Yukawa textures from selection rules without group actions

Hajime Otsuka (Kyushu University)

References :

Top-down approach (string compactifications):

- T. Kobayashi, <u>H.O.</u>, 2408.13984 [hep-th], S. Funakoshi, T. Kobayashi, <u>H.O.</u>, 2412.12524 [hep-th]
- J. Dong, T. Kobayashi, R. Nishida, S. Nishimura and H.O., 2504.09773 [hep-th]

Bottom-up approach:

- T. Kobayashi, <u>H.O.</u>, M. Tanimoto, 2409.05270 [hep-ph],
- T. Kobayashi, Y. Nishioka, H.O., M. Tanimoto, 2503.09966 [hep-ph]

Flavor puzzle

Hierarchy of quark and lepton masses

Different mixings for quarks/leptons

$$d = \frac{V_{ud}}{\sum_{X} W} u$$

$$|V_{\text{CKM}}| = \begin{pmatrix} 0.97435 \pm 0.00016 & 0.22501 \pm 0.00068 & 0.003732^{+0.000090}_{-0.000085} \\ 0.22487 \pm 0.00068 & 0.97349 \pm 0.00016 & 0.04183^{+0.00079}_{-0.00069} \\ 0.00858^{+0.00019}_{-0.00017} & 0.04111^{+0.00077}_{-0.00068} & 0.999118^{+0.000029}_{-0.000034} \end{pmatrix}$$

NuFIT 6.0 (2024)

$$e^- \stackrel{}{\underset{\sim}{\smile}_W} \nu_e, \nu_\mu, \nu_ au$$

$$|U|_{3\sigma}^{\text{IC19 w/o SK-atm}} = \begin{pmatrix} 0.801 \rightarrow 0.842 & 0.519 \rightarrow 0.580 & 0.142 \rightarrow 0.155 \\ 0.248 \rightarrow 0.505 & 0.473 \rightarrow 0.682 & 0.649 \rightarrow 0.764 \\ 0.270 \rightarrow 0.521 & 0.483 \rightarrow 0.690 & 0.628 \rightarrow 0.746 \end{pmatrix}$$

Texture zeros approach

Two generations of quarks

- In the basis in which the up-type quark mass matrix is diagonal,

$$m_{\text{down}} = \begin{pmatrix} 0 & m \\ m & M \end{pmatrix}$$

$$\stackrel{M \gg m}{\rightarrow} \begin{pmatrix} m^2/M & 0 \\ 0 & M \end{pmatrix} = \begin{pmatrix} m_d & 0 \\ 0 & m_s \end{pmatrix}$$

The Cabibbo angle is successfully predicted to be

$$\sin \theta_c \sim \tan \theta_c = m/M = \sqrt{m_d/m_s}$$

Texture zeros approach

Three generations of quarks

- Fritzsch extended this approach to the three family case (1978)

$$m_{u,d}^{(\text{Fritzsch})} = \begin{pmatrix} 0 & a & 0 \\ a^* & 0 & b \\ 0 & b^* & c \end{pmatrix}$$

leading to various relations between masses and mixing angles

See for systematic approach with four or five zeros for symmetric or hermitian quark mass matrices by Ramond-Roberts-Ross (1993))

These textures are not viable today under the precise experimental data

Texture zeros approach

Three generations of quarks

The Fritzsch texture belongs to the more generic <u>Nearest-neighbor-interaction (NNI)</u> form of quark mass matrices:

G.C.Branco, L.Lavoura, F.Mota (89),...

(also for leptons)

$$m_{u,d}^{(\text{NNI})} = \begin{pmatrix} 0 & a & 0 \\ b & 0 & c \\ 0 & d & e \end{pmatrix}$$

consistent with observed CKM matrices and quark masses

(obtained by choosing a weak-basis transformation from general 3 × 3 matrices of Yukawa matrices)

Q : Origin of these textures ?

