Screener3D: 大幅面低本底 带电粒子谱仪研制

韩柯 上海交通大学 2024/11/30

稀有事件实验中的材料表面放射性问题

- 稀有事件实验: 探测器本底水平直接决定物理灵敏度
- 放射性洁净度要求=块材洁净+表面洁净
 - 零件机械加工、组装调试、氡气及其子核→表面二次污染
- 表面污染直接、间接引入本底
 - 表面污染释放的α、β粒子→本底事件(CUORE、CDMS等)
 - 表面污染源→转移到灵敏体积→本底事件(PandaX、JUNO等)

Summary of ER and NR backgrounds						
ER in mDRU	NR in mDRU					
$0.0210 {\pm} 0.0042$	$2.0 \pm 0.3 \cdot 10^{-4}$					
$0.0114 {\pm} 0.0012$	-					
$0.0053 {\pm} 0.0011$	-					
$0.0023 {\pm} 0.0003$	-					
$0.0090 {\pm} 0.0002$	$0.8 \pm 0.4 \cdot 10^{-4}$					
0.049 ± 0.005	$2.8 \pm 0.5 \cdot 10^{-4}$					
1001.6 ± 102.2	5.7 ± 1.0					
$2.5 {\pm} 0.3$	2.3 ± 0.4					
	$ f ER and NR bacER in mDRU0.0210\pm0.00420.0114\pm0.00120.0053\pm0.00110.0023\pm0.00030.0090\pm0.00020.049 \pm0.0051001.6\pm 102.22.5\pm0.3$					

PandaX-4T实验

氡气贡献电子反冲(ER) 本底,氡气主要来源于探 测器和相关管路材料表面 的氡释气。

第2页

稀有事件实验中的材料表面放射性问题

- 稀有事件实验: 探测器本底水平直接决定物理灵敏度
- 放射性洁净度要求=块材洁净+表面洁净
 - •零件机械加工、组装调试、氡气及其子核>表面二次污染
- 表面污染直接、间接引入本底
 - 表面污染释放的α、β粒子→本底事件(CUORE、CDMS等)
 - 表面污染源→转移到灵敏体积→本底事件(PandaX、JUNO等)

JUNO 实验

- 2万吨液体闪烁体,巨型亚克力球形容器
- 亚克力表面Rn放射性是关键问题
- 亚克力拼接前的放置、拼接后的清洗效果等,都需要定 性测量表面放射性

第3页

仪器与方法	典型对象	典型精度	设备举例	备注 第1页
高纯锗(HPGe)γ 谱线分析	高纯无氧铜内 的 ²³⁸ U和 ²³² Th	1-10µBq/kg (10 ⁻⁸ -10 ⁻⁹ g/g)	清华GeTHU;意大 利GeMPI	无损检测,对样 品没有任何影响
中 子 活 化 分 析 (NAA)	特氟龙内的 ²³⁸ U 和 ²³² Th	10 ⁻¹⁰ -10 ⁻¹¹ g/g	美国MIT, UC Davis 中子活化设施	需要利用中子辐 照; 测量窗口短
电 感 耦 合 等 离 子 体 质 谱 仪 (ICP- MS)	高纯 无 氧 铜 内 的重元素	10 ⁻¹² g/g	美国PNNL实验室; 国内多家单位	克量级取样;复 杂化学预处理
带 电 粒 子 谱 仪 (CPS)	大面积材料表 面放射性	10 ⁻⁴ -10 ⁻² Bq/m ²	法国BiPo-3; XIA公 司Ultralo 1800	对材料表面的α 粒子,电子放射 性灵敏

国际研究现状

韩柯, 上海交通大学

第5页

BetaCage: CDMS实验组提出的 低本底MWPC设计,未能实现 BiPo-3: SuperNEMO实验组设计建造PMT 阵列,测量Bi-Po偶合

商业解决方案

XIA Ultralo-1800: 主要针对半导体硅片测量; 9%FWHM@4.6MeV; 5×10⁻⁴ c/cm²/hr, 满足硅 片5α每天的要求

Canberra LB4200:最大5 寸硅片;约10⁻²c/cm²/hr

第6页

利用其放出的α/β粒子,测量材料表面放射性

- •高能α粒子的特征谱线可用于分辨不同表面污染
- β测量针对无γ释放(如²⁰⁹Pb)或者γ强度很小 (如²¹⁰Pb)的同位素
- ・同时测量α, β的Bi-Po偶合技术

韩柯, 上海交通大学

第7页

韩柯, 上海交通大学

探测器概念设计

- •常压氩气、氙气(0.5-1.5 bar) 时间投影室探测器(TPC)
- •40×60cm²电荷读出平面; 10cm 漂移距离
- •基于Micromegas + AGET的多通 道读出
- 平板型样品直接放置于阴极板上 方,保证α能量完全沉积到TPC 中

第8页

用于极低放射性材料筛选的时间投影室技术:能量+径迹

- 粒子鉴别
- 高位置分辨率

- •本底去除
- •高效率 (>90%)

