

Proton Lifetime in Minimal SUSY SU(5) with Gauge Mediation

Yoshihiro Shigekami

(Henan Normal University)

with Jason L. Evans (TDLI, SJTU) Based on 2409.06239

GUTPC2025@Hangzhou, 17-22/4/2025

- Grand unified theory (GUT) is one of promising extension of the Standard Model (SM)
- All SM particles are embedded into larger multiplets

- Grand unified theory (GUT) is one of promising extension of the Standard Model (SM)
- All SM particles are embedded into larger multiplets

- Grand unified theory (GUT) is one of promising extension of the Standard Model (SM)
- All SM particles are embedded into larger multiplets

• Some of SM parameters are unified

✓ Yukawa couplings (i, j): generation indices) SU(5): $(y_u)_{ij} \mathbf{10}_i \mathbf{10}_j \mathbf{5}_H + (y_{d,e})_{ij} \mathbf{10}_i \mathbf{5}_j \mathbf{5}_H$ SO(10): $(y_f)_{ij} \mathbf{16}_i \mathbf{16}_j \mathbf{10}_H$

Note: for SM fermion mass hierarchy, these will not be "minimal" Yukawa's

✓ gauge couplings

 $g_Y\,,\;g_2\,,g_s
ightarrow g_5$ for SU(5) GUT case

SM can be obtained from fewer parameters

• This feature is interesting, but GUT has challenging issues SM fermion mass hierarchy, doublet-triplet splitting, hierarchy problem, gauge coupling unification, nucleon decays, ...

• Gauge coupling unification

• Gauge coupling unification

 GUT scale ~ 10¹⁵ GeV → scale of heavy particle masses quite heavy! but, slightly "light" for nucleon decays (depends on gauge coupling) another issue: huge hierarchy, M_Z <<<< M_{GUT}!!!

• Supersymmetry (SUSY): symmetry of fermion $\leftarrow \rightarrow$ boson

example:spin
$$1/2, 1$$
 $1/2, 0$ $1/2, 0$ fermion \widetilde{B} Q_L e_R \widetilde{H}_u boson B^0 \widetilde{Q}_L \widetilde{e}_R H_u SUSY particles

Supersymmetry (SUSY): symmetry of fermion ← → boson

Supersymmetry (SUSY): symmetry of fermion ← → boson

example:spin
$$1/2, 1$$
 $1/2, 0$ $1/2, 0$ fermion \widetilde{B} Q_L e_R \widetilde{H}_u boson B^0 \widetilde{Q}_L \widetilde{e}_R H_u SUSY particles

SUSY requires the same mass for fermion and boson

$$m_{Q_L} = m_{\tilde{Q}_L}, \ m_{e_R} = m_{\tilde{e}_R}, \cdots$$

No light gauginos, sfermions, Higgsinos

- SUSY should be broken at low energy scale
 - ✓ How to break?
 - ✓ What's the origin?

- Soft-breaking terms in minimal SUSY SM (MSSM) $\mathcal{L}_{\text{soft}} = -\frac{1}{2}M_a\lambda^a\lambda^a - \frac{1}{6}a^{ijk}\phi_i\phi_j\phi_k - \frac{1}{2}b^{ij}\phi_i\phi_j + \text{c.c.} - (m^2)^i_j\phi^{j*}\phi_i$ $\lambda^a: \text{ gaugino}, \ \phi_i: \text{ any scalar}$
- Lots of parameters, and they are arbitrary can be real and/or complex

- Soft-breaking terms in minimal SUSY SM (MSSM) $\mathcal{L}_{\text{soft}} = -\frac{1}{2}M_a\lambda^a\lambda^a - \frac{1}{6}a^{ijk}\phi_i\phi_j\phi_k - \frac{1}{2}b^{ij}\phi_i\phi_j + \text{c.c.} - (m^2)^i_j\phi^{j*}\phi_i$ $\lambda^a: \text{gaugino}, \ \phi_i: \text{any scalar}$
- Lots of parameters, and they are arbitrary can be real and/or complex
 - ✓ these lead to SUSY flavor/CP-violating processes

- Soft-breaking terms in minimal SUSY SM (MSSM) $\mathcal{L}_{\text{soft}} = -\frac{1}{2}M_a\lambda^a\lambda^a - \frac{1}{6}a^{ijk}\phi_i\phi_j\phi_k - \frac{1}{2}b^{ij}\phi_i\phi_j + \text{c.c.} - (m^2)^i_j\phi^{j*}\phi_i$ $\lambda^a: \text{ gaugino, } \phi_i: \text{ any scalar}$
- Lots of parameters, and they are arbitrary can be real and/or complex
 - ✓ these lead to SUSY flavor/CP-violating processes

e.g.) K-Kbar mixing (figure from S.P. Martin's SUSY primer)

$$\frac{\bar{s}}{\tilde{g}} = \frac{\tilde{s}_{R}^{*} \times -\tilde{d}_{R}^{*}}{\tilde{g}} \times -\tilde{d}_{R}^{*} \times -\tilde{d$$

