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Traditional Grand Unification

✦  Gauge couplings of the Standard Model (SM) are expected 
    to meet at a some large scale (hence “unification”) 

✦  Supersymmetry is often useful to achieve that in 
    particular “realistic” models (such as MSSM, Split-SUSY etc) 

✦  Can we replace the SM symmetry by a simpler one in the UV?  
    e.g. SU(5), SO(10) etc  

✦  Typical drawbacks are
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Grand Unification

Standard picture:

SM gauge couplings meet at some high scale
l

Physics described by a unified gauge group G � GSM
e.g. SU (5), SO(10), E6…
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What composes the strongly coupled sector?

Dark Yang-Mills theories
Pure gluons ) confinement-deconfinement phase transition
Gluons + Fermions

Fermions in fundamental representation ) chiral phase transition
Fermions in adjoint rep. ) confinement & chiral phase transition
Fermions in 2-index symmetric rep. ) confinement & chiral phase transition

Gluons + Fermions + Scalars (not explored yet)
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proton decay hard to avoid 
  
large matter reps required  
 to break the symmetry  
 leading to a Landau pole!
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Asymptotic Grand Unification concept

✦  Instead of meeting at a fixed scale, the running gauge couplings 
   tend to the same fixed point in the UV 

✦  A simple way to realise aGUTs consists on building theories in 5D 

✦  The common lore is that 5D theories have a natural cut-off  
   due to the linear running of the gauge couplings, which renders 
   them intrinsically non-renormalisable 

✦  However, under certain conditions, the gauge running in the UV  
   is tamed by the presence of a fixed point, which renders the 
   theory renormalisable and, therefore, valid up to arbitrary scales 

✦  it suffices that the one-loop beta function is negative, i.e. it  
    would lead to an asymptotically-free theory in 4 dimensions (4D)
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Asymptotic Grand Unification concept
✦  Gauge couplings are never equal but approach  
   the same UV fixed point 

✦  Well known examples are
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Example: 5D case

Each 5D field ⌘ infinite tower of 4D fields

“ground state” (n=0) are the SM states

RGEs for the couplings get modified:

logarithmic ! power-law dependence

couplings will flow asymptotically
towards a UV fixed point
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asymptotically free gauge theories 
   via large Nf resummation with 
   intermediate Pati-Salam 

 
   via perturbative fixed points  
   and SUSY 

Extra compact dimensions (realised e.g. in 5D theories)
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5D ’t Hooft coupling: 

One-loop RGE:

5.4 The model

This model was first discussed in [? ] in a string theory set-up, but with some di↵erences. The
bulk gauge symmetry is broken by two orbifold projections on a S1/Z2 ⇥ Z0

2 background. The two
breaking patterns read:

P E6 ! SO(10)⇥ U(1) (58)

P 0 E6 ! SU(6)⇥ SU(2)R (59)

The unbroken gauge group, corresponding to the gauge zeromodes, is therefore Pati-Salam SU(4)⇥
SU(2)L⇥SU(2)R⇥U(1) , if we choose the standard SO(10) embedding of the SM gauge symmetry.
Besides the gauge adjoint, 78, the bulk fields consist on two matter fields transforming as the
fundamental of E6, which we denote as R = 27 and R = 27X, respectively.

The boundary conditions are chosen in such a way that, besides the PS gauge bosons, the zero
modes contains the following SM states:

�27 � (4, 2, 1) , �c

27 � (1, 2, 2) , �78 � (4̄, 1, 2) . (60)

These states constitute the SM fields in the N=1 SUSY PS model, emerging at low energies. Note
that the right-handed SM fermions are part of the gauge multiplet. The beauty of this model is
that only one coupling exists in the bulk: the E6 gauge coupling g. As long as the model has a UV
fixed point, all the couplings will flow to this fixed point, hence achieving a completely safe GUT
theory. The beta function for the 5D ’t Hoofs coupling ↵̃ = ↵ µR reads at one loop

d↵̃

d lnµ
= ↵̃�

b5
2⇡

↵̃2 . (61)

Following [? ], we have

b5 =
⇡

2

 
C(G)�

X

i

Ti(Ri)

!
= 3⇡ , (62)

where C(G) = 12 and T (27) = 3 for E6. However, this result diverges from the ’naive’ computation
based on KK modes, for which:
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The two results are numerically very close: the di↵erence can be understood as a di↵erence between
the full 5D loop factor included in Eq. (62) and the KK approximation employed in Eq. (63).
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2
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I. INTRODUCTION

In spite of the precision tests of the Standard Model (SM) of particle physics and the recent
discovery of its last accounted particle, the Higgs boson [1, 2], the theory falls short of the status
of ultimate fundamental theory in three directions. Firstly, some experimental data cannot be
explained, in primis the presence of dark matter [3] (and dark energy) in today’s Universe. Secondly,
the SM lacks an explanation of the dynamical origin of the Higgs mechanism, gravitational
interactions and a dynamical connection between the electroweak and gravitational scales. Thirdly,
while based on simple principles, the final construction lacks elegance in both the gauge sector
and the three-family structure of the fermions. In fact, the three gauge factors of the SM have
very different dynamical properties: while SU(3)c is asymptotically free [4, 5] and dynamically
confines at energies below the GeV, the SU(2)L is broken by the vacuum [6, 7], while the U(1)Y runs
into a Landau pole in the Ultra-Violet (UV). A simple and elegant solution would be to assume
that the SM gauge structure is replaced by a single simple gauge group at higher energy, which
encompasses the whole SM gauge structure and leads to Grand Unification of gauge forces [8]. The
traditional approach to building Grand Unified Theories (GUTs) originates from the observation
that the gauge couplings tend to similar values at high energies under the renormalisation group
evolution. Hence, quantitative unification is expected at a given scale ΛGUT, above which an
extended gauge symmetry is recovered, for instance SU(5) [8] or SO(10) [9]. At the scale ΛGUT,
the grand unified gauge symmetry needs to be broken via an analogue of the Higgs mechanism
in the SM, often requiring many scalar fields in large representations [10].

In this work, we follow an alternative approach inspired by the recent developments in asymp-
totic safety in quantum field theory [11, 12]: instead of meeting at a fixed scale, the running gauge
couplings tend to the same fixed point in the UV [13]. 1 This new approach leads to asymptotic
Grand Unification Theories (aGUTs) [17]. A simple way to realise aGUTs consists on building the-
ories in five dimensions (5D). The common lore is that 5D theories have a natural cut-off due to the
linear running of the gauge couplings [18], which renders them intrinsically non-renormalisable.
However, under certain conditions, the gauge running in the UV is tamed by the presence of a
fixed point, which renders the theory renormalisable [19, 20] and, therefore, valid up to arbitrary
scales. For this, it suffices that the one-loop beta function is negative, i.e. it would lead to an
asymptotically-free theory in 4 dimensions (4D). Contrary to the traditional unification, in aGUTs
an exact unified gauge invariance is absent at all scales, but it is approached with increasing pre-
cision at high energies, asymptotically. What the model provides is a scale, ΛaGUT → mKK, where
the running of the gauge couplings is modified and which coincides with the mass of the first
Kaluza-Klein (KK) resonance [17]. As the fixed point dynamics occurs at scales much higher that
the KK scale, its presence does not depend on the detailed spectrum of the low lying states, hence
it occurs both in flat and warped 5D models [21].

While a UV fixed point is relatively easy to obtain in the gauge sector, Yukawa couplings
are more problematic as their running can easily incur into a Landau pole right above the KK
scale. The first aGUT models have been constructed based on a bulk SU(5) [17, 22] and SO(10)
[23] symmetry. For the former, the dynamics of the Yukawa couplings poses strong limitations
in the model building, pointing towards non-minimal configurations, while the SO(10) case has
been proven to be non-viable. In this perspective, gauge-Higgs unification mechanism [24, 25]

1 Models with both supersymmetry [13, 14] and without [15, 16] have been constructed.

2

✦  Easy for gauge couplings, Yukawa’s are tricky -  
                               bonus: gauge-Higgs unification!
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Asymptotic Grand Unified Theories (aGUTs)

✦  Grand Unified Theories formulated in 5 or more  
    space-time dimensions
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Asymptotic Grand UnifiedTheories (aGUTs)

• Grand Unified Theories (GUTs) formulated in 5 or more space-time
dimensions. 1

defined on R4
⇥ K , where R4 is the usual 4-dimensional Minkowski

space and K defines � compact extra dimensions.

• Gauge symmetry is broken using boundary conditions which violate
the GUT symmetry

) different from the usual Higgs mechanism

• Motivation: solution to hierarchy problem, lower GUT scale, smaller
representations…

1A. Hebecker, J. March-Russell, Nuclear Phys. B 625 (2002)
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✦  Motivation: solution to hierarchy problem, lower GUT scale, 
    smaller representations...

A. Hebecker, J. March-Russell, Nuclear Phys. B 625 (2002)
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5D aGUT formulation: orbifolding
✦  One extra dimension (δ = 1) compactified on
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Example: 5D case

• One extra dimension (� = 1) compactified on K = S1/Z2 ⇥ Z0
2:
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✦  The inverse radius      sets the scale of compactification
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h

• The inverse radius R�1 sets the scale of compactification.
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✦  Each intrinsic     transformation is specified by a parity matrix 
    acting on the fields
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Example: 5D case

• Each intrinsic Z2 transformation is specified by a parity matrix P acting
on the fields

�(xµ,�y) = P�(xµ, y) = ±�(xµ, y).

• Each Pi will break G ! Hi on one boundary, such that

G4D ⌘ Hi \Hj

• Viable model must contain the Standard Model

G4D � GSM
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• The 4D fields �(n)
± ⌘ KK modes with mass of n/R.

• The Standard Model fields are the massless zero modes of �+.
• For E ⌧ 1/R, the heavy Kaluza-Klein towers are integrated out.

4D effective field theory
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� (xµ, y) =
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�(n)
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R
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5D aGUT formulation: 4D EFT
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Asymptotic Grand UnifiedTheories (aGUTs)

• Grand Unified Theories (GUTs) formulated in 5 or more space-time
dimensions. 1

defined on R4
⇥ K , where R4 is the usual 4-dimensional Minkowski

space and K defines � compact extra dimensions.

• Gauge symmetry is broken using boundary conditions which violate
the GUT symmetry

) different from the usual Higgs mechanism

• Motivation: solution to hierarchy problem, lower GUT scale, smaller
representations…

1A. Hebecker, J. March-Russell, Nuclear Phys. B 625 (2002)
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G. Cacciapaglia, arXiv:2309.10098

✦  Find minimal matter content that preserves the UV fixed point!
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Minimal aGUTs: the fate of Yukawa couplings

✦  SM fermions cannot be embedded in 
    complete multiplets of SU(5) 

✦  Yukawas do not unify 

✦  Baryon/lepton numbers can be defined 
    (no proton decay) 

✦  For large KK scale, 
    all bulk Yukawas run to zero 

✦  For smaller KK scale, bulk Yukawas run  
    to Landau poles (strong limitation!) 

