pseudo-Nambu-Goldstone-boson

pNGB DM inspired by Grand Unification

Dark Matter

Koji Tsumura (Kyushu U.)

The 2nd Workshop on Grand Unified Theories: Phenomenology and Cosmology at HIAS, UCAS, Xihu District, Hangzhou, April 17-22, 2025

Pseudo-Nambu-Goldstone dark matter from gauged U(1)_{B-L} symmetry [Prototype]</sub> Y. Abe, T. Toma, K. Tsumura JHEP 05 (2020) 057 arXiv:2001.03954 [hep-ph]

Pseudo-Nambu-Goldstone Dark Matter Model Inspired by Grand Unification [GUT extension of U(1)_{B-L}] Y. Abe, T. Toma, K. Tsumura, N. Yamatsu Phys. Rev. D104, 035011 (2021) arXiv:2104.13523 [hep-ph]

Pseudo-Nambu-Goldstone Dark Matter from Non-Abelian Gauge Symmetry H. Otsuka, T. Shimomura, K. Tsumura, Y. Uchida, N. Yamatsu Phys. Rev. D106, 115033 (2022) arXiv:2210.08696 [hep-ph]

Pseudo-Nambu-Goldstone Dark Matter in SU(7) Grand Unification [GUT extension of SU(2)_D] C.-W. Chiang, K. Tsumura, Y. Uchida, N. Yamatsu Phys. Rev. D109, 055040 (2024) arXiv:2311.13753 [hep-ph]

Contents

- Introduction of pNGB DM
- pNGB DM from U(1)_{B-L}
- pNGB DM from SO(10) Grand Unification
- pNGB DM from Dark SU(2)
- pNGB DM from SU(7) Grand Unification
- Summary

Dark Matter

Evidences for DM

- Galaxy Rotation Curve
- Velocity Dispersion of Galaxies
- Galaxy Clusters and Gravitational Lensing
- Sky surveys and baryon acoustic escillations
- Cosmic Microwave Background (CMB)
- Type la supernovae distance measurements
- Lyman-Alpha Forest
- Structure Formation

https://en.wikipedia.org/wiki/Galaxy_rotation_curve

https://en.wikipedia.org/wiki/Dark_matter

Nature of DM

- Stable (longer lifetime than the age of our universe)
- Electrically neutral
- 27% of energy density of our universe
- Non-relativistic (cold)

Many Candidates for DM

- ✓ Primordial Black Hole
- ✓ WIMP [Weakly Interacting Massive Particle]
- ✓ SIMP
- ✓ Axion, Axion cluster
- ✓ Soliton (EW-skyrmion, Q-ball, B-ball, ...)
- ✓ Super Massive Relic (WIMPzilla, ...)

/ ...

WIMP Dark Matter

Cross sections bounds is getting severer, while Freeze out cross section must be kept !!

pNGB DM

- SSB & soft breaking of Global Symmetry
- Derivative Interaction

Natural suppression for DD while keeping annihilation

DM-DM-Higgs int. in NL rep.

Soft U(1)_S breaking

- Original Model : $V(H,S) = -m_H^2 |H|^2 m_S^2 |S|^2 (m_{DM}^2 S^2 + h.c.) + \lambda_H |H|^4 + \frac{\lambda_S}{2} |S|^4 + \lambda_{HS} |H|^2 |S|^2$
- Non-linear rep. $S = \frac{v_S + \sigma}{\sqrt{2}} e^{i\pi_{\rm DM}/v_S}$
- DM-DM-Higgs interaction in NL rep.

$$\mathcal{L} = +\frac{1}{2} \left(1 + \frac{\sigma}{v_S} \right)^2 \left(\frac{\partial_\mu \pi_{\rm DM}}{\partial_\mu \sigma_{\rm DM}} - \frac{m_{\rm DM}^2 \pi_{\rm DM}^2}{m_{\rm DM}^2} \right) + \mathcal{O}(\pi^4)$$

DM σ SM DM No interaction if DM satisfies EOM (On-shell condition) SM

Cons of Original model

C. Gross, O. Lebedev, T. Toma, Phys. Rev. Lett. 119 (2017) 19, 191801, Cancellation Mechanism for Dark-Matter–Nucleon Interaction

• pNGB Mass is introduced by hand!!