 Soft terms are constrained by flavor/CP violating physics when sfermion masses are close to the weak scale

(collider experiments increase lower bound of the SUSY scale > O(1) TeV)

- SUSY breaking mechanisms (with mediation)
 - Gravity mediation
 - it is straightforward from supergravity
 - there is still SUSY flavor problems, due to long running of parameters
 - Anomaly mediation
 - high predictability, low SUSY breaking scale
 - dangerous negative sfermion mass square, color-charge breaking minima
 - Gauge mediation
 - safe from SUSY flavor problems, low SUSY breaking scale
 - vacuum structure will be complicated, (heavy) messenger sector is required

✓ Also, it's possible to break without additional sector (see, e.g., Maekawa-san's talk)

- SUSY breaking mechanisms (with mediation)
 - Gravity mediation
 - it is straightforward from supergravity
 - there is still SUSY flavor problems, due to long running of parameters
 - Anomaly mediation
 - high predictability, low SUSY breaking scale
 - dangerous negative sfermion mass square, color-charge breaking minima

Gauge mediation

- safe from SUSY flavor problems, low SUSY breaking scale
- vacuum structure will be complicated, (heavy) messenger sector is required

✓ Also, it's possible to break without additional sector (see, e.g., Maekawa-san's talk)

• We focus on gauge mediated SUSY breaking (GMSB)

The key feature: gaugino and sfermion masses generated at M_{mess} due to SM charges of messengers

(figures from S.P. Martin's SUSY primer)

• We focus on gauge mediated SUSY breaking (GMSB)

The key feature: gaugino and sfermion masses generated at M_{mess} due to SM charges of messengers

e.g.)
$$M_2 \simeq \frac{g_2^2}{16\pi^2} \Lambda_L$$
, $m_{\widetilde{Q}_L}^2 \simeq \frac{2}{(16\pi^2)^2} \left[\frac{4}{3} g_3^4 \Lambda_D^2 + \frac{3}{4} g_2^4 \Lambda_L^2 + \frac{3}{5} \frac{1}{6^2} g_1^4 \Lambda_Y^2 \right]$

 $\Lambda_{L, D}$: related to the messenger scale M_{mess}

• Introduce $5+\overline{5}$ as messengers

minimal model: $\mathbf{10}_i$, $\mathbf{\overline{5}}_i$, H, \overline{H} , Σ ; $\mathbf{5} = (\Psi_D, \Psi_L)$, $\mathbf{\overline{5}} = (\Psi_{\overline{D}}, \Psi_{\overline{L}})$, Z

scalar and auxiliary components get VEV, leads to SUSY breaking \checkmark

 In the viewpoint of GUT, these messengers contribute to RGE of gauge coupling

but expected to be unified, because of vector-like messenger

- We are interested in the prediction of proton decay our main focus is p → K⁺ ⊽ (dim. 5 operator, mediated by H_c) but also check p → π e (dim. 6 operator, mediated by X)
- Check the current Super-Kamiokande (SK) bound most of interesting parameter space is safe, but some of it not

- We are interested in the prediction of proton decay our main focus is p → K⁺ ⊽ (dim. 5 operator, mediated by H_c) but also check p → π e (dim. 6 operator, mediated by X)
- Check the current Super-Kamiokande (SK) bound most of interesting parameter space is safe, but some of it not
- Also check the future prospects (@90% C.L., 10(20) years running)
 - ✓ Hyper-Kamiokande (HK): $3.1(4.8) \times 10^{34}$ years
 - ✓ Deep Underground Neutrino Experiment (DUNE): $2.2(4.2) \times 10^{34}$ years
 - ✓ Jiangmen Underground Neutrino Observatory (JUNO): $0.96(1.8) \times 10^{34}$ years

Most of parameter space can be tested!