✦  Localising all Yukawas except the top,  
    may allow for UV fixed point

Cacciapaglia et al, PRD 104 (2021) 7
Khojali et al, 2210.03596

R�1 = 3.05 � 105 TeV R�1 = 1010 TeV
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Figure 2. Running of the bulk Yukawas as compared to the gauge couplings. In the top row,
we run up from the EW scale for two sample values of compactification scales above the critical
value. In the bottom row, we run the top Yukawa down from the UV fixed point (imposed at the
5D Planck scale) for two sample values of the compactification scales below the critical value. The
bands indicate the systematic uncertainty from the gauge couplings, while the SM value of the top
Yukawa at the EW scale is indicated by the blue tick at t = 0. The largest value of t in the plots
corresponds to the 5D Planck scale.

The fact that the zeroes for the top and tau Yukawas are always negative (for ng & 3)

implies the absence of a completely safe fixed point.

Thus, the only physical possibility to keep all Yukawa couplings in the bulk is that

they may run to zero in the UV. Numerically, we found that for

1
R

- 3 � 105 TeV (4.10)

this is indeed possible, as shown in the top panels of Fig. 2. We recall that the bands

correspond to the systematic uncertainty deriving from the ignorance of the running of

each individual coupling of the gauge KK modes.

For smaller values of the compactification scale, it is not possible to determine the UV

fate of the bulk Yukawa couplings. This is well illustrated by studying the RGE of the

top Yukawa alone. Assuming that the other Yukawas remain small, the top RGE can be

2
If the right-handed neutrino N has a Majorana mass, the running of the neutrino Yukawa is also valid

above this scale.
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For SO(10) aGUT 
 see Gao-Xiang’s talk!
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The exceptional case: E6 aGUT

✦  SUSY allows to generate fermions as gauge fields (gauginos) 
   linking Yukawa couplings to the bulk gauge coupling!

✦  In E6, the adjoint 78 contains right states (in vector-like pairs)

✦  The zero modes generate a 4D chiral anomaly for the U(1)  
   gauge symmetry:

✦  Add exactly two generations         on the SO(10) boundary!

See Kobayashi, Raby, Zhang,  
Nucl. Phys. B704, 3 (2005)

G. Cacciapaglia, A. Deandrea, RP, Z.W. Wang 
PLB 852 (2024) 138629, 2302.11671

2

FIG. 1. Illustration of the E6 aGUT with 5D E6 hypermul-
tiplets in the bulk and SO(10) N = 1 supermultiplets on the
x5 = 0 boundary, as required by gauge anomaly cancellation.

The model, therefore, consists of a supersymmetric E6

gauge theory in five dimensions (5D) with matter fields in
the fundamental 27. The fifth dimension is compactified
on the orbifold S

1
/Z2 ⇥ Z0

2. From the four-dimensional
(4D) point of view, this theory hasN = 2 supersymmetry
[30], hence the gauge and matter superfields consist of

Gauge : ) W
↵
78 + �78 , (1)

Matter : ) �27 + �c
27 , (2)

where W↵ is the vector superfield, while � are the chiral
superfields, with �c

27 having conjugate quantum num-
bers as compared to �27. The model Lagrangian can be
constructed in terms of these components [30–32]. The
orbifold projection, encoded in the two parities Z2 and
Z0
2 centred on the two endpoints of the interval, break

both the N = 2 supersymmetry to N = 1 in 4D and the
gauge symmetry. For the latter, there are three possible
patterns [33]:

A: E6 ! SO(10)⇥U(1) ,

B: E6 ! SU(6)L ⇥ SU(2)R , (3)

C: E6 ! SU(6)R ⇥ SU(2)L ,

where the subscript “L” and “R” refer to the custodial
symmetry in the SM. Choosing any pair of the above
patterns for the two orbifold projections leads to a 4D
gauge theory based on Pati-Salam (PS) [34] times an
additional abelian U(1) symmetry: SU(4) ⇥ SU(2)L ⇥

SU(2)R⇥U(1) . However, only one choice is phenomeno-
logically viable. For the combination B-C, it is not pos-
sible to obtain chiral zero modes for the SM fermions,
while for A-C the zero mode spectrum does not allow for
the breaking of the PS symmetry. Hence, the only viable
model is based on A-B as illustrated in Fig. 1. The field
content is summarised in Fig. 2, where we highlight the
decomposition with respect to the various subgroups of
E6, and we include two matter fields in the fundamental
representation, 27 and 270, with di↵erent orbifold pari-
ties. As we will see below this is the minimal and unique
embedding of one SM generation in the bulk.

A similar set-up was first proposed as a string-inspired
standard GUT [29]. Our proposal di↵ers in two crucial
features: a) the unification is driven asymptotically by
the UV fixed point; b) all non-SM zero mode fields receive
mass without the need for additional bulk fields. The
second feature is crucial to maintain the UV fixed point
of the theory.
The UV fixed point emerges from the power law cor-

rections to the renormalisation group evolution of the
e↵ective 4D gauge coupling [12]. The beta function can
be expressed as an e↵ective 5D ’t Hooft coupling [21],
defined in terms of the 4D coupling ↵ = g

2
/4⇡ as

↵̃(µ) = ↵(µ)
µ

mKK
, (4)

where µ is the renormalisation scale and mKK is the mass
of the first Kaluza-Klein (KK) state. At one loop, the
beta function for ↵̃ reads

d↵̃

d lnµ
= ↵̃�

b5

2⇡
↵̃
2
, (5)

which is valid for µ � mKK and has a UV zero at ↵̃⇤
UV =

2⇡/b5 for b5 > 0. For our model, we find [35]

b5 =
⇡

2

 
C(G)�

X

i

Ti(Ri)

!
= 3⇡ , (6)

where C(G) = 12 and T (27) = 3 for E6 [36]. Hence, only
one more fundamental can be added in the bulk before
the UV fixed point disappears. As a consequence, the
model in Ref.[29] does not have such UV fixed point. In
our model, instead, the UV fixed point remains perturba-
tive, hence endorsing the model with enhanced calcula-
bility. We remark that this behaviour remains the same
for both flat and warped extra dimensions [37].
From the 4D point of view, the theory is invariant

under PS⇥U(1) , which we use to classify the relevant
states. At the zero mode level, besides the gauge super-
fields in W

↵
78, the chiral superfields contain the following

states:

�78 � (4̄,1,2)�3 + (4,1,2)3 , (7)

�27 � (4,2,1)1 , (8)

�c
27 � (1,2,2)2 , (9)

�270 � (4̄,1,2)1 , (10)

�c
270 � (6,1,1)2 + (1,1,1)�4 , (11)

shown as coloured symbols in Fig. 2. We can already
see that the 27 contains the left-handed SM fermions
(4,2,1)1 and two Higgs doublets in (1,2,2)2. The PS
Yukawa couplings stem from the gauge interactions of the
27 with the �78 component of the gauge supermultiplet
[38, 39], leading to:

g �c
27�78�27 �

g
p
2
(1,2,2)2 (4̄,1,2)�3 (4,2,1)1 , (12)

2

FIG. 1. Illustration of the E6 aGUT with 5D E6 hypermul-
tiplets in the bulk and SO(10) N = 1 supermultiplets on the
x5 = 0 boundary, as required by gauge anomaly cancellation.

The model, therefore, consists of a supersymmetric E6

gauge theory in five dimensions (5D) with matter fields in
the fundamental 27. The fifth dimension is compactified
on the orbifold S

1
/Z2 ⇥ Z0

2. From the four-dimensional
(4D) point of view, this theory hasN = 2 supersymmetry
[30], hence the gauge and matter superfields consist of

Gauge : ) W
↵
78 + �78 , (1)

Matter : ) �27 + �c
27 , (2)

where W↵ is the vector superfield, while � are the chiral
superfields, with �c

27 having conjugate quantum num-
bers as compared to �27. The model Lagrangian can be
constructed in terms of these components [30–32]. The
orbifold projection, encoded in the two parities Z2 and
Z0
2 centred on the two endpoints of the interval, break

both the N = 2 supersymmetry to N = 1 in 4D and the
gauge symmetry. For the latter, there are three possible
patterns [33]:

A: E6 ! SO(10)⇥U(1) ,

B: E6 ! SU(6)L ⇥ SU(2)R , (3)

C: E6 ! SU(6)R ⇥ SU(2)L ,

where the subscript “L” and “R” refer to the custodial
symmetry in the SM. Choosing any pair of the above
patterns for the two orbifold projections leads to a 4D
gauge theory based on Pati-Salam (PS) [34] times an
additional abelian U(1) symmetry: SU(4) ⇥ SU(2)L ⇥

SU(2)R⇥U(1) . However, only one choice is phenomeno-
logically viable. For the combination B-C, it is not pos-
sible to obtain chiral zero modes for the SM fermions,
while for A-C the zero mode spectrum does not allow for
the breaking of the PS symmetry. Hence, the only viable
model is based on A-B as illustrated in Fig. 1. The field
content is summarised in Fig. 2, where we highlight the
decomposition with respect to the various subgroups of
E6, and we include two matter fields in the fundamental
representation, 27 and 270, with di↵erent orbifold pari-
ties. As we will see below this is the minimal and unique
embedding of one SM generation in the bulk.

A similar set-up was first proposed as a string-inspired
standard GUT [29]. Our proposal di↵ers in two crucial
features: a) the unification is driven asymptotically by
the UV fixed point; b) all non-SM zero mode fields receive
mass without the need for additional bulk fields. The
second feature is crucial to maintain the UV fixed point
of the theory.
The UV fixed point emerges from the power law cor-

rections to the renormalisation group evolution of the
e↵ective 4D gauge coupling [12]. The beta function can
be expressed as an e↵ective 5D ’t Hooft coupling [21],
defined in terms of the 4D coupling ↵ = g

2
/4⇡ as

↵̃(µ) = ↵(µ)
µ

mKK
, (4)

where µ is the renormalisation scale and mKK is the mass
of the first Kaluza-Klein (KK) state. At one loop, the
beta function for ↵̃ reads

d↵̃

d lnµ
= ↵̃�

b5

2⇡
↵̃
2
, (5)

which is valid for µ � mKK and has a UV zero at ↵̃⇤
UV =

2⇡/b5 for b5 > 0. For our model, we find [35]

b5 =
⇡

2

 
C(G)�

X

i

Ti(Ri)

!
= 3⇡ , (6)

where C(G) = 12 and T (27) = 3 for E6 [36]. Hence, only
one more fundamental can be added in the bulk before
the UV fixed point disappears. As a consequence, the
model in Ref.[29] does not have such UV fixed point. In
our model, instead, the UV fixed point remains perturba-
tive, hence endorsing the model with enhanced calcula-
bility. We remark that this behaviour remains the same
for both flat and warped extra dimensions [37].
From the 4D point of view, the theory is invariant

under PS⇥U(1) , which we use to classify the relevant
states. At the zero mode level, besides the gauge super-
fields in W

↵
78, the chiral superfields contain the following

states:

�78 � (4̄,1,2)�3 + (4,1,2)3 , (7)

�27 � (4,2,1)1 , (8)

�c
27 � (1,2,2)2 , (9)

�270 � (4̄,1,2)1 , (10)

�c
270 � (6,1,1)2 + (1,1,1)�4 , (11)

shown as coloured symbols in Fig. 2. We can already
see that the 27 contains the left-handed SM fermions
(4,2,1)1 and two Higgs doublets in (1,2,2)2. The PS
Yukawa couplings stem from the gauge interactions of the
27 with the �78 component of the gauge supermultiplet
[38, 39], leading to:

g �c
27�78�27 �

g
p
2
(1,2,2)2 (4̄,1,2)�3 (4,2,1)1 , (12)

orbifold

2

FIG. 1. Illustration of the E6 aGUT with 5D E6 hypermul-
tiplets in the bulk and SO(10) N = 1 supermultiplets on the
x5 = 0 boundary, as required by gauge anomaly cancellation.