A: They cannot be derived by the conventional symmetry

"Traditional" flavor symmetry

Fusion rule of symmetry operator:

$$U_{g_1}U_{g_2} = U_{g_1g_2} \qquad g_1,g_2 \in G$$

$$\text{Ex.,} \quad U(1): e^{i\theta_1}e^{i\theta_2} = e^{i(\theta_1+\theta_2)}$$

Ex.,
$$U(1): e^{i\theta_1}e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$$

Transformations of fields:

$$\phi_i \xrightarrow{g} \rho_{ij}(g)\phi_j \qquad g \in G_{\text{flavor}}$$

 $G_{\rm flavor}$: continuous or discrete

"Traditional" flavor symmetry

Fusion rule of symmetry operator :

$$U_{g_1}U_{g_2}=U_{g_1g_2} \qquad g_1,g_2\in G$$
 Ex.,
$$U(1):e^{i\theta_1}e^{i\theta_2}=e^{i(\theta_1+\theta_2)}$$

• Suppose that fields $\{\phi_a,\phi_b,\phi_c\}$ correspond to rep. of G

if
$$\rho(a)\rho(b)\rho(c)\supset \mathbb{I} \to \phi_a\phi_b\phi_c$$
 is allowed if $\rho(a)\rho(b)\rho(c)\not\supset \mathbb{I} \to \phi_a\phi_b\phi_c$ is forbidden

"Coupling selection rules"

(When G is Abelian, it is the charge conservation law)

Fusion rule of symmetry operator:

$$U_{g_1}U_{g_2}=U_{g_1g_2} \qquad g_1,g_2\in G$$
 Ex.,
$$U(1):e^{i\theta_1}e^{i\theta_2}=e^{i(\theta_1+\theta_2)}$$

Ex.,
$$U(1): e^{i\theta_1}e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$$

Fusion rule of symmetry operator:

$$\begin{array}{ll} U_{g_1}U_{g_2}=U_{g_1g_2} & g_1,g_2\in G \\ \\ \text{Ex.,} & U(1):e^{i\theta_1}e^{i\theta_2}=e^{i(\theta_1+\theta_2)} \end{array}$$

Ex.,
$$U(1): e^{i\theta_1}e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$$

$$\begin{aligned} U_i U_j &= \sum_k c_{ijk} U_k \\ \text{Ex., } U_{\theta_1} U_{\theta_2} &= U_{\theta_1 + \theta_2} + U_{\theta_1 - \theta_2} \end{aligned}$$

$$U_{\theta} \equiv \frac{1}{2} (e^{i\theta} + e^{-i\theta})$$

The right hand side in multiplication laws is not unique

- Suppose that
 - 1. Each field ϕ_i is labeled by U_i obeying the fusion rules

$$U_i U_j = \sum_k c_{ijk} U_k$$

2. Interactions in the classical Lagrangian are allowed when the identity ${\mathbb I}$ is contained in the fusion product of fields

Ex., the Fibonacci fusion rules (describing anyons):

$$\mathbb{I} \otimes \mathbb{I} = \mathbb{I}$$

$$\mathbb{I} \otimes \tau = \tau \otimes \mathbb{I} = \tau$$

$$\tau \otimes \tau = \mathbb{I} + \tau$$

- τ does not have the inverse

Ex., the Fibonacci fusion rules (describing anyons) :

$$\mathbb{I} \otimes \mathbb{I} = \mathbb{I}$$

$$\mathbb{I} \otimes \tau = \tau \otimes \mathbb{I} = \tau$$

$$\tau \otimes \tau = \mathbb{I} + \tau$$

- τ does not have the inverse

Ex., the Fibonacci fusion rules (describing anyons) :

$$\mathbb{I} \otimes \mathbb{I} = \mathbb{I}$$

$$\mathbb{I} \otimes \tau = \tau \otimes \mathbb{I} = \tau$$

$$\tau \otimes \tau = \mathbb{I} + \tau$$

- τ does not have the inverse

Ex., the Fibonacci fusion rules (describing anyons) :

$$\mathbb{I} \otimes \mathbb{I} = \mathbb{I}$$

$$\mathbb{I} \otimes \tau = \tau \otimes \mathbb{I} = \tau$$

$$\tau \otimes \tau = \mathbb{I} + \tau$$

- τ does not have the inverse

Ex., the Fibonacci fusion rules (describing anyons):

