

CMS Experiment at the LHC, CERN

Data recorded: 2010-Jul-09 02:25:58.839811 GMT(04:25:58 CEST) Run / Event 139779 / 4994190

Four Tops in Hadronic Tau Channel and VLL Search

Huiling HUA On behalf of 4tops hadronic tau team Anshul Kapoor, Huiling Hua, Hongbo Liao, Ruobing Tu

> TTX meeting October 23rd, 2024

Who is the next to 'see' four tops?

- SS and ML channel made the discovery last year
 - ATLAS and CMS both
 - Expected significance 4.9(5.6 observed)
 - No tau_h exclusion
 - Only accounts for 11% of 4 tops branching ratio
- Better precision measurement calls for more 4 tops to be seen
- Which channel is going to be the next candidate?

Is it going to be single lepton channel?

- Single lepton(SL) + 2 leptons opposite sign(2OS)
- CMS: <u>SL+2OS</u>, only 2016 data
 - Expected significance 0.4 with 2016 data

- ATLAS: SL+2OS, full run 2
 - Expected significance 1.0(1.9 observed)
 - TT as major background

Is it going to be hadronic channel?

- Only results from CMS
- Expected significance: 0.4(observed 2.5)
- Ongoing effort in CMS with run 3

We bet on hadronic tau channel!

- Substantial branching ratio 25%
- Rich signatures of taus, leptons and jets
- Divide into subchannels: 1tau1l, 1tau0l, 1tau2l
- Tau efficiency not so great compared with leptons
- Analysis requires care to save signal acceptance
- Tau trigger efficiency not ideal, hardronic and leptonic triggers used instead
- Background most sensitive to tau fake rate

Analysis strategy overview

Object definition

Observable	tight muon	fakeable muon	Observable	fakeable tau	tight tau
Ъ	10 GeV	10 GeV	рТ	20 GeV	20 GeV
$ \eta $	< 2.4	< 2.4	$ \eta $	< 2.3(2.5)	< 2.3(2.5)
$d_{xy}(cm)$	< 0.05	< 0.05	$ d_z $	< 0.2	< 0.2
$d_z(cm)$	< 0.1	< 0.1	Decay modes find	New	New
SIP_{3D}	< 8	< 8	Decay modes	except 5 and 6	except 5 and 6
Muonn POG ID	Medium	Medium	DeepTau vs jet	WP_VVLoose	WP_Medium
Top-UL Lepton MVA(v1)	> 0.64	> 0.64 or	DeepTau vs electron	WP_VVVLoose	WP_VVLoose
		$(b-score_{matched\ jet} < 0.025 ext{ and } p_T^{ratio} > 0.45$)	DeepTau vs muon	WP_VLoose	WP_VLoose

Observable	tight electron	fakeable electron		
рТ	> 10 Gev	> 10 GeV	Observable	iet
$ \eta $	$< 2.5(1.442 < \eta < 1.566 \ veto)$	$< 2.5(1.442 < \eta < 1.566 \ veto)$	pT	25
$d_{xy}(cm)$	0.05	0.05		23
$d_z(cm)$	0.1	0.1	$ \eta $	2.4
SIP_{3D}	< 8	< 8	ID	tight ID
I_{rel}	0.4	0.4	DeepJet	medium WP(medium b-iet)
conversion veto	yes	yes	Doop lot	tight \//P(tight b_igt)
missing inner hits	<=1	<=1	DeepJet	
Top-UL Lepton MVA(v1)	> 0.81	> 0.81 or (EGammaMVAID=Loose and		
		$b-score_{matched iet} < 0.1$ and $p_T^{ratio} > 0.5(0.4)$)		