The model, therefore, consists of a supersymmetric E6

gauge theory in five dimensions (5D) with matter fields in
the fundamental 27. The fifth dimension is compactified
on the orbifold S

1
/Z2 ⇥ Z0

2. From the four-dimensional
(4D) point of view, this theory hasN = 2 supersymmetry
[30], hence the gauge and matter superfields consist of

Gauge : ) W
↵
78 + �78 , (1)

Matter : ) �27 + �c
27 , (2)

where W↵ is the vector superfield, while � are the chiral
superfields, with �c

27 having conjugate quantum num-
bers as compared to �27. The model Lagrangian can be
constructed in terms of these components [30–32]. The
orbifold projection, encoded in the two parities Z2 and
Z0
2 centred on the two endpoints of the interval, break

both the N = 2 supersymmetry to N = 1 in 4D and the
gauge symmetry. For the latter, there are three possible
patterns [33]:

A: E6 ! SO(10)⇥U(1) ,

B: E6 ! SU(6)L ⇥ SU(2)R , (3)

C: E6 ! SU(6)R ⇥ SU(2)L ,

where the subscript “L” and “R” refer to the custodial
symmetry in the SM. Choosing any pair of the above
patterns for the two orbifold projections leads to a 4D
gauge theory based on Pati-Salam (PS) [34] times an
additional abelian U(1) symmetry: SU(4) ⇥ SU(2)L ⇥

SU(2)R⇥U(1) . However, only one choice is phenomeno-
logically viable. For the combination B-C, it is not pos-
sible to obtain chiral zero modes for the SM fermions,
while for A-C the zero mode spectrum does not allow for
the breaking of the PS symmetry. Hence, the only viable
model is based on A-B as illustrated in Fig. 1. The field
content is summarised in Fig. 2, where we highlight the
decomposition with respect to the various subgroups of
E6, and we include two matter fields in the fundamental
representation, 27 and 270, with di↵erent orbifold pari-
ties. As we will see below this is the minimal and unique
embedding of one SM generation in the bulk.

A similar set-up was first proposed as a string-inspired
standard GUT [29]. Our proposal di↵ers in two crucial
features: a) the unification is driven asymptotically by
the UV fixed point; b) all non-SM zero mode fields receive
mass without the need for additional bulk fields. The
second feature is crucial to maintain the UV fixed point
of the theory.
The UV fixed point emerges from the power law cor-

rections to the renormalisation group evolution of the
e↵ective 4D gauge coupling [12]. The beta function can
be expressed as an e↵ective 5D ’t Hooft coupling [21],
defined in terms of the 4D coupling ↵ = g

2
/4⇡ as

↵̃(µ) = ↵(µ)
µ

mKK
, (4)

where µ is the renormalisation scale and mKK is the mass
of the first Kaluza-Klein (KK) state. At one loop, the
beta function for ↵̃ reads

d↵̃

d lnµ
= ↵̃�

b5

2⇡
↵̃
2
, (5)

which is valid for µ � mKK and has a UV zero at ↵̃⇤
UV =

2⇡/b5 for b5 > 0. For our model, we find [35]

b5 =
⇡

2

 
C(G)�

X

i

Ti(Ri)

!
= 3⇡ , (6)

where C(G) = 12 and T (27) = 3 for E6 [36]. Hence, only
one more fundamental can be added in the bulk before
the UV fixed point disappears. As a consequence, the
model in Ref.[29] does not have such UV fixed point. In
our model, instead, the UV fixed point remains perturba-
tive, hence endorsing the model with enhanced calcula-
bility. We remark that this behaviour remains the same
for both flat and warped extra dimensions [37].
From the 4D point of view, the theory is invariant

under PS⇥U(1) , which we use to classify the relevant
states. At the zero mode level, besides the gauge super-
fields in W

↵
78, the chiral superfields contain the following

states:

�78 � (4̄,1,2)�3 + (4,1,2)3 , (7)

�27 � (4,2,1)1 , (8)

�c
27 � (1,2,2)2 , (9)

�270 � (4̄,1,2)1 , (10)

�c
270 � (6,1,1)2 + (1,1,1)�4 , (11)

shown as coloured symbols in Fig. 2. We can already
see that the 27 contains the left-handed SM fermions
(4,2,1)1 and two Higgs doublets in (1,2,2)2. The PS
Yukawa couplings stem from the gauge interactions of the
27 with the �78 component of the gauge supermultiplet
[38, 39], leading to:

g �c
27�78�27 �

g
p
2
(1,2,2)2 (4̄,1,2)�3 (4,2,1)1 , (12)

SUSY in 5D

2

FIG. 1. Illustration of the E6 aGUT with 5D E6 hypermul-
tiplets in the bulk and SO(10) N = 1 supermultiplets on the
x5 = 0 boundary, as required by gauge anomaly cancellation.

The model, therefore, consists of a supersymmetric E6

gauge theory in five dimensions (5D) with matter fields in
the fundamental 27. The fifth dimension is compactified
on the orbifold S

1
/Z2 ⇥ Z0

2. From the four-dimensional
(4D) point of view, this theory hasN = 2 supersymmetry
[30], hence the gauge and matter superfields consist of

Gauge : ) W
↵
78 + �78 , (1)

Matter : ) �27 + �c
27 , (2)

where W↵ is the vector superfield, while � are the chiral
superfields, with �c

27 having conjugate quantum num-
bers as compared to �27. The model Lagrangian can be
constructed in terms of these components [30–32]. The
orbifold projection, encoded in the two parities Z2 and
Z0
2 centred on the two endpoints of the interval, break

both the N = 2 supersymmetry to N = 1 in 4D and the
gauge symmetry. For the latter, there are three possible
patterns [33]:

A: E6 ! SO(10)⇥U(1) ,

B: E6 ! SU(6)L ⇥ SU(2)R , (3)

C: E6 ! SU(6)R ⇥ SU(2)L ,

where the subscript “L” and “R” refer to the custodial
symmetry in the SM. Choosing any pair of the above
patterns for the two orbifold projections leads to a 4D
gauge theory based on Pati-Salam (PS) [34] times an
additional abelian U(1) symmetry: SU(4) ⇥ SU(2)L ⇥

SU(2)R⇥U(1) . However, only one choice is phenomeno-
logically viable. For the combination B-C, it is not pos-
sible to obtain chiral zero modes for the SM fermions,
while for A-C the zero mode spectrum does not allow for
the breaking of the PS symmetry. Hence, the only viable
model is based on A-B as illustrated in Fig. 1. The field
content is summarised in Fig. 2, where we highlight the
decomposition with respect to the various subgroups of
E6, and we include two matter fields in the fundamental
representation, 27 and 270, with di↵erent orbifold pari-
ties. As we will see below this is the minimal and unique
embedding of one SM generation in the bulk.

A similar set-up was first proposed as a string-inspired
standard GUT [29]. Our proposal di↵ers in two crucial
features: a) the unification is driven asymptotically by
the UV fixed point; b) all non-SM zero mode fields receive
mass without the need for additional bulk fields. The
second feature is crucial to maintain the UV fixed point
of the theory.
The UV fixed point emerges from the power law cor-

rections to the renormalisation group evolution of the
e↵ective 4D gauge coupling [12]. The beta function can
be expressed as an e↵ective 5D ’t Hooft coupling [21],
defined in terms of the 4D coupling ↵ = g

2
/4⇡ as

↵̃(µ) = ↵(µ)
µ

mKK
, (4)

where µ is the renormalisation scale and mKK is the mass
of the first Kaluza-Klein (KK) state. At one loop, the
beta function for ↵̃ reads

d↵̃

d lnµ
= ↵̃�

b5

2⇡
↵̃
2
, (5)

which is valid for µ � mKK and has a UV zero at ↵̃⇤
UV =

2⇡/b5 for b5 > 0. For our model, we find [35]

b5 =
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where C(G) = 12 and T (27) = 3 for E6 [36]. Hence, only
one more fundamental can be added in the bulk before
the UV fixed point disappears. As a consequence, the
model in Ref.[29] does not have such UV fixed point. In
our model, instead, the UV fixed point remains perturba-
tive, hence endorsing the model with enhanced calcula-
bility. We remark that this behaviour remains the same
for both flat and warped extra dimensions [37].
From the 4D point of view, the theory is invariant

under PS⇥U(1) , which we use to classify the relevant
states. At the zero mode level, besides the gauge super-
fields in W

↵
78, the chiral superfields contain the following

states:

�78 � (4̄,1,2)�3 + (4,1,2)3 , (7)

�27 � (4,2,1)1 , (8)

�c
27 � (1,2,2)2 , (9)

�270 � (4̄,1,2)1 , (10)

�c
270 � (6,1,1)2 + (1,1,1)�4 , (11)

shown as coloured symbols in Fig. 2. We can already
see that the 27 contains the left-handed SM fermions
(4,2,1)1 and two Higgs doublets in (1,2,2)2. The PS
Yukawa couplings stem from the gauge interactions of the
27 with the �78 component of the gauge supermultiplet
[38, 39], leading to:

g �c
27�78�27 �

g
p
2
(1,2,2)2 (4̄,1,2)�3 (4,2,1)1 , (12)
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FIG. 1. Illustration of the E6 aGUT with 5D E6 hypermul-
tiplets in the bulk and SO(10) N = 1 supermultiplets on the
x5 = 0 boundary, as required by gauge anomaly cancellation.
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gauge theory based on Pati-Salam (PS) [34] times an
additional abelian U(1) symmetry: SU(4) ⇥ SU(2)L ⇥

SU(2)R⇥U(1) . However, only one choice is phenomeno-
logically viable. For the combination B-C, it is not pos-
sible to obtain chiral zero modes for the SM fermions,
while for A-C the zero mode spectrum does not allow for
the breaking of the PS symmetry. Hence, the only viable
model is based on A-B as illustrated in Fig. 1. The field
content is summarised in Fig. 2, where we highlight the
decomposition with respect to the various subgroups of
E6, and we include two matter fields in the fundamental
representation, 27 and 270, with di↵erent orbifold pari-
ties. As we will see below this is the minimal and unique
embedding of one SM generation in the bulk.