$$\mathbb{I} \otimes \mathbb{I} = \mathbb{I}$$

$$\mathbb{I} \otimes \tau = \tau \otimes \mathbb{I} = \tau$$

$$\tau \otimes \tau = \mathbb{I} + \tau$$

- τ does not have the inverse

The Fibonacci fusion rules

• Ex., the Fibonacci fusion rules (describing anyons) :

$$\mathbb{I} \otimes \mathbb{I} = \mathbb{I}$$

$$\mathbb{I} \otimes \tau = \tau \otimes \mathbb{I} = \tau$$

$$\tau \otimes \tau = \mathbb{I} + \tau$$

- τ does not have the inverse

The Fibonacci fusion rules

Ex., the Fibonacci fusion rules (describing anyons) :

$$\mathbb{I} \otimes \mathbb{I} = \mathbb{I}$$

$$\mathbb{I} \otimes \tau = \tau \otimes \mathbb{I} = \tau$$

$$\tau \otimes \tau = \mathbb{I} + \tau$$

- τ does not have the inverse

- As a simplest case, let us consider two generations of fermions:

T. Kobayashi, <u>H.O.</u>,, M. Tanimoto, 2409.05270 [hep-ph]

Left : (
$$\mathbb{I}$$
, τ)
Right : (\mathbb{I} , τ)
Higgs : τ

$$Y = \begin{pmatrix} 0 & a \\ b & c \end{pmatrix}$$

One cannot derive this pattern by U(1) or \mathbb{Z}_M for any M due to the charge conservation law.

T. Kobayashi, <u>H.O.</u>, M. Tanimoto, 2409.05270 [hep-ph]

- Let us start with \mathbb{Z}_M symmetry (generators : $g=e^{2\pi i/M}$)

Transformation of fields ϕ_i in 4D QFT :

$$\phi_j \to g^{k_j} \phi_j$$

- Charge k_i under \mathbb{Z}_M

T. Kobayashi, <u>H.O.</u>, M. Tanimoto, 2409.05270 [hep-ph]

- Let us start with \mathbb{Z}_M symmetry (generators $: g = e^{2\pi i/M}$)

Transformation of fields ϕ_i in 4D QFT:

$$\phi_j \to g^{k_j} \phi_j$$

- Charge k_i under \mathbb{Z}_M

Selection rules:

$$g^{k_1}g^{k_2} = g^{k_1+k_2}, \qquad g^{k_1}g^{-k_2} = g^{k_1-k_2}$$

The condition to allow n-point couplings:

$$g^{k_1}g^{k_2}\dots g^{k_n}=e$$

T. Kobayashi, <u>H.O.</u>, M. Tanimoto, 2409.05270 [hep-ph]

- Let us consider the following <u>automorphism</u> of \mathbb{Z}_M :

$$ege^{-1} = g$$
$$rgr^{-1} = g^{-1}$$

We define the following "class":

$$[g^k] = \{hg^k h^{-1} \mid h = e, r\}$$

- $[g^k]$ includes g^k and $g^{-k} = g^{M-k}$ (\mathbb{Z}_2 symmetry associated with r is gauged)

Intuitively, $[g^k]$ has both k and M-k charges

T. Kobayashi, H.O.,, M. Tanimoto, 2409.05270 [hep-ph]

- Let us consider the following <u>automorphism</u> of \mathbb{Z}_M :

$$ege^{-1} = g$$
$$rgr^{-1} = g^{-1}$$

- We define the following "class":

$$[g^k] = \{hg^k h^{-1} \mid h = e, r\}$$

- $[g^k]$ includes g^k and $g^{-k} = g^{M-k}$ (\mathbb{Z}_2 symmetry associated with r is gauged)

corresponding to \mathbb{Z}_2 invariant modes labeled by $\lfloor g^{k_j} \rfloor$:

$$\Phi_j = \phi_j + \phi_{M-j}$$

T. Kobayashi, <u>H.O.</u>, M. Tanimoto, 2409.05270 [hep-ph]

Product of the classes :

$$[g^{k_1}][g^{k_2}] = [g^{k_1+k_2}] + [g^{M-k_1+k_2}]$$

if $[g^0]$ appears in the right-hand side, 2-point couplings are allowed i.e., $\pm k_1 \pm k_2 = 0 \pmod M$

