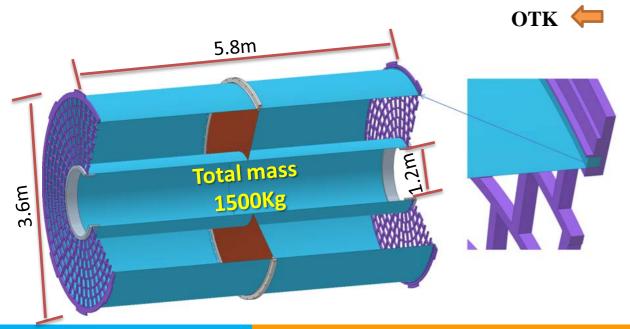

Active international collaboration

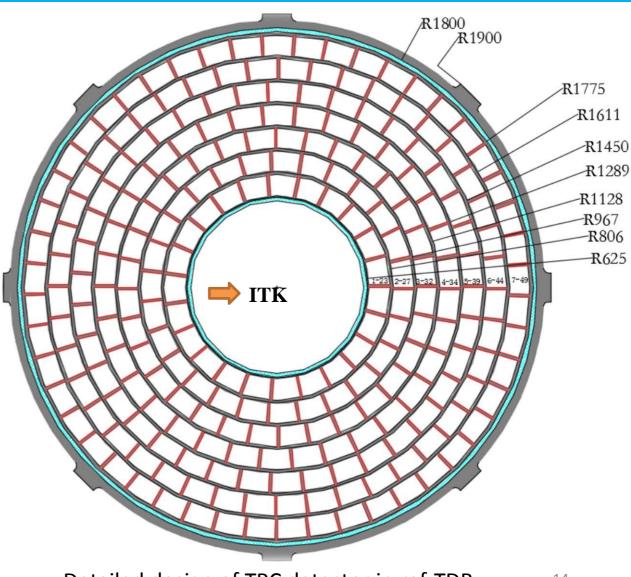
- Active collaboration: Pixelated readout and Pad readout from IHEP and LCTPC collaboration
 - Large Prototype setup have been built to compare different detector readouts for Tera-Z
 - PCMAG: B < 1.0T, bore \emptyset : 85cm, Spatial resolution of $\sigma_{ro} \le 100 \ \mu m$
 - Collaboration implement improvements in a pixelated readout TPC for CEPC TDR


ArXiv. (2023)2006.08562 NIM A (2022) 167241

ArXiv (2022)2006.085

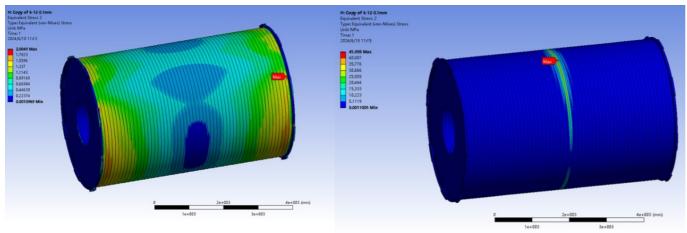
JINST 16 (2021) P10023 JINST 5 (2010) P10011