A similar set-up was first proposed as a string-inspired
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features: a) the unification is driven asymptotically by
the UV fixed point; b) all non-SM zero mode fields receive
mass without the need for additional bulk fields. The
second feature is crucial to maintain the UV fixed point
of the theory.
The UV fixed point emerges from the power law cor-

rections to the renormalisation group evolution of the
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defined in terms of the 4D coupling ↵ = g
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where C(G) = 12 and T (27) = 3 for E6 [36]. Hence, only
one more fundamental can be added in the bulk before
the UV fixed point disappears. As a consequence, the
model in Ref.[29] does not have such UV fixed point. In
our model, instead, the UV fixed point remains perturba-
tive, hence endorsing the model with enhanced calcula-
bility. We remark that this behaviour remains the same
for both flat and warped extra dimensions [37].
From the 4D point of view, the theory is invariant

under PS⇥U(1) , which we use to classify the relevant
states. At the zero mode level, besides the gauge super-
fields in W
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78, the chiral superfields contain the following
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�78 � (4̄,1,2)�3 + (4,1,2)3 , (7)
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27 � (1,2,2)2 , (9)

�270 � (4̄,1,2)1 , (10)
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shown as coloured symbols in Fig. 2. We can already
see that the 27 contains the left-handed SM fermions
(4,2,1)1 and two Higgs doublets in (1,2,2)2. The PS
Yukawa couplings stem from the gauge interactions of the
27 with the �78 component of the gauge supermultiplet
[38, 39], leading to:
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4D EFT containing the SM:

E6 fields PS fields (P, P 0) SM name B K QR QB�L Q 

V78/�78 (15,1,1)0 (+,+) (8, 1)0 Gµ 0 0 0 0 0
(1, 1)0 AB�L

µ
0 0 0 0 0

(3, 1)2/3 Xµ 1/3 0 0 4/3 0
(3̄, 1)�2/3 X†

µ
�1/3 0 0 �4/3 0

(1,3,1)0 (+,+) (1, 3)0 Wµ 0 0 0 0 0
(1,1,3)0 (+,+) (1, 1)1 WR+

µ
0 0 2 0 0

(1, 1)�1 WR�
µ

0 0 �2 0 0
(1, 1)0 AR

µ
0 0 0 0 0

(1,1,1)0 (+,+) (1, 1)0 A 
µ

0 0 0 0 0
(6,2,2)0 (+,�) (3̄, 2)5/6 1/6 1/2 1 2/3 0

(3̄, 2)�1/6 1/6 �1/2 �1 2/3 0
(3, 2)1/6 �1/6 1/2 1 �2/3 0
(3̄, 2)�5/6 �1/6 �1/2 �1 �2/3 0

(4,2,1)�3 (�,+) (3, 2)1/6 �1/6 1/2 0 1/3 �3
(1, 2)�1/2 �1/2 1/2 0 �1 �3

(4̄,2,1)3 (�,+) (3̄, 2)�1/6 1/6 �1/2 0 �1/3 3
(1, 2)1/2 1/2 �1/2 0 1 3

(4̄,1,2)�3 (�,�) (3̄, 1)1/3 bc
R

�1/3 1 1 �1/3 �3
(3̄, 1)�2/3 tc

R
�1/3 0 �1 �1/3 �3

(1, 1)1 ⌧ c
R

0 1 1 1 �3
(1, 1)0 ⌫c

R
0 0 �1 1 �3

(4,1,2)3 (�,�) (3, 1)�1/3 b0
L

1/3 �1 �1 1/3 3
(3, 1)2/3 t0

L
1/3 0 1 1/3 3

(1, 1)�1 ⌧ 0
L

0 �1 �1 �1 3
(1, 1)0 ⌫0

L
0 0 1 �1 3

Table 8: Field decomposition for the gauge multiplet R = 78.

while the zero modes from the adjoint always form conjugate pairs. The SU(4) anomalies cancel,
so the only remaining anomalies re related to U(1) . To understand the 4D gauge anomalies, it
is useful to realise that the first two fields form e↵ectively a (16)1 of SO(10) ⇥ U(1) , while the
remaining ones match the irreps (10)2 + (1)�4. We know that the contribution to the anomalies
of the two sets of irreps match, as 27 of E6 decomposed into (16)1 + (10)�2 + (1)4. In other words,

A16 = A10+1 . (80)

Hence, the overall 4D anomaly is

A4D = A16 +A10+1 = 2A10+1 = 2A16 . (81)

The U(1) anomalies could be cancelled by adding localised chiral superfields on the SO(10) bound-
aries. We see two minimal ways:

• Add two (16)�1 superfields. They contain the two light generations, with Yukawas generated
in the form: �i

16�1
�j

16�1
�c

27|102
. This scenario, however, has several issues:

1. The localised Yukawas break baryon number, hence forcing mKK > 1016 GeV.
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FIG. 1. Illustration of the E6 aGUT with 5D E6 hypermul-
tiplets in the bulk and SO(10) N = 1 supermultiplets on the
x5 = 0 boundary, as required by gauge anomaly cancellation.

The model, therefore, consists of a supersymmetric E6

gauge theory in five dimensions (5D) with matter fields in
the fundamental 27. The fifth dimension is compactified
on the orbifold S

1
/Z2 ⇥ Z0

2. From the four-dimensional
(4D) point of view, this theory hasN = 2 supersymmetry
[30], hence the gauge and matter superfields consist of

Gauge : ) W
↵
78 + �78 , (1)

Matter : ) �27 + �c
27 , (2)

where W↵ is the vector superfield, while � are the chiral
superfields, with �c

27 having conjugate quantum num-
bers as compared to �27. The model Lagrangian can be
constructed in terms of these components [30–32]. The
orbifold projection, encoded in the two parities Z2 and
Z0
2 centred on the two endpoints of the interval, break

both the N = 2 supersymmetry to N = 1 in 4D and the
gauge symmetry. For the latter, there are three possible
patterns [33]:

A: E6 ! SO(10)⇥U(1) ,

B: E6 ! SU(6)L ⇥ SU(2)R , (3)

C: E6 ! SU(6)R ⇥ SU(2)L ,

where the subscript “L” and “R” refer to the custodial
symmetry in the SM. Choosing any pair of the above
patterns for the two orbifold projections leads to a 4D
gauge theory based on Pati-Salam (PS) [34] times an
additional abelian U(1) symmetry: SU(4) ⇥ SU(2)L ⇥

SU(2)R⇥U(1) . However, only one choice is phenomeno-
logically viable. For the combination B-C, it is not pos-
sible to obtain chiral zero modes for the SM fermions,
while for A-C the zero mode spectrum does not allow for
the breaking of the PS symmetry. Hence, the only viable
model is based on A-B as illustrated in Fig. 1. The field
content is summarised in Fig. 2, where we highlight the
decomposition with respect to the various subgroups of
E6, and we include two matter fields in the fundamental
representation, 27 and 270, with di↵erent orbifold pari-
ties. As we will see below this is the minimal and unique
embedding of one SM generation in the bulk.

A similar set-up was first proposed as a string-inspired
standard GUT [29]. Our proposal di↵ers in two crucial
features: a) the unification is driven asymptotically by
the UV fixed point; b) all non-SM zero mode fields receive
mass without the need for additional bulk fields. The
second feature is crucial to maintain the UV fixed point
of the theory.
The UV fixed point emerges from the power law cor-

rections to the renormalisation group evolution of the
e↵ective 4D gauge coupling [12]. The beta function can
be expressed as an e↵ective 5D ’t Hooft coupling [21],
defined in terms of the 4D coupling ↵ = g

2
/4⇡ as

↵̃(µ) = ↵(µ)
µ

mKK
, (4)

where µ is the renormalisation scale and mKK is the mass
of the first Kaluza-Klein (KK) state. At one loop, the
beta function for ↵̃ reads

d↵̃

d lnµ
= ↵̃�

b5

2⇡
↵̃
2
, (5)

which is valid for µ � mKK and has a UV zero at ↵̃⇤
UV =

2⇡/b5 for b5 > 0. For our model, we find [35]

b5 =
⇡

2

 
C(G)�

X

i

Ti(Ri)

!
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where C(G) = 12 and T (27) = 3 for E6 [36]. Hence, only
one more fundamental can be added in the bulk before
the UV fixed point disappears. As a consequence, the
model in Ref.[29] does not have such UV fixed point. In
our model, instead, the UV fixed point remains perturba-
tive, hence endorsing the model with enhanced calcula-
bility. We remark that this behaviour remains the same
for both flat and warped extra dimensions [37].
From the 4D point of view, the theory is invariant

under PS⇥U(1) , which we use to classify the relevant
states. At the zero mode level, besides the gauge super-
fields in W

↵
78, the chiral superfields contain the following

states:

�78 � (4̄,1,2)�3 + (4,1,2)3 , (7)

�27 � (4,2,1)1 , (8)

�c
27 � (1,2,2)2 , (9)

�270 � (4̄,1,2)1 , (10)

�c
270 � (6,1,1)2 + (1,1,1)�4 , (11)

shown as coloured symbols in Fig. 2. We can already
see that the 27 contains the left-handed SM fermions
(4,2,1)1 and two Higgs doublets in (1,2,2)2. The PS
Yukawa couplings stem from the gauge interactions of the
27 with the �78 component of the gauge supermultiplet
[38, 39], leading to:

g �c
27�78�27 �

g
p
2
(1,2,2)2 (4̄,1,2)�3 (4,2,1)1 , (12)
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FIG. 1. Illustration of the E6 aGUT with 5D E6 hypermul-
tiplets in the bulk and SO(10) N = 1 supermultiplets on the
x5 = 0 boundary, as required by gauge anomaly cancellation.

The model, therefore, consists of a supersymmetric E6

gauge theory in five dimensions (5D) with matter fields in
the fundamental 27. The fifth dimension is compactified
on the orbifold S
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2. From the four-dimensional
(4D) point of view, this theory hasN = 2 supersymmetry
[30], hence the gauge and matter superfields consist of

Gauge : ) W
↵
78 + �78 , (1)

Matter : ) �27 + �c
27 , (2)

where W↵ is the vector superfield, while � are the chiral
superfields, with �c

27 having conjugate quantum num-
bers as compared to �27. The model Lagrangian can be
constructed in terms of these components [30–32]. The
orbifold projection, encoded in the two parities Z2 and
Z0
2 centred on the two endpoints of the interval, break

both the N = 2 supersymmetry to N = 1 in 4D and the
gauge symmetry. For the latter, there are three possible
patterns [33]:

A: E6 ! SO(10)⇥U(1) ,

B: E6 ! SU(6)L ⇥ SU(2)R , (3)

C: E6 ! SU(6)R ⇥ SU(2)L ,

where the subscript “L” and “R” refer to the custodial
symmetry in the SM. Choosing any pair of the above
patterns for the two orbifold projections leads to a 4D
gauge theory based on Pati-Salam (PS) [34] times an
additional abelian U(1) symmetry: SU(4) ⇥ SU(2)L ⇥

SU(2)R⇥U(1) . However, only one choice is phenomeno-
logically viable. For the combination B-C, it is not pos-
sible to obtain chiral zero modes for the SM fermions,
while for A-C the zero mode spectrum does not allow for
the breaking of the PS symmetry. Hence, the only viable
model is based on A-B as illustrated in Fig. 1. The field
content is summarised in Fig. 2, where we highlight the
decomposition with respect to the various subgroups of
E6, and we include two matter fields in the fundamental
representation, 27 and 270, with di↵erent orbifold pari-
ties. As we will see below this is the minimal and unique
embedding of one SM generation in the bulk.