Bhattiprolu, Martin, Wells [PRD107(2023)055016]

• Visible sector ... minimal SUSY SU(5) $W_{\text{vis}} = \mu_{\Sigma} \text{Tr}\Sigma^{2} + \frac{\lambda'}{6} \text{Tr}\Sigma^{3} + \mu_{H}\overline{H}H + \lambda\overline{H}\Sigma H + (h_{10})_{ij}\mathbf{10}_{i}\mathbf{10}_{j}H + (h_{\overline{5}})_{ij}\mathbf{10}_{i}\overline{5}_{j}\overline{H}$

Evans, Yanagida [PLB833(2022)137359] Evans, YS [2409.06239]

- ${\cal H}$: fundamental Higgs superfield
- $\overline{H}: \mbox{ anti-fundamental Higgs superfield}$
- $\Sigma:$ adjoint superfiled
- $\mathbf{10}_i$: matter superfiled (Q_L, u_R^c, e_R^c)
- $\mathbf{\bar{5}}_i$: matter superfiled (L_L, d_R^c)

 $h_{10}, h_{\overline{5}}$ are Yukawa couplings for SM fermions

• Scalar component of the adjoint acquires non-zero VEV $SU(5) \rightarrow SU(3)_C x SU(2)_L x U(1)_Y$

 $\langle \Sigma \rangle = V \cdot \operatorname{diag}(2, 2, 2, -3, -3) \text{ with } V = 4\mu_{\Sigma}/\lambda'$

• Visible sector ... minimal SUSY SU(5) $W_{\text{vis}} = \mu_{\Sigma} \text{Tr}\Sigma^{2} + \frac{\lambda'}{6} \text{Tr}\Sigma^{3} + \mu_{H} \overline{H} H + \lambda \overline{H} \Sigma H + (h_{10})_{ij} \mathbf{10}_{i} \mathbf{10}_{j} H + (h_{\overline{5}})_{ij} \mathbf{10}_{i} \overline{\mathbf{5}}_{j} \overline{H}$

Evans, Yanagida [PLB833(2022)137359] Evans, YS [2409.06239]

- ${\cal H}$: fundamental Higgs superfield
- $\overline{H}: \mbox{ anti-fundamental Higgs superfield}$
- $\Sigma:$ adjoint superfiled
- $\mathbf{10}_i$: matter superfiled (Q_L, u_R^c, e_R^c)
- $\mathbf{\bar{5}}_i$: matter superfiled (L_L, d_R^c)

 $h_{10}, h_{\overline{5}}$ are Yukawa couplings for SM fermions

- Scalar component of the adjoint acquires non-zero VEV $SU(5) \rightarrow SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$ $\langle \Sigma \rangle = V \cdot \operatorname{diag}(2, 2, 2, -3, -3) \text{ with } V = 4\mu_{\Sigma}/\lambda'$
- This VEV scales GUT scale fields as

GUT gauge boson : $M_X = 5g_5V$; color triplet Higgs : $M_{H_C} = 5\lambda V$; color octet of Σ : $M_{\Sigma} = \frac{5}{2}\lambda' V$ g₅ is unified gauge coupling

Matching conditions for gauge coupling unification

$$\frac{1}{g_1^2(Q)} = \frac{1}{g_5^2(Q)} + \frac{1}{8\pi^2} \left[\frac{2}{5} \ln \frac{Q}{M_{H_C}} - 10 \ln \frac{Q}{M_X} \right] - \epsilon ,$$

$$\frac{1}{g_2^2(Q)} = \frac{1}{g_5^2(Q)} + \frac{1}{8\pi^2} \left[2 \ln \frac{Q}{M_{\Sigma}} - 6 \ln \frac{Q}{M_X} \right] - 3\epsilon ,$$

$$\frac{1}{g_3^2(Q)} = \frac{1}{g_5^2(Q)} + \frac{1}{8\pi^2} \left[2 \ln \frac{Q}{M_{\Sigma}} - 6 \ln \frac{Q}{M_X} \right] - 3\epsilon ,$$

$$g_{1,2,3}: \text{ SM gauge couplings} \text{ with } g_1^2 = (5/3)g_Y^2$$

$$\frac{1}{g_3^2(Q)} = \frac{1}{g_5^2(Q)} + \frac{1}{8\pi^2} \left[\ln \frac{Q}{M_{H_C}} + 3 \ln \frac{Q}{M_{\Sigma}} - 4 \ln \frac{Q}{M_X} \right] + 2\epsilon ,$$

$$8dV$$

• $\epsilon \equiv \frac{d}{M_P}$ is a contribution from Planck suppressed operator: $W_{\text{eff}}^{\Delta g} = \frac{d}{M_P} \text{Tr} [\Sigma W W]$

with $\mathcal{W} = \mathcal{W}^A T^A$ (SU(5) field strength superfield)

This contribution should be included because of the fact that $V/M_P \simeq 10^{-2}$ \rightarrow it is comparable to one-loop threshold corrections!