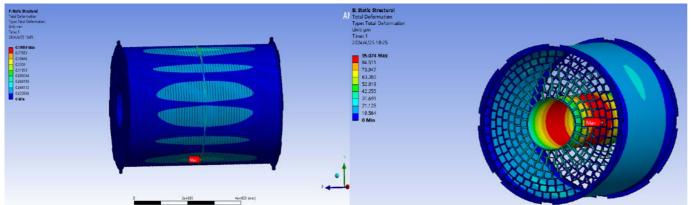




Detailed design and performance of The Baseline: TPC

Detailed design of mechanics

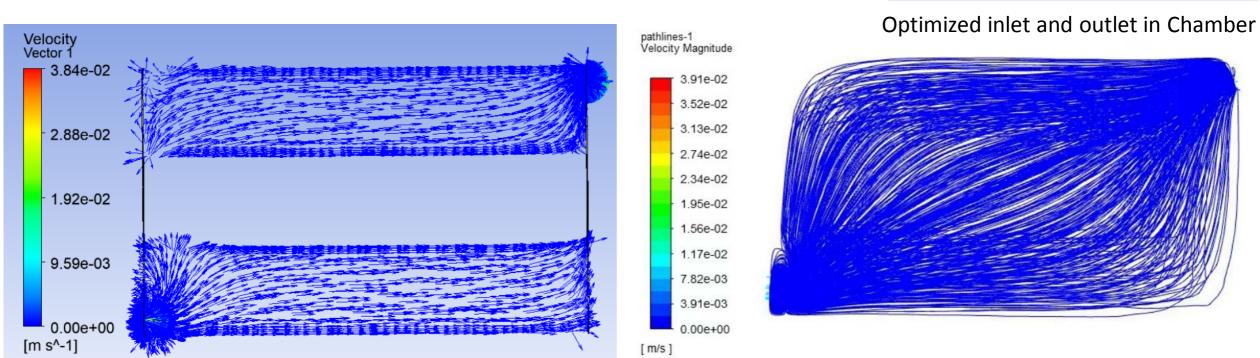

TPC detector	Key Parameters
Modules per endcap	248 modules /endcap
Module size	206mm×224mm×161mm
Geometry of layout	Inner: 1.2m Outer: 3.6m Length: 5.9m
Potential at cathode	- 62,000 V
Gas mixture	T2K: Ar/CF4/iC4H10=95/3/2
Maximum drift time	34μs @ 2.75m
Detector modules	Pixelated Micromegas



Ultra-light barrel and FEA analysis

- Consideration of new the Carbon Fiber barrel instead of the honeycomb barrel ($\sim 2\% X_0$)
- Ultra-light material of the TPC barrel (QM55 CF): 0.59% X₀ in total, including
 - FEA preliminary calculation: 0.2mm carbon fibber barrel can support OTK (~200Kg)
- Optimization of the connection-back-frame of the endcap (on going)

Material budget of TPC barrel


Layer of the barrels	D[cm]	X ₀ [cm]	d/X ₀ [%]
Copper shielding	0.001	1.45	0.07
CF outer barrel	0.020	25.28	0.08
Mirror strips	0.003	1.35	0.19
Polyimide substrate	0.005	32.65	0.02
Field strips	0.003	1.35	0.19
CF inner barrel	0.010	25.28	0.04
Sum of the material budget			0.59

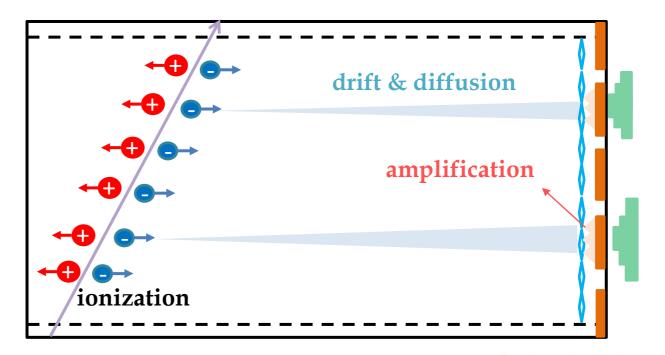
· Low material of the TPC endcap

15%X	f_0 in total, including
Readout plane, front-end-electroni	cs 4%
Cooling	2%
Power cables	9%

Optimization of Gas flow in the Chamber

- Uniformity of gas distribution higher than 99% in large TPC chamber
 - 8 Ø10mm gas inlets + 8 Ø10mm gas outlets (opposite, 90°/endcap)
 - Working Gas Flow: 0.3 0.5 L/min
 - Eco-friendly gas and the gas recycling system also considered.
 - Online monitoring system: O₂ (ppm) and H₂O (ppm)