 \rightarrow $[g^{k_1}] = [g^{k_2}]$ (no kinetic mixings)

T. Kobayashi, H.O.,, M. Tanimoto, 2409.05270 [hep-ph]

Product of the classes :

$$[g^{k_1}][g^{k_2}] = [g^{k_1+k_2}] + [g^{M-k_1+k_2}]$$

The condition to allow three-point (Yukawa) couplings:

$$[g^{k_1}][g^{k_2}][g^{k_3}] = [g^{k_1+k_2+k_3}] + [g^{M-k_1+k_2+k_3}] + [g^{M+k_1-k_2+k_3}] + [g^{M+k_1+k_2-k_3}]$$

$$\pm k_1 \pm k_2 \pm k_3 = 0 \pmod{M}$$

Overview

- \mathbb{Z}_M symmetry:

$$\phi_j \to g^{k_j} \phi_j$$

- Gauging \mathbb{Z}_2 (the automorphism of \mathbb{Z}_M), i.e., $D_M \cong \mathbb{Z}_M \rtimes \mathbb{Z}_2$

$$[g^k] = \{hg^k h^{-1} \mid h = e, r\}$$

- $[g^k]$ includes g^k and $g^{-k} = g^{M-k}$

- \mathbb{Z}_2 invariant modes labeled by $[g^k]$

$$\Phi_j = \phi_j + \phi_{M-j}$$

$$M = 3 \ (\mathbb{Z}_3 \text{ symmetry})$$

T. Kobayashi, <u>H.O.</u>, M. Tanimoto, 2409.05270 [hep-ph]

Two different classes :

[
$$g^0$$
], [g^1](= [g^2])
 g^k] g^k] g^k , g^{M-k}
 g^0 g^0 g^1 , g^2

$M = 3 \ (\mathbb{Z}_3 \text{ symmetry})$

T. Kobayashi, <u>H.O.</u>, M. Tanimoto, 2409.05270 [hep-ph]

Two different classes :

$$[g^0], \qquad [g^1] (= [g^2])$$

$$g^0 \Rightarrow g^1, g^2$$
 $[g^k] \Rightarrow g^k, g^{M-k}$

- Fusion rules :

Fibonacci fusion rules

$$[g^{0}][g^{0}] = [g^{0}]$$

 $[g^{0}][g^{1}] = [g^{1}]$
 $[g^{1}][g^{1}] = [g^{0}] + [g^{1}]$

$$\mathbb{I} \otimes \mathbb{I} = \mathbb{I}$$

$$\mathbb{I} \otimes \tau = \tau \otimes \mathbb{I} = \tau$$

 $\tau \otimes \tau = \mathbb{I} + \tau$

$$M = 3 \ (\mathbb{Z}_3 \text{ symmetry})$$

T. Kobayashi, H.O.,, M. Tanimoto, 2409.05270 [hep-ph]

Two different classes :

[
$$g^0$$
], [g^1](= [g^2])
 g^0 g^0 g^1 , g^2 [g^k] g^k , g^{M-k}

Fibonacci fusion rules

$$[g^{0}][g^{0}] = [g^{0}]$$

 $[g^{0}][g^{1}] = [g^{1}]$
 $[g^{1}][g^{1}] = [g^{0}] + [g^{1}]$

$$\mathbb{I} \otimes \mathbb{I} = \mathbb{I}$$

$$\mathbb{I} \otimes \tau = \tau \otimes \mathbb{I} = \tau$$

$$\tau \otimes \tau = \mathbb{I} + \tau$$

- Previous example for two generations of fermions:

Left : ([
$$g^0$$
], [g^1])
Right : ([g^0], [g^1]) $Y = \begin{pmatrix} 0 & a \\ b & c \end{pmatrix}$
Higgs : [g^1]