Matching conditions for gauge coupling unification

$$\begin{split} \frac{1}{g_1^2(Q)} &= \frac{1}{g_5^2(Q)} + \frac{1}{8\pi^2} \left[\frac{2}{5} \ln \frac{Q}{M_{H_C}} - 10 \ln \frac{Q}{M_X} \right] - \epsilon \,, \end{split} \begin{array}{l} \begin{array}{l} \mbox{Hisano, Murayama, Goto [PRD49(1994)1446]}\\ \mbox{Tobe, Wells [PLB588(2004)99]}\\ \mbox{Tobe, Wells [PLB588(2004)99]}\\ \mbox{Evans, Nagata, Olive [PRD91(2015)055027]} \end{array} \right] \\ \frac{1}{g_2^2(Q)} &= \frac{1}{g_5^2(Q)} + \frac{1}{8\pi^2} \left[2 \ln \frac{Q}{M_{\Sigma}} - 6 \ln \frac{Q}{M_X} \right] - 3\epsilon \,, \\ \mbox{Tobe, Wells [PLB588(2004)99]}\\ \mbox{Tobe, Wells [PLB588(2004)99]}\\ \mbox{Evans, Nagata, Olive [PRD91(2015)055027]} \end{array} \right] \\ \frac{1}{g_2^2(Q)} &= \frac{1}{g_5^2(Q)} + \frac{1}{8\pi^2} \left[2 \ln \frac{Q}{M_{\Sigma}} - 6 \ln \frac{Q}{M_X} \right] - 3\epsilon \,, \\ \mbox{With } g_1^2 = (5/3)g_Y^2 \\ \mbox{With } g_1^2 = (5/3)g_Y^2 \end{array} \right] \\ \end{array}$$

• With this ϵ , we can find viable model ... 2 d.o.f. (3 fixed)

Without ϵ , the proton lifetime tends to be short (Evans, Yanagida [PLB833(2022)137359])

Colored Higgs mass is determined by
$$\frac{1}{g_1^2(Q)} - \frac{3}{g_2^2(Q)} + \frac{2}{g_3^2(Q)} = \frac{3}{10\pi^2} \ln \frac{Q}{M_{H_C}} + 12\epsilon$$

Matching conditions for gauge coupling unification

$$\begin{split} \frac{1}{g_1^2(Q)} &= \frac{1}{g_5^2(Q)} + \frac{1}{8\pi^2} \left[\frac{2}{5} \ln \frac{Q}{M_{H_C}} - 10 \ln \frac{Q}{M_X} \right] - \epsilon \,, \end{split} & \begin{array}{ll} \begin{array}{ll} \mbox{Hisano, Murayama, Goto [PRD49(1994)1446]} \\ \mbox{Tobe, Wells [PLB588(2004)99]} \\ \mbox{Tobe, Wells [PLB588(2004)99]} \\ \mbox{Verses} \\ \mbox{Varses} \\ \mbox{Varses} \\ \mbox{Verses} \\ \mbox{Ve$$

• With this ϵ , we can find viable model ... 2 d.o.f. (3 fixed)

Without ϵ , the proton lifetime tends to be short (Evans, Yanagida [PLB833(2022)137359])

Colored Higgs mass is determined by
$$\frac{1}{g_1^2(Q)} - \frac{3}{g_2^2(Q)} + \frac{2}{g_3^2(Q)} = \frac{3}{10\pi^2} \ln \frac{Q}{M_{H_C}} + 12\epsilon$$

• Other constraints:
$$\frac{5}{g_1^2(Q)} + \frac{3}{g_2^2(Q)} - \frac{2}{g_3^2(Q)} = \frac{6}{g_5^2(Q)} - \frac{15}{2\pi^2} \ln \frac{Q}{M_X} - 18\epsilon$$
$$\frac{5}{g_1^2(Q)} - \frac{3}{g_2^2(Q)} - \frac{2}{g_3^2(Q)} = -\frac{3}{2\pi^2} \ln \frac{Q^3}{M_X^2 M_\Sigma}$$

• Messenger sector ... introduce $\mathbf{5} + \overline{\mathbf{5}}$ messengers

 $W_{\text{mess}} = (M_L + k_L Z)\Psi_L \Psi_{\bar{L}} + (M_D + k_D Z)\Psi_D \Psi_{\bar{D}} - \xi_Z Z$