Full Simulation of Pixelated readout TPC


Simulation:

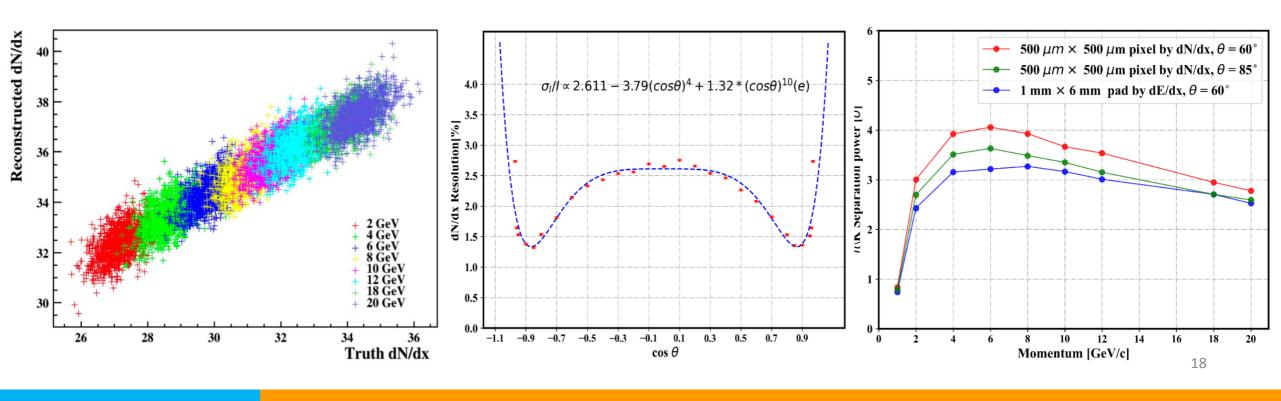
- With the full TPC geometry
- Ionization simulated with Garfield++
- Drift and diffusion from parameterized model based on Garfield++

Digitization (Refer to the TPC module and prototype):

- Electronic noise: 100 e-
- Amplification:
 - Number of electrons: 2000
 - Profile of signal size : 100 μm

Pixelated readout

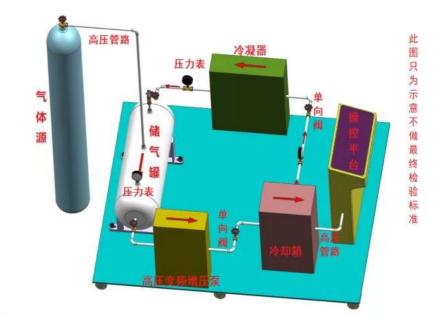
Performance of the pixelated readout TPC


Reconstruction:

- Reconstruction by counting the number of fired pixels over threshold
- Reconstruction with good linearity and reliability

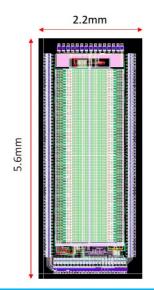
Preliminary PID performance:

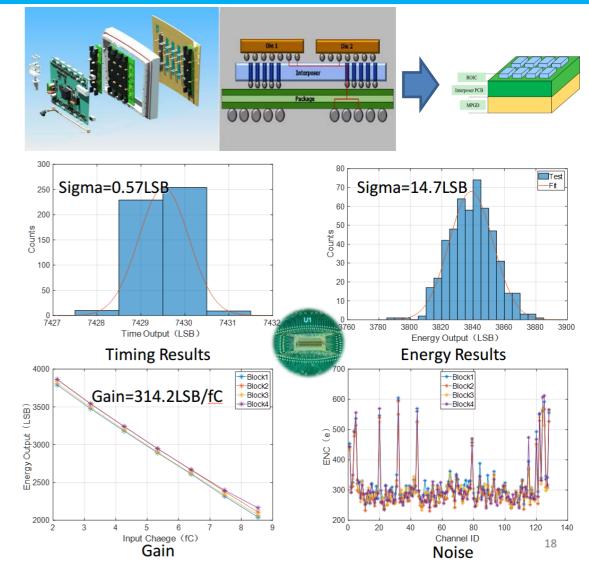
• π/k separation power simulation with different momentum