A similar set-up was first proposed as a string-inspired
standard GUT [29]. Our proposal di↵ers in two crucial
features: a) the unification is driven asymptotically by
the UV fixed point; b) all non-SM zero mode fields receive
mass without the need for additional bulk fields. The
second feature is crucial to maintain the UV fixed point
of the theory.
The UV fixed point emerges from the power law cor-

rections to the renormalisation group evolution of the
e↵ective 4D gauge coupling [12]. The beta function can
be expressed as an e↵ective 5D ’t Hooft coupling [21],
defined in terms of the 4D coupling ↵ = g

2
/4⇡ as

↵̃(µ) = ↵(µ)
µ

mKK
, (4)

where µ is the renormalisation scale and mKK is the mass
of the first Kaluza-Klein (KK) state. At one loop, the
beta function for ↵̃ reads
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which is valid for µ � mKK and has a UV zero at ↵̃⇤
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2⇡/b5 for b5 > 0. For our model, we find [35]
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where C(G) = 12 and T (27) = 3 for E6 [36]. Hence, only
one more fundamental can be added in the bulk before
the UV fixed point disappears. As a consequence, the
model in Ref.[29] does not have such UV fixed point. In
our model, instead, the UV fixed point remains perturba-
tive, hence endorsing the model with enhanced calcula-
bility. We remark that this behaviour remains the same
for both flat and warped extra dimensions [37].
From the 4D point of view, the theory is invariant

under PS⇥U(1) , which we use to classify the relevant
states. At the zero mode level, besides the gauge super-
fields in W

↵
78, the chiral superfields contain the following

states:

�78 � (4̄,1,2)�3 + (4,1,2)3 , (7)

�27 � (4,2,1)1 , (8)

�c
27 � (1,2,2)2 , (9)

�270 � (4̄,1,2)1 , (10)

�c
270 � (6,1,1)2 + (1,1,1)�4 , (11)

shown as coloured symbols in Fig. 2. We can already
see that the 27 contains the left-handed SM fermions
(4,2,1)1 and two Higgs doublets in (1,2,2)2. The PS
Yukawa couplings stem from the gauge interactions of the
27 with the �78 component of the gauge supermultiplet
[38, 39], leading to:

g �c
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The exceptional case: bulk interactions
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FIG. 2. Illustration of the three bulk fields in terms of PS⇥U components of the E6 representations. The position on the
grid indicates the quantum numbers under SU(2)L ⇥ SU(2)R, while the symbols represent SU(4) representations. The SO(10)
components are linked by dashed lines and labelled. Finally, the colours indicate the presence of a zero mode: red for the W↵
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component and blue for the �78, green for the matter � and orange for the �c. The black symbols correspond to components
without a zero mode.

thus the right-handed SM fermions must be the
(4̄,1,2)�3 component of the gauge �78. The gauge inter-
actions of the 270 contain the following zero-mode terms:

g �c
270�78�270 � �

g
p
2
(1,1,1)�4 (4,1,2)3 (4̄,1,2)1

+
g
p
2
(6,1,1)2 (4̄,1,2)�3 (4̄,1,2)1 . (13)

The importance of the couplings above is related to the
breaking of the PS⇥U(1) gauge group down to the SM
one. In fact, the (1,1,1)�4 from the 270 can e↵ectively
break U(1) and also give a mass to the (4,1,2)3 gaug-
inos. Moreover, the presence of a (4,1,2)3 state in the
gauge multiplet allows for the breaking of the PS symme-
try via the Scherk-Schwarz mechanism [40]. The break-
ing of the gauge symmetry down to the SM, therefore,
does not require additional states in this theory. The zero
modes in the (6,1,1)2 component, which behave like a
vector-like bottom quark singlet, can only receive a mass
via a superpotential localised on the SO(10) boundary
with parity A [41].

At the UV fixed point, the matching between E6 and
the PS⇥U(1) couplings reads:

g4 = gL = gR ⌘ g , g =
g
p
2
. (14)

For the SM Yukawa couplings in Eq. (12), we have

y" = y# ⌘
g
p
2
, (15)

where y" = yt = y⌫⌧ is the Yukawa of up-type fermions,
while y# = yb = y⌧ for down-type ones. The identifi-
cation of up and down-type Yukawas occurs at the PS-
breaking scale, which is typically close to mKK, while the
relation between top and bottom mass also depends on

the ratio of Higgs vacuum expectation values, as typical
in supersymmetric models [42]. This ratio, expressed in
terms of tan�, requires

tan� =
hHdi

hHui
=

mt(mKK)

mb(mKK)
⇠ 40 , (16)

where the masses are evaluated at the KK scale. In
Fig. 3 we show a schematic plot of the renormalisation
group evolution of the SM couplings in the E6 model.
For simplicity, we identify the PS and U(1) breaking
scales to mKK, and fix the supersymmetry breaking scale
to 10 TeV, above which the minimal supersymmetric SM
(MSSM) is a good description. The couplings correspond
to the usual 4D ones up to the scale mKK, above which
they are replaced by the corresponding 5D ’t Hooft cou-
plings, defined in Eq. (4). Also, we plot the couplings
rescaled to the E6 values, as in Eqs. (14) and (15), while
the usual PS matching is applied above mKK. This plot
clearly demonstrates that the gauge and Yukawa cou-
plings of the third generation do unify to a single value
thanks to the UV fixed point, independently on the value
of mKK. However, due to the constrained bulk structure,
the light generations must be localised on one of the two
boundaries. Before addressing this issue, there are two
related features of the bulk interactions: baryon number
conservation and the cancellation of 4D gauge anomalies.
Regarding the former, we recall that the theory, at

the level of the SM gauge invariance, features five U(1)
symmetries. Besides the three gauged ones, U(1)B-L �

SU(4), U(1)R � SU(2)R and U(1) , there are two
global charges associated to the matter fields, U(1)27 and
U(1)270 . Among the first three, the SM hypercharge is de-
fined as usual in PS models as 2QY = QB-L+QR. There
is a single global charge that remains after the breaking
of PS and U(1) , and that is not carried by the Higgs
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thus the right-handed SM fermions must be the
(4̄,1,2)�3 component of the gauge �78. The gauge inter-
actions of the 270 contain the following zero-mode terms:

g �c
270�78�270 � �

g
p
2
(1,1,1)�4 (4,1,2)3 (4̄,1,2)1

+
g
p
2
(6,1,1)2 (4̄,1,2)�3 (4̄,1,2)1 . (13)

The importance of the couplings above is related to the
breaking of the PS⇥U(1) gauge group down to the SM
one. In fact, the (1,1,1)�4 from the 270 can e↵ectively
break U(1) and also give a mass to the (4,1,2)3 gaug-
inos. Moreover, the presence of a (4,1,2)3 state in the
gauge multiplet allows for the breaking of the PS symme-
try via the Scherk-Schwarz mechanism [40]. The break-
ing of the gauge symmetry down to the SM, therefore,
does not require additional states in this theory. The zero
modes in the (6,1,1)2 component, which behave like a
vector-like bottom quark singlet, can only receive a mass
via a superpotential localised on the SO(10) boundary
with parity A [41].

At the UV fixed point, the matching between E6 and
the PS⇥U(1) couplings reads:

g4 = gL = gR ⌘ g , g =
g
p
2
. (14)

For the SM Yukawa couplings in Eq. (12), we have

y" = y# ⌘
g
p
2
, (15)

where y" = yt = y⌫⌧ is the Yukawa of up-type fermions,
while y# = yb = y⌧ for down-type ones. The identifi-
cation of up and down-type Yukawas occurs at the PS-
breaking scale, which is typically close to mKK, while the
relation between top and bottom mass also depends on

the ratio of Higgs vacuum expectation values, as typical
in supersymmetric models [42]. This ratio, expressed in
terms of tan�, requires

tan� =
hHdi

hHui
=

mt(mKK)

mb(mKK)
⇠ 40 , (16)

where the masses are evaluated at the KK scale. In
Fig. 3 we show a schematic plot of the renormalisation
group evolution of the SM couplings in the E6 model.
For simplicity, we identify the PS and U(1) breaking
scales to mKK, and fix the supersymmetry breaking scale
to 10 TeV, above which the minimal supersymmetric SM
(MSSM) is a good description. The couplings correspond
to the usual 4D ones up to the scale mKK, above which
they are replaced by the corresponding 5D ’t Hooft cou-
plings, defined in Eq. (4). Also, we plot the couplings
rescaled to the E6 values, as in Eqs. (14) and (15), while
the usual PS matching is applied above mKK. This plot
clearly demonstrates that the gauge and Yukawa cou-
plings of the third generation do unify to a single value
thanks to the UV fixed point, independently on the value
of mKK. However, due to the constrained bulk structure,
the light generations must be localised on one of the two
boundaries. Before addressing this issue, there are two
related features of the bulk interactions: baryon number
conservation and the cancellation of 4D gauge anomalies.
Regarding the former, we recall that the theory, at

the level of the SM gauge invariance, features five U(1)
symmetries. Besides the three gauged ones, U(1)B-L �

SU(4), U(1)R � SU(2)R and U(1) , there are two
global charges associated to the matter fields, U(1)27 and
U(1)270 . Among the first three, the SM hypercharge is de-
fined as usual in PS models as 2QY = QB-L+QR. There
is a single global charge that remains after the breaking
of PS and U(1) , and that is not carried by the Higgs
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FIG. 1. Illustration of the E6 aGUT with 5D E6 hypermul-
tiplets in the bulk and SO(10) N = 1 supermultiplets on the
x5 = 0 boundary, as required by gauge anomaly cancellation.

The model, therefore, consists of a supersymmetric E6

gauge theory in five dimensions (5D) with matter fields in
the fundamental 27. The fifth dimension is compactified
on the orbifold S

1
/Z2 ⇥ Z0

2. From the four-dimensional
(4D) point of view, this theory hasN = 2 supersymmetry
[30], hence the gauge and matter superfields consist of

Gauge : ) W
↵
78 + �78 , (1)

Matter : ) �27 + �c
27 , (2)

where W↵ is the vector superfield, while � are the chiral
superfields, with �c

27 having conjugate quantum num-
bers as compared to �27. The model Lagrangian can be
constructed in terms of these components [30–32]. The
orbifold projection, encoded in the two parities Z2 and
Z0
2 centred on the two endpoints of the interval, break

both the N = 2 supersymmetry to N = 1 in 4D and the
gauge symmetry. For the latter, there are three possible
patterns [33]:

A: E6 ! SO(10)⇥U(1) ,

B: E6 ! SU(6)L ⇥ SU(2)R , (3)

C: E6 ! SU(6)R ⇥ SU(2)L ,

where the subscript “L” and “R” refer to the custodial
symmetry in the SM. Choosing any pair of the above
patterns for the two orbifold projections leads to a 4D
gauge theory based on Pati-Salam (PS) [34] times an
additional abelian U(1) symmetry: SU(4) ⇥ SU(2)L ⇥

SU(2)R⇥U(1) . However, only one choice is phenomeno-
logically viable. For the combination B-C, it is not pos-
sible to obtain chiral zero modes for the SM fermions,
while for A-C the zero mode spectrum does not allow for
the breaking of the PS symmetry. Hence, the only viable
model is based on A-B as illustrated in Fig. 1. The field
content is summarised in Fig. 2, where we highlight the
decomposition with respect to the various subgroups of
E6, and we include two matter fields in the fundamental
representation, 27 and 270, with di↵erent orbifold pari-
ties. As we will see below this is the minimal and unique
embedding of one SM generation in the bulk.