 $\Psi_L : SU(2)_L$ doublet; $\Psi_D : SU(3)_C$ triplet; Z: singlet superfield

• Messenger sector ... introduce $\mathbf{5} + \overline{\mathbf{5}}$ messengers

 $W_{\rm mess} = (M_L + k_L Z) \Psi_L \Psi_{\bar{L}} + (M_D + k_D Z) \Psi_D \Psi_{\bar{D}} - \xi_Z Z$

 $\Psi_L : SU(2)_L$ doublet; $\Psi_D : SU(3)_C$ triplet; Z : singlet superfield

 After integrating out messengers, we obtain all gauginos and scalar masses as

Quadratic Casimir invariant for SU(N): $C_N(i) = \frac{N^2 - 1}{2N}$ (fundamental), N (adjoind)

• These are generated at messenger scale, $M_{\rm mess} \sim M_{L,D}$

- $p \rightarrow K^+ \bar{\nu}$ is relevant $W_{p-\text{decay}} = \frac{1}{2} C_{5L}^{ijkl} \epsilon_{abc} \left(Q_i^a \cdot Q_j^b \right) \left(Q_k^c \cdot L_l \right) + C_{5R}^{ijkl} \epsilon_{abc} \left(\bar{u}_{ia} \bar{e}_j \bar{u}_{kb} \bar{u}_{lc} \right)$ Each coefficients: $C_{5L}^{ijkl} = \frac{\sqrt{8}}{M_{H_c}} h_{10,i} e^{i\phi_i} \delta^{ij} V_{kl}^* h_{\bar{5},l}$ and $C_{5R}^{ijkl} = \frac{\sqrt{8}}{M_{H_c}} h_{10,i} V_{ij} V_{kl}^* h_{\bar{5},l} e^{-i\phi_k}$
- Our choice for Yukawa basis:

$$(h_{10})_{ij} = e^{i\phi_i} \delta^{ij} h_{10,i} , \quad (h_{\bar{\mathbf{5}}})_{ij} = V_{ij}^* h_{\bar{\mathbf{5}},j} .$$

 ϕ_i : GUT phases with $\phi_1 + \phi_2 + \phi_3 = 0$ V_{ij} : CKM matrix elements

- $p \rightarrow K^+ \bar{\nu}$ is relevant $W_{p-\text{decay}} = \frac{1}{2} C_{5L}^{ijkl} \epsilon_{abc} \left(Q_i^a \cdot Q_j^b \right) \left(Q_k^c \cdot L_l \right) + C_{5R}^{ijkl} \epsilon_{abc} \left(\bar{u}_{ia} \bar{e}_j \bar{u}_{kb} \bar{u}_{lc} \right)$ Each coefficients: $C_{5L}^{ijkl} = \frac{\sqrt{8}}{M_{H_c}} h_{10,i} e^{i\phi_i} \delta^{ij} V_{kl}^* h_{\bar{\mathbf{5}},l}$ and $C_{5R}^{ijkl} = \frac{\sqrt{8}}{M_{H_c}} h_{10,i} V_{ij} V_{kl}^* h_{\bar{\mathbf{5}},l} e^{-i\phi_k}$
- Our choice for Yukawa basis:
 - $(h_{10})_{ij} = e^{i\phi_i}\delta^{ij}h_{10,i}, \quad (h_{\overline{5}})_{ij} = V_{ij}^*h_{\overline{5},j}.$ $\phi_i: \text{ GUT phases with } \phi_1 + \phi_2 + \phi_3 = 0$ $V_{ij}: \text{ CKM matrix elements}$

Running down to QCD scale by RGE

• Decay rate: $\Gamma(p \to K^+ \bar{\nu}_i) = \frac{m_p}{32\pi} \left(1 - \frac{m_K^2}{m_p^2}\right)^2 \left|\mathcal{A}(p \to K^+ \bar{\nu}_i)\right|^2$

Summing up all neutrino flavors, taking inverse gives lifetime

$$\tau(p \to K^+ \bar{\nu}_i) = \left(\sum_{i=1}^3 \Gamma(p \to K^+ \bar{\nu}_i)\right)^{-1} > 5.9 \times 10^{33} \,\text{years} \quad @90\% \text{ C.L. SK (2014)}$$

• $p \to K^+ \bar{\nu}$ amplitude

More details: Ellis, Evans, Nagata, Olive, Velasco-Sevilla [EPJC80(2020)332]

$$\mathcal{A}(p \to K^+ \bar{\nu}_i) = C_{LL_i} \left(\langle K^+ | (us)_L d_L | p \rangle + \langle K^+ | (ud)_L s_L | p \rangle \right) \\ + C_{RL_1} \langle K^+ | (us)_R d_L | p \rangle + C_{RL_2} \langle K^+ | (ud)_R s_L | p \rangle$$