Separation power:
$$\frac{|\mu_A - \mu_B|}{\frac{\sigma_A + \sigma_B}{2}}$$

Optimization of the readout size

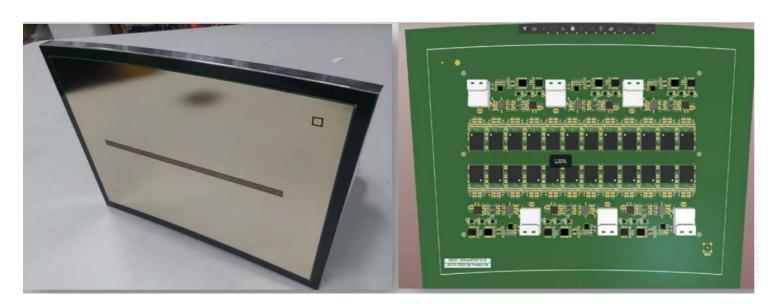
- Timepix (55μm×55μm) readout TPC prototype has been validated four times using DESY beam.
 - Power consumption: 2W/cm²; Low power mode: 1W/cm² (High power consumption)
- Simulation results showed that the readout size can be optimized at $500\mu m \times 500\mu m$.
 - Number of the readout channels and power consumption need to be optimized.
 - Focused on 100mW/cm² and 500μm readout for CEPC ref-TDR (2-phase CO₂ cooling OK!)

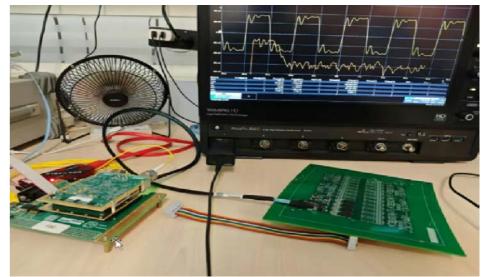

	PASA+ALTRO	Super-ALTRO	SAMPA	WASA_v1
TPC	ALICE	ILC	ALICE upgrade	CEPC
Pad Size	4x7.5 mm ²	1x6 mm²	4x7.5 mm ²	1x6 mm²
No. of Channels	5.7× 10 ⁵	1-2 × 10 ⁶	5.7 × 10 ⁵	2 x×10 ⁶
Readout Detector	MWPC	GEM/MicroMegas	GEM	GEM/MicroMegas
Gain	12 mV/fC	12-27 mV/fC	20/30 mV/fC	10-40 mV/fC
Shaper	CR-(RC) ⁴	CR-(RC) ⁴	CR-(RC) ⁴	CR-RC
Peaking time	200 ns	30-120 ns	80/160 ns	160-400 ns
ENC	370+14.6 e/pF	520 e	246+36 e/pF	569+14.8 e/pF
Waveform Sampler	Pipeline ADC	Pipeline ADC	SAR ADC	SAR ADC
Sampling Rate	10 MHz	40 MHz	10 MHz	10-100 MHz
Sampling Resolution	10 bit	10 bit	10 bit	10 bit
Power: AFE	11.7 mW/ch	10.3 mW/ch	9 mW/ch	1.4 mW/ch
Power: ADC	12.5 mW/ch	33 mW/ch	1.5 mW/ch	0.8 mW/ch@40 MHz
Power: Digital Logics	7.5 mW/ch	4.0 mW/ch	6.5 mW/ch	2.7 mW/ch@40 MHz
Total Power	31.7 mW/ch@10MHz	47.3 mW/ch@40 MHz	17 mW/ch@10 MHz	4.9 mW/ch@40 MHz
CMOS Process	250 nm	130 nm	130 nm	65 nm