A similar set-up was first proposed as a string-inspired
standard GUT [29]. Our proposal di↵ers in two crucial
features: a) the unification is driven asymptotically by
the UV fixed point; b) all non-SM zero mode fields receive
mass without the need for additional bulk fields. The
second feature is crucial to maintain the UV fixed point
of the theory.
The UV fixed point emerges from the power law cor-

rections to the renormalisation group evolution of the
e↵ective 4D gauge coupling [12]. The beta function can
be expressed as an e↵ective 5D ’t Hooft coupling [21],
defined in terms of the 4D coupling ↵ = g

2
/4⇡ as

↵̃(µ) = ↵(µ)
µ

mKK
, (4)

where µ is the renormalisation scale and mKK is the mass
of the first Kaluza-Klein (KK) state. At one loop, the
beta function for ↵̃ reads

d↵̃

d lnµ
= ↵̃�

b5

2⇡
↵̃
2
, (5)

which is valid for µ � mKK and has a UV zero at ↵̃⇤
UV =

2⇡/b5 for b5 > 0. For our model, we find [35]

b5 =
⇡

2

 
C(G)�

X

i

Ti(Ri)

!
= 3⇡ , (6)

where C(G) = 12 and T (27) = 3 for E6 [36]. Hence, only
one more fundamental can be added in the bulk before
the UV fixed point disappears. As a consequence, the
model in Ref.[29] does not have such UV fixed point. In
our model, instead, the UV fixed point remains perturba-
tive, hence endorsing the model with enhanced calcula-
bility. We remark that this behaviour remains the same
for both flat and warped extra dimensions [37].
From the 4D point of view, the theory is invariant

under PS⇥U(1) , which we use to classify the relevant
states. At the zero mode level, besides the gauge super-
fields in W

↵
78, the chiral superfields contain the following

states:

�78 � (4̄,1,2)�3 + (4,1,2)3 , (7)

�27 � (4,2,1)1 , (8)

�c
27 � (1,2,2)2 , (9)

�270 � (4̄,1,2)1 , (10)

�c
270 � (6,1,1)2 + (1,1,1)�4 , (11)

shown as coloured symbols in Fig. 2. We can already
see that the 27 contains the left-handed SM fermions
(4,2,1)1 and two Higgs doublets in (1,2,2)2. The PS
Yukawa couplings stem from the gauge interactions of the
27 with the �78 component of the gauge supermultiplet
[38, 39], leading to:

g �c
27�78�27 �

g
p
2
(1,2,2)2 (4̄,1,2)�3 (4,2,1)1 , (12)

bulk Yukawas:
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thus the right-handed SM fermions must be the
(4̄,1,2)�3 component of the gauge �78. The gauge inter-
actions of the 270 contain the following zero-mode terms:

g �c
270�78�270 � �

g
p
2
(1,1,1)�4 (4,1,2)3 (4̄,1,2)1

+
g
p
2
(6,1,1)2 (4̄,1,2)�3 (4̄,1,2)1 . (13)

The importance of the couplings above is related to the
breaking of the PS⇥U(1) gauge group down to the SM
one. In fact, the (1,1,1)�4 from the 270 can e↵ectively
break U(1) and also give a mass to the (4,1,2)3 gaug-
inos. Moreover, the presence of a (4,1,2)3 state in the
gauge multiplet allows for the breaking of the PS symme-
try via the Scherk-Schwarz mechanism [40]. The break-
ing of the gauge symmetry down to the SM, therefore,
does not require additional states in this theory. The zero
modes in the (6,1,1)2 component, which behave like a
vector-like bottom quark singlet, can only receive a mass
via a superpotential localised on the SO(10) boundary
with parity A [41].

At the UV fixed point, the matching between E6 and
the PS⇥U(1) couplings reads:

g4 = gL = gR ⌘ g , g =
g
p
2
. (14)

For the SM Yukawa couplings in Eq. (12), we have

y" = y# ⌘
g
p
2
, (15)

where y" = yt = y⌫⌧ is the Yukawa of up-type fermions,
while y# = yb = y⌧ for down-type ones. The identifi-
cation of up and down-type Yukawas occurs at the PS-
breaking scale, which is typically close to mKK, while the
relation between top and bottom mass also depends on

the ratio of Higgs vacuum expectation values, as typical
in supersymmetric models [42]. This ratio, expressed in
terms of tan�, requires

tan� =
hHdi

hHui
=

mt(mKK)

mb(mKK)
⇠ 40 , (16)

where the masses are evaluated at the KK scale. In
Fig. 3 we show a schematic plot of the renormalisation
group evolution of the SM couplings in the E6 model.
For simplicity, we identify the PS and U(1) breaking
scales to mKK, and fix the supersymmetry breaking scale
to 10 TeV, above which the minimal supersymmetric SM
(MSSM) is a good description. The couplings correspond
to the usual 4D ones up to the scale mKK, above which
they are replaced by the corresponding 5D ’t Hooft cou-
plings, defined in Eq. (4). Also, we plot the couplings
rescaled to the E6 values, as in Eqs. (14) and (15), while
the usual PS matching is applied above mKK. This plot
clearly demonstrates that the gauge and Yukawa cou-
plings of the third generation do unify to a single value
thanks to the UV fixed point, independently on the value
of mKK. However, due to the constrained bulk structure,
the light generations must be localised on one of the two
boundaries. Before addressing this issue, there are two
related features of the bulk interactions: baryon number
conservation and the cancellation of 4D gauge anomalies.
Regarding the former, we recall that the theory, at

the level of the SM gauge invariance, features five U(1)
symmetries. Besides the three gauged ones, U(1)B-L �

SU(4), U(1)R � SU(2)R and U(1) , there are two
global charges associated to the matter fields, U(1)27 and
U(1)270 . Among the first three, the SM hypercharge is de-
fined as usual in PS models as 2QY = QB-L+QR. There
is a single global charge that remains after the breaking
of PS and U(1) , and that is not carried by the Higgs
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component and blue for the �78, green for the matter � and orange for the �c. The black symbols correspond to components
without a zero mode.

thus the right-handed SM fermions must be the
(4̄,1,2)�3 component of the gauge �78. The gauge inter-
actions of the 270 contain the following zero-mode terms:

g �c
270�78�270 � �

g
p
2
(1,1,1)�4 (4,1,2)3 (4̄,1,2)1

+
g
p
2
(6,1,1)2 (4̄,1,2)�3 (4̄,1,2)1 . (13)

The importance of the couplings above is related to the
breaking of the PS⇥U(1) gauge group down to the SM
one. In fact, the (1,1,1)�4 from the 270 can e↵ectively
break U(1) and also give a mass to the (4,1,2)3 gaug-
inos. Moreover, the presence of a (4,1,2)3 state in the
gauge multiplet allows for the breaking of the PS symme-
try via the Scherk-Schwarz mechanism [40]. The break-
ing of the gauge symmetry down to the SM, therefore,
does not require additional states in this theory. The zero
modes in the (6,1,1)2 component, which behave like a
vector-like bottom quark singlet, can only receive a mass
via a superpotential localised on the SO(10) boundary
with parity A [41].

At the UV fixed point, the matching between E6 and
the PS⇥U(1) couplings reads:

g4 = gL = gR ⌘ g , g =
g
p
2
. (14)

For the SM Yukawa couplings in Eq. (12), we have

y" = y# ⌘
g
p
2
, (15)

where y" = yt = y⌫⌧ is the Yukawa of up-type fermions,
while y# = yb = y⌧ for down-type ones. The identifi-
cation of up and down-type Yukawas occurs at the PS-
breaking scale, which is typically close to mKK, while the
relation between top and bottom mass also depends on

the ratio of Higgs vacuum expectation values, as typical
in supersymmetric models [42]. This ratio, expressed in
terms of tan�, requires

tan� =
hHdi

hHui
=

mt(mKK)

mb(mKK)
⇠ 40 , (16)

where the masses are evaluated at the KK scale. In
Fig. 3 we show a schematic plot of the renormalisation
group evolution of the SM couplings in the E6 model.
For simplicity, we identify the PS and U(1) breaking
scales to mKK, and fix the supersymmetry breaking scale
to 10 TeV, above which the minimal supersymmetric SM
(MSSM) is a good description. The couplings correspond
to the usual 4D ones up to the scale mKK, above which
they are replaced by the corresponding 5D ’t Hooft cou-
plings, defined in Eq. (4). Also, we plot the couplings
rescaled to the E6 values, as in Eqs. (14) and (15), while
the usual PS matching is applied above mKK. This plot
clearly demonstrates that the gauge and Yukawa cou-
plings of the third generation do unify to a single value
thanks to the UV fixed point, independently on the value
of mKK. However, due to the constrained bulk structure,
the light generations must be localised on one of the two
boundaries. Before addressing this issue, there are two
related features of the bulk interactions: baryon number
conservation and the cancellation of 4D gauge anomalies.
Regarding the former, we recall that the theory, at

the level of the SM gauge invariance, features five U(1)
symmetries. Besides the three gauged ones, U(1)B-L �

SU(4), U(1)R � SU(2)R and U(1) , there are two
global charges associated to the matter fields, U(1)27 and
U(1)270 . Among the first three, the SM hypercharge is de-
fined as usual in PS models as 2QY = QB-L+QR. There
is a single global charge that remains after the breaking
of PS and U(1) , and that is not carried by the Higgs
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FIG. 1. Illustration of the E6 aGUT with 5D E6 hypermul-
tiplets in the bulk and SO(10) N = 1 supermultiplets on the
x5 = 0 boundary, as required by gauge anomaly cancellation.

The model, therefore, consists of a supersymmetric E6

gauge theory in five dimensions (5D) with matter fields in
the fundamental 27. The fifth dimension is compactified
on the orbifold S

1
/Z2 ⇥ Z0

2. From the four-dimensional
(4D) point of view, this theory hasN = 2 supersymmetry
[30], hence the gauge and matter superfields consist of

Gauge : ) W
↵
78 + �78 , (1)

Matter : ) �27 + �c
27 , (2)

where W↵ is the vector superfield, while � are the chiral
superfields, with �c

27 having conjugate quantum num-
bers as compared to �27. The model Lagrangian can be
constructed in terms of these components [30–32]. The
orbifold projection, encoded in the two parities Z2 and
Z0
2 centred on the two endpoints of the interval, break

both the N = 2 supersymmetry to N = 1 in 4D and the
gauge symmetry. For the latter, there are three possible
patterns [33]:

A: E6 ! SO(10)⇥U(1) ,

B: E6 ! SU(6)L ⇥ SU(2)R , (3)

C: E6 ! SU(6)R ⇥ SU(2)L ,

where the subscript “L” and “R” refer to the custodial
symmetry in the SM. Choosing any pair of the above
patterns for the two orbifold projections leads to a 4D
gauge theory based on Pati-Salam (PS) [34] times an
additional abelian U(1) symmetry: SU(4) ⇥ SU(2)L ⇥

SU(2)R⇥U(1) . However, only one choice is phenomeno-
logically viable. For the combination B-C, it is not pos-
sible to obtain chiral zero modes for the SM fermions,
while for A-C the zero mode spectrum does not allow for
the breaking of the PS symmetry. Hence, the only viable
model is based on A-B as illustrated in Fig. 1. The field
content is summarised in Fig. 2, where we highlight the
decomposition with respect to the various subgroups of
E6, and we include two matter fields in the fundamental
representation, 27 and 270, with di↵erent orbifold pari-
ties. As we will see below this is the minimal and unique
embedding of one SM generation in the bulk.