Approx. form of coefficients:

$$C_{LL_{i}} \simeq \frac{2\alpha_{2}^{2}}{\sin 2\beta} \frac{m_{t}m_{d_{i}}M_{2}}{m_{W}^{2}M_{H_{C}}M_{SUSY}^{2}} V_{ui}^{*}V_{td}V_{ts}e^{i\phi_{3}} \left(1 + e^{i(\phi_{2} - \phi_{3})}\frac{m_{c}V_{cd}V_{cs}}{m_{t}V_{td}V_{ts}}\right)$$
$$C_{RL_{1}} \simeq -\frac{\alpha_{2}^{2}}{\sin^{2}2\beta} \frac{m_{t}^{2}m_{s}m_{\tau}\mu}{m_{W}^{4}M_{H_{C}}M_{SUSY}^{2}} V_{tb}^{*}V_{us}V_{td}e^{i\phi_{1}}$$
$$C_{RL_{2}} \simeq -\frac{\alpha_{2}^{2}}{\sin^{2}2\beta} \frac{m_{t}^{2}m_{d}m_{\tau}\mu}{m_{W}^{4}M_{H_{C}}M_{SUSY}^{2}} V_{tb}^{*}V_{ud}V_{ts}e^{i\phi_{1}}$$

Hadronic matrix elements:

$$\langle K^+ | (us)_L d_L | p \rangle = 0.041(2)(5) \,\text{GeV}^2 \,, \langle K^+ | (ud)_L s_L | p \rangle = 0.139(4)(15) \,\text{GeV}^2 \,, \langle K^+ | (us)_R d_L | p \rangle = -0.049(2)(5) \,\text{GeV}^2 \,, \langle K^+ | (ud)_R s_L | p \rangle = -0.134(4)(14) \,\text{GeV}^2$$

• $p \to K^+ \bar{\nu}$ amplitude

More details: Ellis, Evans, Nagata, Olive, Velasco-Sevilla [EPJC80(2020)332]

$$\mathcal{A}(p \to K^+ \bar{\nu}_i) = C_{LL_i} \left(\langle K^+ | (us)_L d_L | p \rangle + \langle K^+ | (ud)_L s_L | p \rangle \right) \\ + C_{RL_1} \langle K^+ | (us)_R d_L | p \rangle + C_{RL_2} \langle K^+ | (ud)_R s_L | p \rangle$$

Approx. form of coefficients:

$$C_{LL_{i}} \simeq \frac{2\alpha_{2}^{2}}{\sin 2\beta} \frac{m_{t}m_{d_{i}}M_{2}}{m_{W}^{2}M_{H_{C}}M_{SUSY}^{2}} V_{ui}^{*}V_{td}V_{ts}e^{i\phi_{3}} \left(1 + e^{i(\phi_{2} - \phi_{3})}\frac{m_{c}V_{cd}V_{cs}}{m_{t}V_{td}V_{ts}}\right)$$

$$C_{RL_{1}} \simeq -\frac{\alpha_{2}^{2}}{\sin^{2}2\beta} \frac{m_{t}^{2}m_{s}m_{\tau}\mu}{m_{W}^{4}M_{H_{C}}M_{SUSY}^{2}} V_{tb}^{*}V_{us}V_{td}e^{i\phi_{1}}$$

$$C_{RL_{2}} \simeq -\frac{\alpha_{2}^{2}}{\sin^{2}2\beta} \frac{m_{t}^{2}m_{d}m_{\tau}\mu}{m_{W}^{4}M_{H_{C}}M_{SUSY}^{2}} V_{tb}^{*}V_{ud}V_{ts}e^{i\phi_{1}}$$

Hadronic matrix elements:

$$\langle K^+ | (us)_L d_L | p \rangle = 0.041(2)(5) \,\text{GeV}^2 \,, \langle K^+ | (ud)_L s_L | p \rangle = 0.139(4)(15) \,\text{GeV}^2 \,, \langle K^+ | (us)_R d_L | p \rangle = -0.049(2)(5) \,\text{GeV}^2 \,, \langle K^+ | (ud)_R s_L | p \rangle = -0.134(4)(14) \,\text{GeV}^2 \,.$$

• Longer lifetime needs small coefficients ... means

 \checkmark Large M_{HC} $\ \ldots$ we cannot choose small λ

- ✓ Large M_{SUSY} ... determined by stop masses, not so small (O(10) TeV)
- ✓ Small M_2 ... determined by Λ_L , smaller tends to longer lifetime
- ✓ Small μ ... numerically determined, difficult to control

• We have eight free parameters of the model:

 $\tan \beta$, Λ_D , Λ_L , M_{mess} , λ , λ' , $\phi_{2,3}$

Parameter setting for analysis

 $\tan\beta$: ratio of two VEVs, choose $\tan\beta=5$ from previous work

 $\Lambda_{D,L}$: inputs of analysis

 $M_{\rm mess}$: messenger scale, choose $M_{\rm mess} = 1500 \text{ TeV}$

 λ, λ' : determine M_{H_C}, M_{Σ} , choose $\lambda = 0.6$ and $\lambda' = 10^{-3}$ in analysis

 $\phi_{2,3}$: in range of $0 \le \phi_{2,3} \le 2\pi$, and find longest $\tau(p \to K^+ \bar{\nu})$

• We have eight free parameters of the model:

 $\tan \beta$, Λ_D , Λ_L , M_{mess} , λ , λ' , $\phi_{2,3}$

Parameter setting for analysis

 $\tan\beta$: ratio of two VEVs, choose $\tan\beta=5$ from previous work

 $\Lambda_{D,L}$: inputs of analysis

 $M_{\rm mess}$: messenger scale, choose $M_{\rm mess} = 1500 \text{ TeV}$

 λ, λ' : determine M_{H_C}, M_{Σ} , choose $\lambda = 0.6$ and $\lambda' = 10^{-3}$ in analysis

 $\phi_{2,3}$: in range of $0 \le \phi_{2,3} \le 2\pi$, and find longest $\tau(p \to K^+ \bar{\nu})$

• Check list:

Proton lifetime, SM Higgs mass, EWSB, collider bound, ...

• We have eight free parameters of the model:

 $\tan \beta$, Λ_D , Λ_L , M_{mess} , λ , λ' , $\phi_{2,3}$

Parameter setting for analysis

 $\tan\beta$: ratio of two VEVs, choose $\tan\beta=5$ from previous work

 $\Lambda_{D,L}$: inputs of analysis

 $M_{\rm mess}$: messenger scale, choose $M_{\rm mess} = 1500 \text{ TeV}$

 λ, λ' : determine M_{H_C}, M_{Σ} , choose $\lambda = 0.6$ and $\lambda' = 10^{-3}$ in analysis

 $\phi_{2,3}$: in range of $0 \le \phi_{2,3} \le 2\pi$, and find longest $\tau(p \to K^+ \bar{\nu})$

• Check list:

Proton lifetime, SM Higgs mass, EWSB, collider bound, ...

Requires $\Lambda_D = O(10^3)$ TeV

Ibe, Matsumoto, Yanagida, Yokozaki [JHEP03(2013)078] Asano, Yokozaki [PRD93(2016)095002] Bhattacharyya, Yanagida, Yokozaki [PLB784(2018)118]

Note: Using FeynHiggs to calculate the Higgs mass

DM pheno., muon g-2, ... \rightarrow future work

• We have eight free parameters of the model:

 $\tan \beta = 5$, $M_{\rm mess} = 1500 \,{\rm TeV}$, $\lambda = 0.6$, $\lambda' = 10^{-3}$,

 $\phi_{2,3} \cdots$ optimized for longer $\tau(p \to K^+ \bar{\nu})$, $\Lambda_{D,L} \cdots$ inputs

• We have eight free parameters of the model:

 $\tan \beta = 5$, $M_{\text{mess}} = 1500 \,\text{TeV}$, $\lambda = 0.6$, $\lambda' = 10^{-3}$,

 $\phi_{2,3}\cdots$ optimized for longer $\tau(p\to K^+\bar{\nu})$, $\Lambda_{D,L}\cdots$ inputs

- Other setting for calculation
 - Gaugino and scalar masses are given at messenger scale M_{mess}
 - A-terms and B parameter are set to be zero at messenger scale
 - Non-zero A-terms are generated via RGE from messenger to SUSY scale
 - B parameter at low scale is determined by EWSB conditions
 - Iterate until µ is converged (bottom-up <−> top-down)

• We have eight free parameters of the model:

 $\tan \beta = 5$, $M_{\text{mess}} = 1500 \,\text{TeV}$, $\lambda = 0.6$, $\lambda' = 10^{-3}$,

 $\phi_{2,3}\cdots$ optimized for longer $\tau(p\to K^+\bar{\nu})$, $\Lambda_{D,L}\cdots$ inputs

- Other setting for calculation
 - Gaugino and scalar masses are given at messenger scale M_{mess}
 - A-terms and B parameter are set to be zero at messenger scale
 - Non-zero A-terms are generated via RGE from messenger to SUSY scale
 - B parameter at low scale is determined by EWSB conditions
 - Iterate until µ is converged (bottom-up <-> top-down)