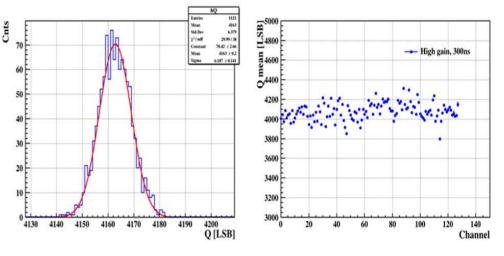

DOI: 10.1088/1748-0221/15/02/T02001 DOI: 10.1088/1748-0221/15/05/P05005

Detailed design of electronics and BEC

- Pixelated Readout Electronics: TEPix development
 - Multi-ROIC chips + Interposer PCB as RDL
 - Four-side bootable
- TEPix: Low power Energy/Timing measurement
 - Low power consumption: 0.5mW/ch@2nd Chip
 - Timing: 1 LSB(<10ns)</p>
 - Noise: 300e- (high gain)


Parameter	Spec
Number of channels	128
Dower Consumntion	Analog<30mW
Power Consumption	Digital<30mW
ENC	~300 e(high gain)
Dunamia Banga	25fC(high gain)
Dynamic Range	150fC(low gain)
INL	<1%
Time Resolution	<10ns

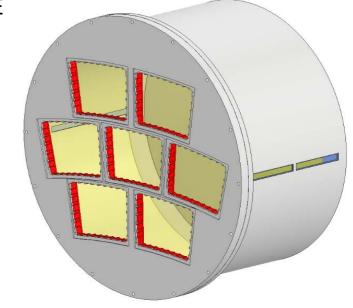



FEE ASIC: TEPIX—Test Results in May

Validation and commissioning of TPC prototype

- R&D on Pixelated TPC readout for CEPC TDR.
 - ASIC chip developed and 2nd prototype wafer has been done and tested.
 - The TOA and TOT can be selected as the initiation function in the ASIC chip
- Beam test of the pixelated readout TPC prototype in preparation. (February and April, 2025)

Photos TPC modules assembled for the beam test


Amplitude (left) and Uniformity/ch (right)²¹

Work plan

- Short term work plan (before June, 2025)
 - Optimization of TPC detector for CEPC ref-TDR
 - Prototyping R&D and validation with the test beam
 - mechanics, manufacturing, beam test, full drift length prototype
 - Performance of the simulation and Machine Learning algorithm
- Long term work plan (next 3-5 years)
 - Development of pixelated TPC prototype with low power consumption FEE
 - Collaboration with LCTPC collaboration on beam test
 - Development of the full drift length prototype
 - Drift velocity. Attachment coefficient, T/L Diffusion, etc.

Milestones achieved	Before June, 2025	Beyond TDR
Ion backflow suppression	IBF×Gain<1 (Gain=2000)	Graphene technology
Pixelated readout prototype	Validation with beam test	Prototype with Multi-modules
Power consumption ASIC	~100mW/cm² (60nm ASIC)	Optimization 330μm - 500μm
PID resolution	3% (dN/dx)	<3% (dN/dx)
Material budget (barrel)	Carbon Fiber	Full size prototype

Summary

 TPC detector prototype R&D using pad readout towards pixelated readout for Higgs and calibration Z pole at 3.0Tesla run at the future e⁺e⁻ collider.

 Pixelated TPC is chosen as the baseline gaseous tracker in CEPC ref-TDR. The simulation results show that both of PID performance and the momentum resolution are good. Validation with TPC prototype in preparation before TDR.

 Synergies with CEPC/FCCee/EIC/LCTPC allow us to continue R&D and ongoing with the significant international collaboration. All of contributions will input to CEPC ref-TDR in next few months.

Thank you for your attention!