Lepton definition same as that of SS&ML of ttttt

Different channels, different triggers

Trigger	act. lumi(fb-1)	eff lumi	first run	last run	dataset
2018					
HLT_PFHT380_SixPFJet32_DoublePFBTagDeepCSV_2p2	17.7	17.7	315252	317488	jetHT
HLT_PFHT400_SixPFJet32_DoublePFBTagDeepCSV_2p94(MC)	42.1	42.1	317509	325175	jetHT
HLT_PFHT430_SixPFJet40_PFBTagCSV_1p5	5.3	5.3	315252	315973	jetHT
HLT_PFHT430_SixPFJet40_PFBTagDeepCSV_1p5	12.4	12.4	315974	317488	jetHT
HLT_PFHT450_SixPFJet36_PFBTagDeepCSV_1p59(MC)	42.1	42.1	317509	325175	jetHT
HLT_PFHT330PT30_QuadPFJet_75_60_45_40_TriplePFBTagDeepCSV_4p5(MC)	59.8	59.8	315252	325175	jetHT

- 1tau1l SR
 •
 Hadronic triggers used to capture signal events

 •
 HT380+6jet+2btag || HT450+6jet+1btag|| HT330+4jet+3btag

 •
 Name of the text to text.
 - More efficient than single tau or lepton+tau triggers: 0.6
 - Drives the cut of pT of 6th jet
 - Single lepton || double lepton triggers used in 1tau2l
 - The same as that of SS of four tops analysis
 - Highly efficient for 4tops signal: 0.93 acceptance

1tau0l SR

1tau2l SR

Efficiency measurement for hadronic triggers

- Orthogonal method for measuring hadronic trigger efficiency
 - Orthogonal trigger HLT_IsoMu24(HLT_Iso27 in 2017)
- Denominator
 - njet>=6, nb-jet>=2, HT>500 GeV(480 if nb-jet>=3), 6th jet ρt> 40 GeV(35 if nb-jet>=3)
 - muon>=1, mu ρT>=26 GeV(29 for 2017), HLT_IsoMu24(27 for 2017)
- Trigger drives baseline selection

Trigger scale factor and validation

Fake tau estimation: one fake object

- Define fake rate $FR = \frac{N_{T\tau}^{notGen\tau}}{N_{F\tau}^{notGen\tau}} = \frac{N_{T\tau}^{data} N_{T\tau}^{gen\tau}(MC)}{N_{F\tau}^{data} N_{F\tau}^{gen\tau}(MC)}$ • The probability of fake tau passing tight tau selection of not-prompt tau
- Find good region to measure FR
 - Close to signal region to reduce source systematic uncertainty
 - Populate with fake tau events to increase statistic for the measurement

- Apply FR in fake not tight region
- As long as the FR the same in MR and any application region

$$\begin{split} N_{fake\tau} &= N_{F\tau}^{notGen\tau} \times FR \\ &= N_{F\overline{T}}^{notGen\tau} \times \frac{FR}{1 - FR} \\ &= (N_{F\overline{T}}^{data} - N_{F\overline{T}}^{gen\tau(MC)}) \times \frac{FR}{1 - FR} \end{split}$$

Fake tau estimation: tau fake rate

- Measurement region defined as njet>=8, nb-jet=2
- Tau FR as a function of pt of tau's matched jet, eta and tau prong

Fake tau estimation: closure test

huiling.hua@cern.ch

Fake lepton estimation: one and two fake objects

Fake lepton in 1tau1l and 1tau2l

- Lepton FR borrowed from SS & ML channel of four tops
 - Exactly the same lepton definition and very similar phase space with SS&ML channel
 - Many thanks to Neils for providing SF and instructions!
- Fake lepton minor background compared with tt and ttX

Signal extraction: 1tau1l, BDT training

Object	Variable	
Tau and lepton variables	$p_T^{ au}$	
	$charge_{\tau} * charge_{l}$	
	m(au, l)	
	$m_{ au}$	
	mT(au, MET)	
	p_T^{μ}	
	$mT2(\tau, l, MET)$	
B-jet variables	n_{b-jetM}	
	m_{b-jetT}	
	$m_{b-jetsM}$	
	$min\Delta R(b - jetsT)$	
	$min\Delta R(b - jetsM)$	
	$min\Delta R(b-jetsM, au)$	
	$m_{T2}(2 \ leading \ b - jetsT, MET)$	
	$min\Delta R(b-jetsT,l)$	
	$HT_{b-jetsM}$	📔 🍷 Input vo
Jet variables	n_{jet}	removo
	$HT_{leading \ 4 \ jets}/HT_{all \ jets}$	Terriova
	centrality	🛛 📍 Various
	$p_T^{1st jet}$	bodron
	$p_T^{4th \ jet}$	i i i i i i i i i i i i i i i i i i i
	$p_T^{\tilde{t}h \ jet}$	i signal
	MHT _{jets}	• Tran
	$min\Delta R(jets)$	• HT. (
	$m(jets, \tau)$	• \\/i+b
	MET/HT	