Result

Several future prospects (dashed: 10yrs; dotted: 20yrs)

Comments

• We do not check,

Dark matter (gravitino LSP)

- minimal model of GMSB suffers from the gravitino problem
- anomalous magnetic moment of muon
 - since most of relevant particles are heavy (O(10) TeV), Δa_{μ} = O(10⁻¹²)

$\mu\text{-}B_\mu$ problem in GMSB

- it is better than gravity mediated model and non-SUSY GMSB, but still need to be tuned for $\boldsymbol{\mu}$
- Go beyond the minimal, what happens for proton decay? additional fields will change RGE light sleptons and/or light bino or wino will change lifetime

. . .

Summary

- We explore the proton lifetime in SU(5) SUSY GUT with gauge mediation, 5+5 messenger case
- $M_{mess} = O(1000)$ TeV leads to $M_{SUSY} = O(10)$ TeV

✓ This results in reproduction of the SM Higgs mass ~ 125 GeV!

- Focus: $p \rightarrow K^+\overline{v}$, bounded by SK (exclude small region)
 - \checkmark Most of parameter space can be tested by HK, DUNE, JUNO
- Further extension will be required for several issues
 - DM pheno., gravitino problem, muon g-2, μ -B_{μ} problem, ...

Back up

Future prospects of proton decay

Fig. 4.1 of Bhattiprolu, Martin, Wells [PRD107(2023)055016]

Breaking of explicit GUT relation

- Messenger sector: should be coming from GUT interaction $W_{\text{mess}} = (M_L + k_L Z) \Psi_L \Psi_{\bar{L}} + (M_D + k_D Z) \Psi_D \Psi_{\bar{D}}$ $\leftarrow M \Psi \bar{\Psi} + k Z \Psi \bar{\Psi}$
- Basically, there is no large hierarchy btw. Λ_L and Λ_D $\Lambda_D \sim 4500$ TeV, while smaller Λ_L is favored for longer proton lifetime
- Adjoint field helps to split Λ_L and Λ_D with term of $W \supset \lambda_{\Psi} \Psi \Sigma \overline{\Psi} \rightarrow \lambda_{\Psi} \Psi \langle \Sigma \rangle \overline{\Psi}$

• Appropriate choice of M, λ_{Ψ}, k reproduces desired (Λ_L, Λ_D)

Gravitino mass

• Rough estimate

$$m_{3/2} \simeq \frac{F_Z}{\sqrt{3}M_{\rm pl}} \simeq 16 \ \text{keV} \left(\frac{\Lambda_D}{4500 \ \text{TeV}}\right) \left(\frac{M_D}{1500 \ \text{TeV}}\right) \left(\frac{0.1}{k_D}\right)$$

• Cosmologically, severely constrained:

Hook, McGehee, Murayama [PRD98(2018)115036]

Muon g-2

- In minimal GMSB model, muon g-2 tends to be small
 - 125 GeV Higgs requires $M_{mess} \sim O(1000)$ TeV
 - \rightarrow naively, all sfermions and gauginos are heavy
 - \rightarrow muon g-2 is suppressed

μ -B $_{\mu}$ problem

Tree-level equations for EWSB:

$$\frac{m_Z^2}{2} = -|\mu|^2 - \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{\tan^2 \beta - 1}, \ \sin 2\beta = \frac{2B_\mu}{2|\mu|^2 + m_{H_u}^2 + m_{H_d}^2}$$

- In GMSB models, one obtains $B_{\mu} = \mu \Lambda (m_{soft} \sim g^2/(16\pi^2) \times \Lambda)$ for large Λ , it is straightforward $B_{\mu} >> \mu^2$ cannot satisfy both
- Lots of attempts to solve the problem

e.g.) Higgs superfields couple to messenger (Ou, Od include messenger field(s))

 $W\supset \lambda_u H_u \mathcal{O}_u + \lambda_d H_d \mathcal{O}_d \xrightarrow[]{\text{See, e.g.}}_{\text{De Sim}}$

Csaki, Falkowski, Nomura, Volansky [PRL102(2009)111801] De Simone, Franceschini, Giudice, Pappadopulo, Rattazzi [JHEP05(2011)112] Asano, Yokozaki [PRD93(2016)095002]

Dvali, Giudice, Pomarol [NPB478(1996)31]

• Contributes to μ , B_{μ} as well as m_{Hu}^2 , m_{Hd}^2 taking $\lambda_u \ll \lambda_d$ helps to satisfy both equations for EWSB!