In general, there are more U(1) breaking terms

$$V(S) = -\mu_S^2(S^*S) + \lambda_S(S^*S)^2 + \{m_S^2S^2 + \kappa S^3 + \kappa'(S^*S)S + \lambda S^4 + \lambda'(S^*S)S^2 + \text{H.c.} \}$$

Mass Forbidden by Z₂ Hard breaking of U(1)

= Z_2 symmetric model with softly broken U(1) symmetry

• Domain Wall problem (Z₂ sym. should not be broken spontaneously)

pNGB DM from U(1)_{B-L}

A Model

Pseudo-Nambu-Goldstone dark matter from gauged U(1)_{B-L} symmetry
Y. Abe, T. Toma, K. Tsumura JHEP 05 (2020) 057 arXiv:2001.03954 [hep-ph]
Pseudo-Goldstone dark matter in a gauged B-L extended standard model
N. Okada, D. Raut, Q. Shafi PRD 103, 055024 (2021) arXiv:2001.05910 [hep-ph]

Gauged U(1)_{B-L}

(motivated by neutrino mass a la seesaw mechanism)

	Q_L		u_R^c	d_R^c	e_R^c	$ u_R^c $	Н	S_1	S_2
$SU(3)_c$	3	1	3	$\overline{3}$	1	1	1	1	1
$SU(2)_W$	2	2	1	1	1	1	2	1	1
$U(1)_Y$	+1/6	-1/2	-2/3	+1/3	+1	0	+1/2	0	0
$\bigcup U(1)_{B-L}$	+1/3	-1	-1/3	-1/3	+1	+1	0	+1	+2

• Key idea of the model building

$$V_{\text{sym}} = V_1(S_1^*S_1) + V_2(S_2^*S_2)$$

 $U(1)_1 \times U(1)_2 \rightarrow \text{None}$ one is absorbed by Z_{B-L} & the other is exact massless NGB $\Downarrow \kappa$

 $U(1)_{\rm B-L} \rightarrow {\rm None}$ with $\kappa \rightarrow$ one is absorbed by Z_{B-L} & the other is massive pNGB

$$V_{\text{soft-breaking}} = \kappa S_2^* S_1^2 + \text{H.c.} \rightarrow \frac{1}{2} m_{\text{DM}}^2 \pi_{\text{DM}}^2 \quad (m_{\text{DM}}^2 \propto \kappa)$$

Through κ , U(1)₁ and U(1)₂ are identified as a (global) subgroup of U(1)_{B-L}

pNGB DM from SO(10) GUT

Does pNGB DM imply GUT?

High Energy Scale is needed for DM Longevity

 $M_{Z_{\rm B-L}} > 10^{13} \,{\rm GeV}$ for $M_{\rm DM} < 1 \,{\rm TeV}$

pNGB DM in SO(10) GUT

Pseudo-Nambu-Goldstone Dark Matter Model Inspired by Grand Unification Y. Abe, T. Toma, K. Tsumura, N. Yamatsu Phys. Rev. D104, 035011 (2021) hep-ph/2104.13523

 $\Phi_{\overline{126}}$ Ψ_{16} Φ_{10} Φ_{16} SO(10) $\overline{126}$ 16 10 16 $\psi_{(\overline{f 4}, {f 1}, {f 2})}$ $\phi_{(\overline{f 10}, f 1, f 3)}$ $\psi_{(4,2,1)}$ $\phi_{(\overline{f 4}, {f 1}, {f 2})}$ $\phi_{(1,2,2)}$ $G_{\rm PS}$ $({f 4},{f 2},{f 1})$ $({f 4},{f 1},{f 2})$ $({f 4},{f 1},{f 2})$ (10, 1, 3) $({f 1},{f 2},{f 2})$ Q_L L u_R^c d_R^c e_R^c ν_R^c HSΦ $SU(3)_c$ $\overline{\mathbf{3}}$ 3 3 1 1 1 1 1 1 $\mathbf{2}$ $SU(2)_L$ 2 1 1 1 1 $\mathbf{2}$ 1 1 -1/2-2/3+1/2 $U(1)_Y$ +1/6+1/3+10 0 0 $\overline{U}(1)_{B-L}$ +1/3-1/3-1/3+2-1+1+10 +1