- Input variables selected with correlation removal method
- Various leptonic top decay information and hadronic information used to fully capture signal
 - Transverse mass(m2), stransverse mass(mT2)...
 - HT, centrality, sphericity
 - With b-tag WP information rather than shape

ItauII: validation of BDT inputs

BDT distribution in 1tau1l

1tau2l: BDT distribution

- BDT input variables selected with same method in 1tau1l
- B-tag WP information used
- Second lepton information harnessed
- Expected significance: 1.03
- All major systematics considered

1tau2l: validation of BDT inputs

huiling.hua@cern.ch

SR

1tau2l

 ≥ 4

 n_{b-jet}

≥2

>2

CR3

<4

Huiling Hua

12

1tau0l: BDT distribution

 Most challenging channel with expected significance of 0.33 sigma

1tau01: BDT input validation

huiling.hua@cern.ch

Theoretical and experimental systematics

Experimental uncertainties

- B-tag WP(1tau1l and 1tau2l) efficiency and shape scale factor(1tau0l)
- Tau efficiency SF and energy scale correction(TES)
- Lepton efficiency SF and energy scale correction
- Jet energy scale correction(JES and JER)
- Trigger scale factor
- Pileup reweighting, prefiring reweighting
- MET
- Tau FR, lepton FR

All systematics in place except leptonic trigger SF in 1tau2l

- Going to borrow leptonic trigger SF from SS of 4tops
- Leptonic trigger SF close to unity

Theoretical uncertainties

- QCD renormalization and factorization
- Pdf
- ISR and FSR

The results shown in this presentation included all systematic variation except

- All the energy scale correction
- MET, and leptonic trigger SF in 1tau2l
- ISR and FSR

Results with 3 channels combined

- Achieved 1.43 sigma of expected significance considering major systematics
- Sensitivity better than that of single lepton channel(1.0) and full hadronic channel!
- Tau channel very promising see 4tops in run 3!

What have we learned with run 2 and where to improve in run 3?

- The main bottleneck is tau efficiency
 - Only 30% generator level hadronic tau get selected
 - 30% of generated tau pt<25 GeV
 - High tau fake bg due to lots of jets and b-jets in the event
 - Good tau identification will be the key!
- Improved tau tagging and b-tagging in run 3
 - New DeepTau and PNTau
- Better HLT in run 3 to increase signal acceptance
 - ParkingHH trigger for 1tau0l
 - Single-lepton cross trigger for 1tau1l

Intriguing excess in the search of VLL in 4321 model

huiling.hua@cern.ch

VLL_4321: decay mode and final states

- Depending on how top quark and tau lepton decay
 - E->b(tv), E->b(btau)
 - N->t(tv), N->t(btau)
- Final state can have up to 4 tau, 4l
- Four top tau phase space perfect for VLL search