M = 5 (\mathbb{Z}_5 symmetry)

T. Kobayashi, <u>H.O.</u>, M. Tanimoto, 2409.05270 [hep-ph]

Three different classes :

$$[g^{0}], \qquad [g^{1}], \qquad [g^{2}] \qquad [g^{k}] \supset g^{k}, g^{M-k}$$

$$\supset g^{0} \qquad \supset g^{1}, g^{4} \qquad \supset g^{2}, g^{3}$$

$$M = 5 \ (\mathbb{Z}_5 \text{ symmetry})$$

T. Kobayashi, H.O.,, M. Tanimoto, 2409.05270 [hep-ph]

Three different classes:

[
$$g^{0}$$
], [g^{1}], [g^{2}]
 $g^{0} g^{0} g^{1}$, [g^{2}]
 $g^{0} g^{0} g^{1}$, $g^{4} g^{2}$, g^{3}

Yukawa couplings for 3 generations of fermions:

Left : $([g^0], [g^1], [g^2])$ Right: $([g^0], [g^1], [g^2])$

Higgs: $[g^1]$

$$Y_{[g^1]} = \begin{pmatrix} 0 & a & 0 \\ b & 0 & c \\ 0 & d & e \end{pmatrix}$$

Fusion rules: $Y_{[g^1]} = \begin{pmatrix} 0 & a & 0 \\ b & 0 & c \\ 0 & d & e \end{pmatrix} \qquad \begin{bmatrix} g^0 \\ [g^0][g^0] = [g^0] \\ [g^1][g^1] = [g^0] + [g^1] \\ [g^2][g^2] = [g^0] + [g^1] \end{bmatrix}$ $[g^1][g^2] = [g^1] + [g^2]$

Texture with "nearest neighbor intereraction" consistent with observed CKM and quark masses (also for leptons)

Extensiton to two flavor symmetries

T. Kobayashi, Y. Nishioka, H.O., M. Tanimoto, 2503.09966 [hep-ph]

- \mathbb{Z}_2 gaugings of $\mathbb{Z}_M \times \mathbb{Z}_{M'}$ symmetries with generators g_1 , g_2

classes:
$$[g_1^k][g_2^m]$$
, $(k, m = 0, 1, ..., M - 1)$ for $M = M'$

Extensiton to two flavor symmetries

T. Kobayashi, Y. Nishioka, H.O., M. Tanimoto, 2503.09966 [hep-ph]

- \mathbb{Z}_2 gaugings of $\mathbb{Z}_M \times \mathbb{Z}_{M'}$ symmetries with generators g_1 , g_2

classes:
$$[g_1^k][g_2^m]$$
, $(k, m = 0, 1, ..., M - 1)$ for $M = M'$

- Ex., when M = 3,

Left : $([g_1^0][g_2^0], [g_1^1][g_2^0], [g_1^1][g_2^1])$

Right: $([g_1^0][g_2^0], [g_1^0][g_2^1], [g_1^1][g_2^1])$

Higgs : $[g_1^1][g_2^1]$

$$Y_u, Y_d = \begin{pmatrix} 0 & 0 & * \\ 0 & * & * \\ * & * & * \end{pmatrix}$$

A non-trivial weak CP which does not appear in its determinant Available to address the strong CP problem without axion

UV completions?

Overview

T. Kobayashi, <u>H.O.</u>, 2408.13984 [hep-th]

 \mathbb{Z}_M symmetry :

$$\phi^j \to g^{k_j} \phi^j$$

- Gauging \mathbb{Z}_2 (the automorphism of \mathbb{Z}_M), i.e., $D_M \cong \mathbb{Z}_M \rtimes \mathbb{Z}_2$

$$[g^k] = \{hg^k h^{-1} \mid h = e, r\}$$

 $[g^k]$ includes g^k and $g^{-k} = g^{M-k}$

- \mathbb{Z}_2 invariant modes labeled by $[g^k]$

$$\Phi_j = \phi_j + \phi_{M-j}$$

Top-down approach (1/2)