 $G_{\rm PS} = SU(4)_C \times SU(2)_L \times SU(2)_R \supset G_{\rm SM} \times U(1)_{\rm B-L}$

✓ Symmetry breaking

Predictions of SO(10) pNGB DM

Unification of Interaction Strength

In SO(10) pNGB DM model, Unification is Requirement !!

→ predictions : $M_I = 1.3 \times 10^{11} \text{ GeV}, M_U = 2.1 \times 10^{16} \text{ GeV}, g = 0.38 \text{ at } M_I$ DM longevity Proton stability DM abundance

Relic Abundance & Constraints

M_{h2}=130GeV

Other sym breaking patterns

• $G_{GUT} \rightarrow G_{I} \rightarrow G_{SM}$ $G_{PS} = SU(4)_C \times$

 $G_{\rm PS} = SU(4)_C \times SU(2)_L \times SU(2)_R \supset G_{\rm SM} \times U(1)_{\rm B-L}$

 $G_{\rm LR} = SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \supset G_{\rm SM} \times U(1)_{B-L}$

Group G_I	Scalars at $\mu = M_I$	b_j	$\frac{\log_{10}(M/1[\text{GeV}])}{M_I M_U}$	α_U^{-1}	
G _{PS} <210>	$\begin{array}{c}({\bf 1},{\bf 2},{\bf 2})_{{\bf 10}}\\(\overline{\bf 4},{\bf 1},{\bf 2})_{{\bf 16}}\\(\overline{\bf 10},{\bf 1},{\bf 3})_{\overline{\bf 126}}\end{array}$	$\left(\begin{array}{c}b_{4C}\\b_{2L}'\\b_{2R}\end{array}\right) = \left(\begin{array}{c}-\frac{22}{3}\\-3\\+\frac{13}{3}\end{array}\right)$	11.10 ± 0.08 16.31 ± 0.15	45.92 ± 0.50	
$G_{\mathrm{PS}} \times \underline{D}$ = Z ₂	$\begin{array}{r}(1,2,2)_{10}\\(4,2,1)_{16}\\(\overline{4},1,2)_{16}\\(\overline{10},1,3)_{\overline{126}}\\(10,3,1)_{\overline{126}}\end{array}$	$\begin{pmatrix} b_{4C} \\ b'_{2L} \\ b_{2R} \end{pmatrix} = \begin{pmatrix} -4 \\ +\frac{13}{3} \\ +\frac{13}{3} \end{pmatrix}$	13.71 ± 0.03 15.22 ± 0.04 Rapid proton decay	40.82 ± 0.13	×
G _{LR} <45>	$(1, 2, 2, 0)_{10}$ $(1, 1, 2, 1)_{16}$ $(1, 1, 3, 2)_{\overline{126}}$	$\begin{pmatrix} b'_{3C} \\ b'_{2L} \\ b_{2R} \\ b_{B-L} \end{pmatrix} = \begin{pmatrix} -7 \\ -3 \\ -\frac{13}{6} \\ +\frac{23}{4} \end{pmatrix}$	$\frac{8.57 \pm 0.06}{\text{Rapid DM decay}} 16.64 \pm 0.13$	46.13 ± 0.41	×
$G_{\rm LR} imes \underline{D}$	$(1, 2, 2, 0)_{10} \\ (1, 1, 2, 1)_{16} \\ (1, 2, 1, 1)_{16} \\ (1, 1, 3, 2)_{\overline{126}} \\ (1, 3, 1, -2)_{\overline{126}}$	$\begin{pmatrix} b'_{3C} \\ b'_{2L} \\ b_{2R} \\ b_{B-L} \end{pmatrix} = \begin{pmatrix} -7 \\ -\frac{13}{6} \\ -\frac{13}{6} \\ +\frac{15}{2} \end{pmatrix}$	10.11 ± 0.04 15.57 ± 0.09 Rapid DM decay	43.38 ± 0.30	×

If DM is stable, M_I can be lower.

pNGB DM from dark SU(2)

SU(2)_D Model

• Can UV-complete pNGB DM be stable?