A similar set-up was first proposed as a string-inspired
standard GUT [29]. Our proposal di↵ers in two crucial
features: a) the unification is driven asymptotically by
the UV fixed point; b) all non-SM zero mode fields receive
mass without the need for additional bulk fields. The
second feature is crucial to maintain the UV fixed point
of the theory.
The UV fixed point emerges from the power law cor-

rections to the renormalisation group evolution of the
e↵ective 4D gauge coupling [12]. The beta function can
be expressed as an e↵ective 5D ’t Hooft coupling [21],
defined in terms of the 4D coupling ↵ = g

2
/4⇡ as

↵̃(µ) = ↵(µ)
µ

mKK
, (4)

where µ is the renormalisation scale and mKK is the mass
of the first Kaluza-Klein (KK) state. At one loop, the
beta function for ↵̃ reads

d↵̃

d lnµ
= ↵̃�

b5

2⇡
↵̃
2
, (5)

which is valid for µ � mKK and has a UV zero at ↵̃⇤
UV =

2⇡/b5 for b5 > 0. For our model, we find [35]

b5 =
⇡

2
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!
= 3⇡ , (6)

where C(G) = 12 and T (27) = 3 for E6 [36]. Hence, only
one more fundamental can be added in the bulk before
the UV fixed point disappears. As a consequence, the
model in Ref.[29] does not have such UV fixed point. In
our model, instead, the UV fixed point remains perturba-
tive, hence endorsing the model with enhanced calcula-
bility. We remark that this behaviour remains the same
for both flat and warped extra dimensions [37].
From the 4D point of view, the theory is invariant

under PS⇥U(1) , which we use to classify the relevant
states. At the zero mode level, besides the gauge super-
fields in W

↵
78, the chiral superfields contain the following

states:

�78 � (4̄,1,2)�3 + (4,1,2)3 , (7)

�27 � (4,2,1)1 , (8)

�c
27 � (1,2,2)2 , (9)

�270 � (4̄,1,2)1 , (10)

�c
270 � (6,1,1)2 + (1,1,1)�4 , (11)

shown as coloured symbols in Fig. 2. We can already
see that the 27 contains the left-handed SM fermions
(4,2,1)1 and two Higgs doublets in (1,2,2)2. The PS
Yukawa couplings stem from the gauge interactions of the
27 with the �78 component of the gauge supermultiplet
[38, 39], leading to:
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FIG. 3. Schematic running of the SM gauge couplings and
third generation Yukawa couplings for two values of mKK,
where the Yukawa values correspond to tan� = 40. The
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fields:
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Q27 +
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12
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3
Q270 , (17)

where the global charges are normalised to unity. On the
SM fields, this charge matches baryon number. Being
respected by all bulk interactions, it protects the proton
from decaying. As in the minimal SU(5) aGUT model
[22], the components of the bulk fields with opposite pari-
ties on the two boundaries, shown by the black symbols in
Fig. 2, have unusual QB assignments, hence the lightest
state among them is stable. All zero modes have stan-
dard baryon number assignments, including the non-SM
states. A detailed description of the components is pre-
sented in the supplementary material.

Another feature of the bulk model is the presence of 4D
anomalies at the level of the gauge symmetry PS⇥U(1) ,
which can only stem from the matter fields as the 78 is
real. As shown in Fig. 2, however, the zero modes of
the 27 and 270 form e↵ectively complete representations
of SO(10) � PS, namely 161 + 102 + 1�4. Hence, the
PS gauge symmetry is anomaly-free. For instance, the
161 is formed by the (4,2,1)1 zero mode in �27 and the
(4̄,1,2)1 in �c

270 . The 4D anomalies, therefore, only in-
volve the U(1) charges, where the coe�cients respect
A(161) = A(102+1�4). The U(1) gauge anomalies can
only be cancelled by adding fields on the SO(10) bound-
ary. This leads to two possible models:

i) Two 16�1 multiplets, whose components match the
two SM light generations. Hence, the total number
of SM generations is predicted to be three by gauge
anomaly cancellation. However, baryon number is
violated by the localised gauge and Yukawa inter-
actions.

ii) Two 10�2 + 14, corresponding to massive states,
while the light generations are localised on the
other boundary.

In the first case i), the two localised superfields �i
16�1

allow for the following couplings to the bulk field con-
taining the Higgs doublets:

y
ij �i

16�1
�j

16�1
�c

27|102
. (18)

This term, and the SO(10) gauge interactions of the lo-
calised fields, violate baryon and lepton numbers, as in
traditional GUT models, via couplings with the first KK
resonances. For flat extra dimensions, this would lead to
a direct bound mKK & 1016 GeV [43]. We remark that
warping the extra space can lead to a mild suppression
of these coupling [44], hence it would be feasible to lower
the KK scale by one or two orders of magnitude. Fur-
thermore, additional localised superfields can be added in
order to explain the di↵erent values of the Yukawa cou-
plings, as done in minimal SO(10) GUTs [8]: the presence
of large representations does not spoil the UV fixed point
as they only contribute to logarithmic running, which is
overpowered by the bulk power-law running. As an ex-
ample, in Fig. 3 we show a case with mKK = 1015 GeV.
The mixing between the third generation and the light
ones, however, is forbidden by the U(1) gauge symme-
try, and it requires additional localised fields, see supple-
mentary material.
In the second case ii), one can add two copies of the fol-

lowing set of superfields on the SU(6)L ⇥ SU(2)R bound-
ary:

�j
(15,1) , �

j
(6̄,2) , �

j
(20,2) , j = 1, 2 . (19)

The above fields match the bulk field components con-
taining the third generation, hence the three generations
share similar localised couplings. The localised Yukawas
are written in terms of the following 3⇥ 3 matrices

y
ij �i

(15,1)�
i
(20,2) �

c
27|(6,2) + �

ij �i
(6̄,2)�

j
(20,2) �

c
270 |(1̄5,1) ,

(20)
where i = 3 corresponds to the bulk fields and the second
term gives mass to the unwanted components. As the
above couplings have the same structure of the bulk ones,
the baryon number in Eq. (17) remains conserved and the
mKK scale can be lowered compared to case i). In this
model, it can be as low as the lowest scale allowed by PS
to be around 2000 TeV, which is obtained by using the
current limit on Br (KL ! µ

±e⌥) < 4.7 ⇥ 10�12[45](see
also e.g. [46–48]).

In conclusion, in this letter we presented a new aGUT
based on a supersymmetric exceptional E6 gauge sym-
metry. Its uniqueness stands in the presence of a single
UV fixed point for gauge and Yukawa couplings of the
third generation. The number of SM generations is pre-
dicted by gauge anomaly cancellation. We highlighted
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where the global charges are normalised to unity. On the
SM fields, this charge matches baryon number. Being
respected by all bulk interactions, it protects the proton
from decaying. As in the minimal SU(5) aGUT model
[22], the components of the bulk fields with opposite pari-
ties on the two boundaries, shown by the black symbols in
Fig. 2, have unusual QB assignments, hence the lightest
state among them is stable. All zero modes have stan-
dard baryon number assignments, including the non-SM
states. A detailed description of the components is pre-
sented in the supplementary material.

Another feature of the bulk model is the presence of 4D
anomalies at the level of the gauge symmetry PS⇥U(1) ,
which can only stem from the matter fields as the 78 is
real. As shown in Fig. 2, however, the zero modes of
the 27 and 270 form e↵ectively complete representations
of SO(10) � PS, namely 161 + 102 + 1�4. Hence, the
PS gauge symmetry is anomaly-free. For instance, the
161 is formed by the (4,2,1)1 zero mode in �27 and the
(4̄,1,2)1 in �c

270 . The 4D anomalies, therefore, only in-
volve the U(1) charges, where the coe�cients respect
A(161) = A(102+1�4). The U(1) gauge anomalies can
only be cancelled by adding fields on the SO(10) bound-
ary. This leads to two possible models:

i) Two 16�1 multiplets, whose components match the
two SM light generations. Hence, the total number
of SM generations is predicted to be three by gauge
anomaly cancellation. However, baryon number is
violated by the localised gauge and Yukawa inter-
actions.

ii) Two 10�2 + 14, corresponding to massive states,
while the light generations are localised on the
other boundary.

In the first case i), the two localised superfields �i
16�1

allow for the following couplings to the bulk field con-
taining the Higgs doublets:

y
ij �i

16�1
�j

16�1
�c

27|102
. (18)

This term, and the SO(10) gauge interactions of the lo-
calised fields, violate baryon and lepton numbers, as in
traditional GUT models, via couplings with the first KK
resonances. For flat extra dimensions, this would lead to
a direct bound mKK & 1016 GeV [43]. We remark that
warping the extra space can lead to a mild suppression
of these coupling [44], hence it would be feasible to lower
the KK scale by one or two orders of magnitude. Fur-
thermore, additional localised superfields can be added in
order to explain the di↵erent values of the Yukawa cou-
plings, as done in minimal SO(10) GUTs [8]: the presence
of large representations does not spoil the UV fixed point
as they only contribute to logarithmic running, which is
overpowered by the bulk power-law running. As an ex-
ample, in Fig. 3 we show a case with mKK = 1015 GeV.
The mixing between the third generation and the light
ones, however, is forbidden by the U(1) gauge symme-
try, and it requires additional localised fields, see supple-
mentary material.
In the second case ii), one can add two copies of the fol-

lowing set of superfields on the SU(6)L ⇥ SU(2)R bound-
ary:

�j
(15,1) , �

j
(6̄,2) , �

j
(20,2) , j = 1, 2 . (19)

The above fields match the bulk field components con-
taining the third generation, hence the three generations
share similar localised couplings. The localised Yukawas
are written in terms of the following 3⇥ 3 matrices

y
ij �i

(15,1)�
i
(20,2) �

c
27|(6,2) + �

ij �i
(6̄,2)�

j
(20,2) �

c
270 |(1̄5,1) ,

(20)
where i = 3 corresponds to the bulk fields and the second
term gives mass to the unwanted components. As the
above couplings have the same structure of the bulk ones,
the baryon number in Eq. (17) remains conserved and the
mKK scale can be lowered compared to case i). In this
model, it can be as low as the lowest scale allowed by PS
to be around 2000 TeV, which is obtained by using the
current limit on Br (KL ! µ

±e⌥) < 4.7 ⇥ 10�12[45](see
also e.g. [46–48]).