T. Kobayashi, <u>H.O.</u>, 2408.13984 [hep-th]

- \mathbb{Z}_M symmetry :

$$\phi^j \to g^{k_j} \phi^j$$

- Gauging \mathbb{Z}_2 (the automorphism of \mathbb{Z}_M), i.e., $D_M \cong \mathbb{Z}_M \rtimes \mathbb{Z}_2$

$$[g^k] = \{hg^k h^{-1} \mid h = e, r\}$$

 $[g^k]$ includes g^k and $g^{-k} = g^{M-k}$

- \mathbb{Z}_2 invariant modes labeled by $[g^k]$

$$\Phi_j = \phi_j + \phi_{M-j}$$

Flavor symmetry on Super Yang-Mills on T^2 with magnetic fluxes

(EFT of type IIB Magnetized D-brane models)

 T^2/\mathbb{Z}_2 orbifold with gauged \mathbb{Z}_2

Fusion rules of momentum ops.:

$$U_{\lambda_1}U_{\lambda_2} = U_{\lambda_1 + \lambda_2} + U_{\lambda_1 - \lambda_2}$$

 \mathbb{Z}_2 invariant modes on T^2/\mathbb{Z}_2

Top-down approach (2/2)

• E_6 GUT in heterotic string theory on Calabi-Yau threefolds:

Candelas-Horowitz-Strominger-Witten ('85)

■ Matters $(E_6: 27 \text{ or } \overline{27}) \approx \text{Moduli}$

 $27^i \approx \text{Kaehler Moduli } t^i$

(2-cycle volume)

 $(i = 1.2, ..., h^{1,1})$

Yukawa couplings (27³)

$$W = F_{ijk} 27^i 27^j 27^k$$

determined by topological data of CY

Non-trivial fusion rules :

$$V_{27^i}V_{27^j} = \sum_k F_{ijk}V_{27^k}$$

Top-down approach (2/2)

Classification of selection rules on complete intersection CYs:

We find that all of the selection rules on CYs (with # of moduli \leq 5) are understood by combinations of only five types of fusion rules.

J. Dong, T. Kobayashi, R. Nishida, S. Nishimura and H.O., 2504.09773 [hep-th]

Conclusions

<u>Phenomenological applications of selection rules without group actions</u> (including the the Fibonacci fusion rule and its extension)

- leading to the non-trivial structure of mass matrices, NNI form of fermion mass matrix and its extension:

$$m_{u,d}^{(\text{NNI})} = \begin{pmatrix} 0 & a & 0 \\ b & 0 & c \\ 0 & d & e \end{pmatrix}$$

- available to address the strong CP problem without axion

$$m_{u,d} = \begin{pmatrix} 0 & 0 & * \\ 0 & * & * \\ * & * & * \end{pmatrix}$$

Conclusions

- UV completions (1/2):
- 1. Supersymmetric Yang-Mills theory on T^2/\mathbb{Z}_N with fluxes (Magnetized D-branes in type IIB string theory)
 - Fusion rules of \mathbb{Z}_N -invariant operators :

For
$$T^2/\mathbb{Z}_2$$
, $U_{\lambda_1}U_{\lambda_2}=U_{\lambda_1+\lambda_2}+U_{\lambda_1-\lambda_2}$

 Chiral zero modes will correspond to three generations of quarks/leptons
 Non-invertible symmetries flavor symmetries

Conclusions

UV completions (2/2):

- 2. E_6 GUT in heterotic string theory on Calabi-Yau threefolds
 - Non-trivial fusion rules of moduli fields
 - \rightarrow Coupling selection rules for 27 or $\overline{27}$ of E_6

Discussions

- Selection rule of n-point couplings (higher-dimensional operators)
- Other applications of Non-Invertible Symmetries (NIS)
 - Ex., Tiny neutrino masses from UV instantons breaking NIS

C.Cordova, K.Ohmori 2205.05086, C.Cordova, S.Hong, S.Koren, K. Ohmori 2211.06243

- Breaking of non-invertible symmetries in toroidal orbifolds
 - would be realized by resolutions of T^{2n}/\mathbb{Z}_N orbifolds
 - blowup modes → the breaking of non-invertible symmetries