• Idea : Replace $U(1)_{B-1}$ by $SU(2)_{D}$

→ Exact (Dark) Custodial symmetry

 Straightforward extension of U(1)_{B-I} model S₁

	Q_L		u_R^c	d_R^c	e_R^c	ν_R^c	H	Σ_2	Σ_3
$SU(3)_c$	3	1	$\overline{3}$	$\overline{3}$	1	1	1	1	1
$SU(2)_W$	2	2	1	1	1	1	2	1	1
$U(1)_Y$	+1/6	-1/2	-2/3	+1/3	+1	0	+1/2	0	0
$SU(2)_D$	1	1	1	1	1	1	1	2	3

SU(2)_D gauge symmetry

 $\begin{cases} H \to H & \text{Irivial rep. (Similar)} \\ \Sigma_2 \to U_D \Sigma_2 & \text{Fundamental rep.} \\ \Sigma_3 \to U_D \Sigma_3 U_D^{\dagger} & \text{Adjoint rep.} \end{cases}$

Trivial rep. (SM Higgs does not transform)

2025/4/17-22 GUTPC

K. Tsumura (Kvushu)

S₂

Dark custodial symmetry

• Without " κ term" (no coupling btw $\Sigma_2 \& \Sigma_3$) $V(\Sigma_2, \Sigma_3) = -\frac{\mu_2^2}{2} \operatorname{Tr}\left(\Sigma_2^{\dagger} \Sigma_2\right) - \frac{1}{2} \mu_3^2 \operatorname{Tr}\left(\Sigma_3^2\right)$ $+\frac{\lambda_2}{4}\left(\mathrm{Tr}\left(\Sigma_2^{\dagger}\Sigma_2\right)\right)^2 + \frac{1}{4}\lambda_3\mathrm{Tr}\left(\Sigma_3^2\right)^2 + \frac{1}{2}\lambda_{23}\mathrm{Tr}\left(\Sigma_2^{\dagger}\Sigma_2\right)\mathrm{Tr}\left(\Sigma_3^2\right)$ SU(2)_{2L} x SU(2)_{2R} x SU(2)₃ global symmetries $\begin{cases} \Sigma_2 \rightarrow U_{L2} \Sigma_2 U_{R2}^{\dagger} \\ \Sigma_3 \rightarrow U_3 \Sigma_3 U_3^{\dagger} \end{cases}$ Enhanced global symmetry \rightarrow unbroken global SU(2)_V after SSB with " κ term" $\kappa S_2^* S_1^2 \Rightarrow \kappa \operatorname{Tr}(\sigma_3 \Sigma_2^\dagger \Sigma_3 \Sigma_2)$ gauged $SU(2)_L \times U(1)_R \rightarrow unbroken global U(1)_V$ [DM is stable]

pNGB DM from SU(7) GUT

Symmetry breaking patterns

• Embedding $G_{SM} \times SU(2)_{D}$ into GUT

$$\begin{split} SU(7) &\to \begin{cases} G_{521} \coloneqq SU(5)_{\rm GG} \times SU(2)_D \times U(1)_X \\ G_{341} \coloneqq SU(3)_C \times SU(4)_{LD} \times U(1)_a \\ G'_{521} \coloneqq SU(5)_{CD} \times SU(2)_L \times U(1)_\alpha \\ \end{cases} \\ &\to \\ & \underset{\mathsf{M}_\mathsf{I}}{ \begin{array}{c} \underbrace{SU(3)_C \times SU(2)_L \times U(1)_Y \times SU(2)_D \times U(1)_X \\ \text{subgroups of } SU(5)_{\rm GG} \\ SU(3)_C \times \underbrace{SU(2)_L \times SU(2)_D \times U(1)_b \times U(1)_a \\ \text{subgroups of } SU(4)_{\rm LD} \\ \underbrace{SU(3)_C \times SU(2)_D \times U(1)_\chi \times SU(2)_L \times U(1)_\alpha \\ \text{subgroups of } SU(5)_{\rm CD} \\ \end{array}} \\ &= SU(3)_C \times SU(2)_L \times U(1)_Y \times \underbrace{SU(2)_D \times U(1)_\alpha \\ \text{subgroups of } SU(5)_{\rm CD} \\ \end{array}} \end{split}}$$