Channel	VLL decay mode	Final state
1tau0l	$EE \rightarrow b(tv_{\tau})b(tv_{\tau})$	$\tau + 0l + 4b + 2j + 3v_\tau + 0v_l$
	$EE \rightarrow b(tv_{\tau})b(b\tau)$	$\tau + 0l + 3b + 2j + 1v_\tau + 0v_l$
	$EN \rightarrow b(tv_{\tau})t(tv_{\tau})$	$\tau+0l+4b+6j+2v_{\tau}+0v_l$
	$EN \rightarrow b(tv_{\tau})t(b\tau)$	$\tau + 0l + 3b + 4j + 1v_\tau + 0v_l$
	$EN \rightarrow b(b\tau)t(tv_{\tau})$	$\tau + 0l + 4b + 4j + 1v_\tau + 0v_l$
	$EN \rightarrow b(b\tau)t(b\tau)$	$\tau + 0l + 4b + 0j + 1v_\tau + 0v_l$
	$NN \rightarrow t(tv_{\tau})t(tv_{\tau})$	$\tau + 0l + 4b + 6j + 3v_\tau + 0v_l$
	$NN \to t(tv_{\tau})t(b\tau)$	$\tau + 0l + 4b + 6j + 1v_\tau + 0v_l$
1tau1l	$EE \rightarrow b(tv_{\tau})b(tv_{\tau})$	$\tau + 1l + 4b + 0j + 3v_\tau + 1v_l$
	$EE \rightarrow b(b\tau)b(tv_{\tau})$	$\tau + 1l + 4b + 0j + 2v_\tau + 1v_l$
	$EN \rightarrow b(tv_{\tau})t(tv_{\tau})$	$\tau + 1l + 3b + 0j + 2v_\tau + 1v_l$
	$EN \rightarrow b(tv_{\tau})t(b\tau)$	$\tau + 1l + 4b + 2j + 1v_\tau + 1v_l$
	$EN \rightarrow b(b\tau)t(tv_{\tau})$	$\tau + 1l + 4b + 2j + 1v_\tau + 1v_l$
	$NN \to t(tv_{\tau})t(tv_{\tau})$	$\tau + 1l + 4b + 4j + 1v_\tau + 1v_l$
	$NN \rightarrow t(b\tau)t(tv_{\tau})$	$\tau + 1l + 4b + 4j + 1v_\tau + 1v_l$
1tau2l	$EN \rightarrow b(tv_{\tau})t(tv_{\tau})$	$\tau + 2l + 4b + 0j + 3v_\tau + 2v_l$
	$EN \rightarrow b(tv_{\tau})t(b\tau)$	$\tau + 2l + 4b + 0j + 2v_\tau + 2v_l$
	$EN \rightarrow b(b\tau)t(tv_{\tau})$	$\tau + 2l + 4b + 0j + 1v_\tau + 2v_l$
	$NN \rightarrow t(tv_{\tau})t(tv_{\tau})$	$\tau + 2l + 4b + 4j + 3v_\tau + 2v_l$
	$NN \rightarrow t(b\tau)t(tv_{\tau})$	$\tau + 2l + 4b + 2j + 1v_{\tau} + 2v_{l}$