- •大幅面 (~2000cm²)
- 可调工作气体、气压

气体TPC核心优势: 径迹+能量测量 → 鉴别与定位

 • 粒子鉴别:利用径迹 的弯曲程度和dE/dx可 以明确区分α/β

上海交诵大学

第10页

- 利用dE/dx与布拉格峰 确定α/β径迹起点,明 确放射性来源
 - ・去除探测器材料对于α 测量的影响
 - 大大抑制β测量中环境 和探测器本底的影响

蒙特卡洛模拟与灵敏度研究

韩柯, 上海交通大学

第11页

NST 32, 142 (2021)

- •利用GEANT4 + REST 模拟分析框架重建了 探测器几何。
- 对于alpha 区间,开展探测灵敏度研究,预 期灵敏度可达 100 μBq/m²以下

Sensitive Gaseous Volume: 60x40x10 cm, 1 bar Ar

GEANT4 spectrum

+ Energy smearing

+ Topological cuts

径迹相关cuts (Topological cuts)

- •利用径迹起始位置,方向,长度逐步对 事件进行筛选,压低本底的情况下尽可 能的保留信号
- •最终在1-10MeV的区间,本底事件率小于1个每天

第12页

NST 32, 142 (2021)

TPC建设: 热压接Micromegas

颖,上海交通大学

第13页

- 3mm 条读出
- •读出面积: 20×20 cm²

- •128通道
- •柔性Kapton PCB读出+高 纯无氧铜背板
 - 依托PandaX-III实验发展的 低本底Micromegas技术

FENG J, ZHANG Z, LIU J, et al. A thermal bonding method for manufacturing Micromegas detectors[J]. NIMA 2021, 989: 164958.

TPC建设:子系统

第14页

DAQ系统: 商业ASAD+COBO 与 科大FEC+DCM两套解决方案

网页端慢控制系统: 监测电压、电流、压强、环境温度等

蒙特卡洛仿真与数据分析系统:

PandaX-III实验研发的REST分析框架

多轮原型探测器迭代(单块 Micromegas)

亚克力+铜条场笼 @圆桶腔体

场笼+适配铝合金腔体

柔性PCB场笼+适配亚 克力腔体

上海交诵大学

第15页

多轮原型探测器迭代(单块 Micromegas)

- 长时间稳定运行
- •本底计数率达到 (0.13 ± 0.03)×10⁻⁶ Bq/cm²

韩柯.

上海交诵大学

第16页

- $(4.7 \pm 0.9) \times 10^{-4} \text{ counts/cm}^2/\text{h}$
- Ultralo-1800: 5×10^{-4} counts/cm²/h

大幅面探测器建设

- •6块Micromegas作为读出平面,总面积2400 cm²
- 高纯无氧铜阴极板
- •所有场笼材料根据PandaX低本底要求清洗

宇宙射线事例

韩柯, 上海交通大学

第18页

韩柯, 上海交通大学

第19页

•多轮探测器迭代,达到本底要求(µBq/cm²)

测量 JUNO 亚克力样品

- 3块样品: 1730 cm², 长期暴露在JUNO地 下实验室高氡环境 (Rn~180 Bq/m³)
- α 计数率 (Acrylic+ Gas): 0.91 ±0.03 μBq/cm²
- 对比本底 0.14 ±0.02 µBq/cm²

• 亚克力样品α 本底: 0.77 ~ 0.91 μBq/cm²

亚克力表面处理对表面放射性的影响

第22页

	No sample	Acrylic 1 (Exposed in the underground lab)	Acrylic 2 (Wiped with dust-free paper)	Acrylic 3 (Cleaned with alcohol)	Acrylic 4 (pure water rinse + N2 gas)
Measure area [cm ²]	1889	1730	1730	1270	1270
Measure time [hr]	187	160	170	185	252
Contamination (Acrylic + Gas) [µBq/cm²]	-	0.91 ± 0.03	0.45 ± 0.03	0.18 ± 0.03	0.25 ± 0.03
Background (Copper cathode + Gas) [µBq/cm ²]	0.14 ± 0.02	-	-	-	-
Estimated contamination of Acrylic [µBq/cm ²]	-	0.77 ~ 0.91	0.31 ~ 0.45	0.04 ~ 0.18	0.11 ~ 0.25

结论与展望

- •利用气体探测器的能量+径迹特性测量样 品表面污染
 - 粒子鉴别去除本底
 - 大幅面、高灵敏度、高效率
- 探测器进展
 - 成功建设400cm²原型探测器和2400cm²探测器 探测器
 - 本底计数率均达到商业化产品水平
- 低本底材料测量
 - 测量JUNO亚克力样品
 - 对于亚克力表面处理方法给出了指导性意见

第23页

谢谢各位关注

Construction of the Charge Particle Detector

Charged Particle detector

Readout plane - Micromegas In

as Internal detector photo

- Time Projection Chamber (0.5-1.5 bar Argon/Xenon)
- Readout plane: 2400 cm² (2×3 Micromegas)
- Drift distance: 10 cm (Volume: 24 L)
- Flexible PCB field cage
- Samples are placed directly on the cathode to ensure complete deposition of alpha energy.

External detector photo

Testing of the Charge Particle Detector

- Alpha calibration (Am-241 source)
- Calibrate the detector with the 5.485 MeV energy peak of the Am-241 to optimize the working conditions of the detector.

➤ Cleanroom

Gas--- 1bar Ar-7%CO₂ (0.1 L/min)

Gain evolves with flow rates

Gain evolves with amplification fields Gain evolves with drift fields