Extra matter

DM (in)stablility

U(1)_v violation caused by <u>Yukawa int</u>

Similarly to the SM

• $U(1)_V$ can be restored by appropriate Z_2 parity

Eliminate unwanted Yukawa

								\frown	odd	
	$\Psi_{21}^{(m)}$			$\Psi_{\overline{7}}^{(n)}$		$\Psi^{(m)}_{f 48}$				
SU(7)	21		7		48					
	$\psi_{({\bf 5},{\bf 2})(-3)}$	$\psi_{({f 10},{f 1})(4)}$	$\psi_{(1,1)(-10)}$	$\psi_{(\overline{5},1)(-2)}$	$\psi_{(1,2)(5)}$	$\psi_{(24,1)(0)}$	$\psi_{(1,3)(0)}$	$\psi_{(1,1)}$	(0) $\psi(5,2)(7)$	$\psi_{(\overline{5},2)(-7)}$
G'_{521}	(5,2)(-3)	(10, 1)(4)	(1,1)(-10)	$({\bf \overline{5}},{\bf 1})(-2)$	(1, 2)(5)	(24, 1)(0)	(1, 3)(0)	(1, 1)	(0) (5, 2)(7)	$(\overline{5}, 2)(-7)$

Fermion

Summary

Summary

- pNGB DM naturally avoid DM direct detection constraint
- pNGB DM is derived from UV complete theories
 - U(1)_{B-L} [long lived pNGB DM]
 - → large scale (GUT scale?)
 - SU(2)_D [stable pNGB DM]
- These models are embedded in GUT theories

29

Backup

SSB and Explicit breaking

Yukawa interactions

$$\begin{split} y_{u} \overline{Q}_{L} \widetilde{H} u_{R} + y_{d} \overline{Q}_{L} H d_{R} \\ &= \frac{y_{u} + y_{d}}{2} \overline{Q}_{L} \begin{pmatrix} \widetilde{H} & H \end{pmatrix} \begin{pmatrix} u_{R} & d_{R} \end{pmatrix} + \frac{y_{u} - y_{d}}{2} \overline{Q}_{L} \begin{pmatrix} \widetilde{H} & H \end{pmatrix} \begin{pmatrix} u_{R} & -d_{R} \end{pmatrix} \\ &= \frac{y_{u} + y_{d}}{2} \overline{Q}_{L} \Sigma Q_{R} + \frac{y_{u} - y_{d}}{2} \overline{Q}_{L} \Sigma \tau^{3} Q_{R} \end{split}$$

 $SU(2)_L \times SU(2)_R$ invariant Explicit $SU(2)_R$ violation

 $\overline{Q}_L \Sigma Q_R$ $\rightarrow (\overline{Q}_L U_L^{\dagger}) (U_L \Sigma U_R^{\dagger}) (U_R Q_R)$ $SSB : \langle \Sigma \rangle = \frac{v}{\sqrt{2}} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$ $\Rightarrow SU(2)_V$

 $\bar{Q}_L \Sigma Q_R \qquad \qquad \overline{Q}_L \Sigma \tau^3 Q_R$ $\rightarrow (\overline{Q}_L U_L^{\dagger}) (U_L \Sigma U_R^{\dagger}) (U_R Q_R) \qquad \rightarrow (\overline{Q}_L U_L^{\dagger}) (U_L \Sigma U_R^{\dagger}) \tau^3 (U_R Q_R)$

U(1)_{R3} [of SU(2)_R] is kept unbroken since VEV and τ^3 commute

→ $U(1)_{V3}$ (Exact symmetry) This is the fate of SU(2)_V breaking in SM