The state of art of VLL_4321 search

Four top phase space: perfect for VLL 4321 search

	Channel	VLL decay mode	Final state
C OtauOl	1tau0l	$EE \rightarrow b(tv_{\tau})b(tv_{\tau})$	$\tau+0l+4b+2j+3v_\tau+0v_l$
		$EE \rightarrow b(tv_{\tau})b(b\tau)$	$\tau + 0l + 3b + 2j + 1v_\tau + 0v_l$
Hodropic / Itaull	ah ann al	$EN \rightarrow b(tv_{\tau})t(tv_{\tau})$	$\tau + 0l + 4b + 6j + 2v_\tau + 0v_l$
Sub-	channel	$EN \rightarrow b(tv_{\tau})t(b\tau)$	$\tau + 0l + 3b + 4j + 1v_\tau + 0v_l$
2tou0		$EN \rightarrow b(b\tau)t(tv_{\tau})$	$\tau + 0l + 4b + 4j + 1v_\tau + 0v_l$
		$EN \rightarrow b(b\tau)t(b\tau)$	$\tau + 0l + 4b + 0j + 1v_\tau + 0v_l$
		$NN \rightarrow t(tv_{\tau})t(tv_{\tau})$	$\tau + 0l + 4b + 6j + 3v_\tau + 0v_l$
		$NN \rightarrow t(tv_{\tau})t(b\tau)$	$\tau + 0l + 4b + 6j + 1v_\tau + 0v_l$
	1tau1l	$EE \rightarrow b(tv_{\tau})b(tv_{\tau})$	$\tau + 1l + 4b + 0j + 3v_\tau + 1v_l$
Very s	imilar phase	$EE \to b(b\tau)b(tv_{\tau})$	$\tau + 1l + 4b + 0j + 2v_\tau + 1v_l$
space		$EN \rightarrow b(tv_{\tau})t(tv_{\tau})$	$\tau + 1l + 3b + 0j + 2v_\tau + 1v_l$
		$EN \rightarrow b(tv_{\tau})t(b\tau)$	$\tau + 1l + 4b + 2j + 1v_\tau + 1v_l$
		$EN \rightarrow b(b\tau)t(tv_{\tau})$	$\tau + 1l + 4b + 2j + 1v_\tau + 1v_l$
		$NN \rightarrow t(tv_{\tau})t(tv_{\tau})$	$\tau + 1l + 4b + 4j + 1v_\tau + 1v_l$
		$NN \rightarrow t(b\tau)t(tv_{\tau})$	$\tau + 1l + 4b + 4j + 1v_\tau + 1v_l$
	1tau2l	$EN \to b(tv_{\tau})t(tv_{\tau})$	$\tau + 2l + 4b + 0j + 3v_\tau + 2v_l$
(2LSS Sub-p	phase space	$EN \rightarrow b(tv_{\tau})t(b\tau)$	$\tau + 2l + 4b + 0j + 2v_\tau + 2v_l$
Only 2017 and 2019 data in hadrania share		$EN \rightarrow b(b\tau)t(tv_{\tau})$	$\tau + 2l + 4b + 0j + 1v_\tau + 2v_l$
 Only 2017 and 2018 data in nadronic channel 3 channels combined together can arovide 		$NN \rightarrow t(tv_{\tau})t(tv_{\tau})$	$\tau + 2l + 4b + 4j + 3v_\tau + 2v_l$
comprehensive insight into VLL		$NN \rightarrow t(b\tau)t(tv_{\tau})$	$\tau + 2l + 4b + 2j + 1v_\tau + 2v_l$

VLL in 1tau1l

 n_{b-jet}

≥3

2

- BDT training against all backgrounds including tttt
- Separate BDT training for each mass point to optimize performance
- Limit on mass at 660 GeV at Itau1l

VLL@m600 in 1tau0l

- BDT training against all backgrounds including tttt
- Separate BDT training for each mass point to optimize performance
- Limit on mass at 700 GeV at Itau0l

huiling.hua@cern.ch

VLL@m600 in 1tau2l

- BDT training against all backgrounds including tttt
- Separate BDT training for each mass point to optimize performance
- Limit on mass at 630 GeV at 1tau2l

huiling.hua@cern.ch

Limit on VLL mass with run 2

- Most stringent limit on VLL mass at 820 GeV!
- Major systematics considered
- Results with 1tau1l, 1tau0l and 1tau2l combined
- What would be the observed significance when we unblind?

The end(of this presentation)

- Hadronic tau channel a very promising candidate to see four tops after SS&ML channel
 - Expected significance of 1.4 sigma
- VLL search in tau final states yielding the most stringent constraint on the mass
 - Expected limit on mass parameter: 820GeV
 - Can we confirm the anomaly or celebrate SM when we unblind?

- Analysis note v4 ready with all details described
- Many thanks to Top, TTX conveners and Jan, Neils, Charis, Kyle.....
- Analysis complete with a few missing piece

Back up

Theoretical and experimental systematics

Experimental uncertainties

- B-tag WP(1tau1l and 1tau2l) efficiency and shape scale factor(1tau0l)
- Tau efficiency SF and energy scale correction(TES)
- Lepton efficiency SF and energy scale correction
- Jet energy scale correction(JES and JER)
- Trigger scale factor
- Pile up reweighting
- Prefiring reweighting
- MET
 - All systematics inplace except leptonic trigger SF in 1tau2l
 - Going to borrow trigger SF from SS of 4tops
 - Leptonic trigger SF should have very small impact
 - The results shown in this presentation included all systematic variation except
 - All the energy scale correction
 - MET, and leptonic trigger SF in 1tau2l

ISR and **FSR**

huiling.hua@cern.ch

Huiling Hua

Theoretical uncertainties

- QCD renormalization and factorization
 - Pdf
- ISR and FSR

Impact on four top significance

Impact of VLL

Questions to answer

- Why FR constrained?
- Why theoretical uncertainty big?
- Tau fake rate difference between data and MC
- Overlap with SS, combination
- Post fit Vs pre fit

Back up

hadronic triggers in 1tau0l and 1tau1l

Trigger	act. lumi(fb-1)	eff lumi	first run	last run	dataset
2016					
HLT_PFHT380_SixJet32_DoubleBTagCSV_p075(MC)	4.8	4.8	297046	299329	JetHT
HLT_PFHT450_SixJet40_BTagCSV_p056(MC)	35.9	35.9	272760	284044	JetHT
HLT_PFJet450(MC)	35.9	35.9	272760	284044	JetHT
2017					-
HLT_PFHT400_SixJet30_DoubleBTagCSV_p056	35.9	35.9	272760	284044	JetHT
HLT_PFHT430_SixJet40_BTagCSV_p080	4.8	4.8	297046	299329	JetHT
HLT_PFHT430_SixPFJet40_PFBTagCSV_1p5(MC)	36.7	32.1	299368	306460	JetHT
HLT_HT300PT30_QuadJet_75_60_45_40_TripeCSV_p07_v	4.8	4.8	297046	299329	BTagCSV
HLT_PFHT300PT30_QuadPFJet_75_60_45_40_TriplePFBTagCSV_3p0(MC)	36.7	36.7	299368	306460	BTagCSV
HLT_PFHT1050(MC)	41.5	41.5	296070	306460	JetHT
2018					
HLT_PFHT380_SixPFJet32_DoublePFBTagDeepCSV_2p2	17.7	17.7	315252	317488	jetHT
HLT_PFHT400_SixPFJet32_DoublePFBTagDeepCSV_2p94(MC)	42.1	42.1	317509	325175	jetHT
HLT_PFHT430_SixPFJet40_PFBTagCSV_1p5	5.3	5.3	315252	315973	jetHT
HLT_PFHT430_SixPFJet40_PFBTagDeepCSV_1p5	12.4	12.4	315974	317488	jetHT
HLT_PFHT450_SixPFJet36_PFBTagDeepCSV_1p59(MC)	42.1	42.1	317509	325175	jetHT
HLT_PFHT330PT30_QuadPFJet_75_60_45_40_TriplePFBTagDeepCSV_4p5(MC)	59.8	59.8	315252	325175	jetHT

Table 5: Hardronic triggers for 1tau0l and 1tau1l. The trigger path MC in the bracket is the trigger path used in MC.

Leptonic triggers in 1tau2l

	2
trigger	dataset
2018	
HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8	DoubleMuon
HLT_Mu12_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ	MuonEG
HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ	MuonEG
HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ	EGamma
HLT_IsoMu24	SingleMuon
HLT_Ele32_WPTight_Gsf	EGamma
2017	
HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL	DoubleEG
HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ	MuonEG
HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ	MuonEG
HLT_IsoMu27	SingleMuon
HLT_Ele35_WPTight_Gsf	SingleElectron
2016	
HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ OR HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_DZ	DoubleMuon
HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ	DoubleEG
HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ	MuonEG
HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL(run<=2816)	MuonEG
HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ(run>=278273)	MuonEG
HLT_IsoMu24 OR HLT_IsoTkMu24	SingleMuon
HLT_Ele27_WPTight_Gsf	SingleElectron

Table 6: Leptoinic trigger path for 1tau2l Huiling Huo

Hadronic trigger SF: 2016preVFP

huiling.hua@cern.ch

Hadronic trigger SF: 2016postVFP

hadronic trigger SF: 2017

Hadronic trigger SF: 2018

1tau2l: BDT

Table 15: BDT inputs for 1tau2l

VLL cross section: pb

VLL mass [GeV]