In conclusion, in this letter we presented a new aGUT
based on a supersymmetric exceptional E6 gauge sym-
metry. Its uniqueness stands in the presence of a single
UV fixed point for gauge and Yukawa couplings of the
third generation. The number of SM generations is pre-
dicted by gauge anomaly cancellation. We highlighted
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Q27 +
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3
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where the global charges are normalised to unity. On the
SM fields, this charge matches baryon number. Being
respected by all bulk interactions, it protects the proton
from decaying. As in the minimal SU(5) aGUT model
[22], the components of the bulk fields with opposite pari-
ties on the two boundaries, shown by the black symbols in
Fig. 2, have unusual QB assignments, hence the lightest
state among them is stable. All zero modes have stan-
dard baryon number assignments, including the non-SM
states. A detailed description of the components is pre-
sented in the supplementary material.

Another feature of the bulk model is the presence of 4D
anomalies at the level of the gauge symmetry PS⇥U(1) ,
which can only stem from the matter fields as the 78 is
real. As shown in Fig. 2, however, the zero modes of
the 27 and 270 form e↵ectively complete representations
of SO(10) � PS, namely 161 + 102 + 1�4. Hence, the
PS gauge symmetry is anomaly-free. For instance, the
161 is formed by the (4,2,1)1 zero mode in �27 and the
(4̄,1,2)1 in �c

270 . The 4D anomalies, therefore, only in-
volve the U(1) charges, where the coe�cients respect
A(161) = A(102+1�4). The U(1) gauge anomalies can
only be cancelled by adding fields on the SO(10) bound-
ary. This leads to two possible models:

i) Two 16�1 multiplets, whose components match the
two SM light generations. Hence, the total number
of SM generations is predicted to be three by gauge
anomaly cancellation. However, baryon number is
violated by the localised gauge and Yukawa inter-
actions.

ii) Two 10�2 + 14, corresponding to massive states,
while the light generations are localised on the
other boundary.

In the first case i), the two localised superfields �i
16�1

allow for the following couplings to the bulk field con-
taining the Higgs doublets:

y
ij �i

16�1
�j

16�1
�c

27|102
. (18)

This term, and the SO(10) gauge interactions of the lo-
calised fields, violate baryon and lepton numbers, as in
traditional GUT models, via couplings with the first KK
resonances. For flat extra dimensions, this would lead to
a direct bound mKK & 1016 GeV [43]. We remark that
warping the extra space can lead to a mild suppression
of these coupling [44], hence it would be feasible to lower
the KK scale by one or two orders of magnitude. Fur-
thermore, additional localised superfields can be added in
order to explain the di↵erent values of the Yukawa cou-
plings, as done in minimal SO(10) GUTs [8]: the presence
of large representations does not spoil the UV fixed point
as they only contribute to logarithmic running, which is
overpowered by the bulk power-law running. As an ex-
ample, in Fig. 3 we show a case with mKK = 1015 GeV.
The mixing between the third generation and the light
ones, however, is forbidden by the U(1) gauge symme-
try, and it requires additional localised fields, see supple-
mentary material.
In the second case ii), one can add two copies of the fol-

lowing set of superfields on the SU(6)L ⇥ SU(2)R bound-
ary:

�j
(15,1) , �

j
(6̄,2) , �

j
(20,2) , j = 1, 2 . (19)

The above fields match the bulk field components con-
taining the third generation, hence the three generations
share similar localised couplings. The localised Yukawas
are written in terms of the following 3⇥ 3 matrices

y
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(15,1)�
i
(20,2) �

c
27|(6,2) + �

ij �i
(6̄,2)�

j
(20,2) �

c
270 |(1̄5,1) ,

(20)
where i = 3 corresponds to the bulk fields and the second
term gives mass to the unwanted components. As the
above couplings have the same structure of the bulk ones,
the baryon number in Eq. (17) remains conserved and the
mKK scale can be lowered compared to case i). In this
model, it can be as low as the lowest scale allowed by PS
to be around 2000 TeV, which is obtained by using the
current limit on Br (KL ! µ

±e⌥) < 4.7 ⇥ 10�12[45](see
also e.g. [46–48]).

In conclusion, in this letter we presented a new aGUT
based on a supersymmetric exceptional E6 gauge sym-
metry. Its uniqueness stands in the presence of a single
UV fixed point for gauge and Yukawa couplings of the
third generation. The number of SM generations is pre-
dicted by gauge anomaly cancellation. We highlighted

Two massive 

 
and two copies of

 

localised on

boundary

4

�s��4
�L
�1��R
�t���
�b���
�����

(Case 1) (Case 2)MSSM mKK mKK

102 105 1010 1015 1020
0.01

0.05

0.1

0.5

1

� [GeV]

� i

FIG. 3. Schematic running of the SM gauge couplings and
third generation Yukawa couplings for two values of mKK,
where the Yukawa values correspond to tan� = 40. The

couplings are rescaled to match the E6 unification: ↵x = 2
y2
x

4⇡

for Yukawas and ↵1 = 5
3↵

0 for hypercharge, where ↵R comes
from the usual PS matching.

fields:

QB =
1

4
QB-L +

1

6
Q27 +

1

12
Q �

1

3
Q270 , (17)

where the global charges are normalised to unity. On the
SM fields, this charge matches baryon number. Being
respected by all bulk interactions, it protects the proton
from decaying. As in the minimal SU(5) aGUT model
[22], the components of the bulk fields with opposite pari-
ties on the two boundaries, shown by the black symbols in
Fig. 2, have unusual QB assignments, hence the lightest
state among them is stable. All zero modes have stan-
dard baryon number assignments, including the non-SM
states. A detailed description of the components is pre-
sented in the supplementary material.

Another feature of the bulk model is the presence of 4D
anomalies at the level of the gauge symmetry PS⇥U(1) ,
which can only stem from the matter fields as the 78 is
real. As shown in Fig. 2, however, the zero modes of
the 27 and 270 form e↵ectively complete representations
of SO(10) � PS, namely 161 + 102 + 1�4. Hence, the
PS gauge symmetry is anomaly-free. For instance, the
161 is formed by the (4,2,1)1 zero mode in �27 and the
(4̄,1,2)1 in �c

270 . The 4D anomalies, therefore, only in-
volve the U(1) charges, where the coe�cients respect
A(161) = A(102+1�4). The U(1) gauge anomalies can
only be cancelled by adding fields on the SO(10) bound-
ary. This leads to two possible models:

i) Two 16�1 multiplets, whose components match the
two SM light generations. Hence, the total number
of SM generations is predicted to be three by gauge
anomaly cancellation. However, baryon number is
violated by the localised gauge and Yukawa inter-
actions.

ii) Two 10�2 + 14, corresponding to massive states,
while the light generations are localised on the
other boundary.

In the first case i), the two localised superfields �i
16�1

allow for the following couplings to the bulk field con-
taining the Higgs doublets:

y
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16�1
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16�1
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27|102
. (18)

This term, and the SO(10) gauge interactions of the lo-
calised fields, violate baryon and lepton numbers, as in
traditional GUT models, via couplings with the first KK
resonances. For flat extra dimensions, this would lead to
a direct bound mKK & 1016 GeV [43]. We remark that
warping the extra space can lead to a mild suppression
of these coupling [44], hence it would be feasible to lower
the KK scale by one or two orders of magnitude. Fur-
thermore, additional localised superfields can be added in
order to explain the di↵erent values of the Yukawa cou-
plings, as done in minimal SO(10) GUTs [8]: the presence
of large representations does not spoil the UV fixed point
as they only contribute to logarithmic running, which is
overpowered by the bulk power-law running. As an ex-
ample, in Fig. 3 we show a case with mKK = 1015 GeV.
The mixing between the third generation and the light
ones, however, is forbidden by the U(1) gauge symme-
try, and it requires additional localised fields, see supple-
mentary material.
In the second case ii), one can add two copies of the fol-

lowing set of superfields on the SU(6)L ⇥ SU(2)R bound-
ary:

�j
(15,1) , �

j
(6̄,2) , �

j
(20,2) , j = 1, 2 . (19)

The above fields match the bulk field components con-
taining the third generation, hence the three generations
share similar localised couplings. The localised Yukawas
are written in terms of the following 3⇥ 3 matrices
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i
(20,2) �

c
27|(6,2) + �
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(6̄,2)�

j
(20,2) �
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270 |(1̄5,1) ,

(20)
where i = 3 corresponds to the bulk fields and the second
term gives mass to the unwanted components. As the
above couplings have the same structure of the bulk ones,
the baryon number in Eq. (17) remains conserved and the
mKK scale can be lowered compared to case i). In this
model, it can be as low as the lowest scale allowed by PS
to be around 2000 TeV, which is obtained by using the
current limit on Br (KL ! µ

±e⌥) < 4.7 ⇥ 10�12[45](see
also e.g. [46–48]).

In conclusion, in this letter we presented a new aGUT
based on a supersymmetric exceptional E6 gauge sym-
metry. Its uniqueness stands in the presence of a single
UV fixed point for gauge and Yukawa couplings of the
third generation. The number of SM generations is pre-
dicted by gauge anomaly cancellation. We highlighted
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where the global charges are normalised to unity. On the
SM fields, this charge matches baryon number. Being
respected by all bulk interactions, it protects the proton
from decaying. As in the minimal SU(5) aGUT model
[22], the components of the bulk fields with opposite pari-
ties on the two boundaries, shown by the black symbols in
Fig. 2, have unusual QB assignments, hence the lightest
state among them is stable. All zero modes have stan-
dard baryon number assignments, including the non-SM
states. A detailed description of the components is pre-
sented in the supplementary material.

Another feature of the bulk model is the presence of 4D
anomalies at the level of the gauge symmetry PS⇥U(1) ,
which can only stem from the matter fields as the 78 is
real. As shown in Fig. 2, however, the zero modes of
the 27 and 270 form e↵ectively complete representations
of SO(10) � PS, namely 161 + 102 + 1�4. Hence, the
PS gauge symmetry is anomaly-free. For instance, the
161 is formed by the (4,2,1)1 zero mode in �27 and the
(4̄,1,2)1 in �c

270 . The 4D anomalies, therefore, only in-
volve the U(1) charges, where the coe�cients respect
A(161) = A(102+1�4). The U(1) gauge anomalies can
only be cancelled by adding fields on the SO(10) bound-
ary. This leads to two possible models:

i) Two 16�1 multiplets, whose components match the
two SM light generations. Hence, the total number
of SM generations is predicted to be three by gauge
anomaly cancellation. However, baryon number is
violated by the localised gauge and Yukawa inter-
actions.

ii) Two 10�2 + 14, corresponding to massive states,
while the light generations are localised on the
other boundary.

In the first case i), the two localised superfields �i
16�1

allow for the following couplings to the bulk field con-
taining the Higgs doublets:

y
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. (18)

This term, and the SO(10) gauge interactions of the lo-
calised fields, violate baryon and lepton numbers, as in
traditional GUT models, via couplings with the first KK
resonances. For flat extra dimensions, this would lead to
a direct bound mKK & 1016 GeV [43]. We remark that
warping the extra space can lead to a mild suppression
of these coupling [44], hence it would be feasible to lower
the KK scale by one or two orders of magnitude. Fur-
thermore, additional localised superfields can be added in
order to explain the di↵erent values of the Yukawa cou-
plings, as done in minimal SO(10) GUTs [8]: the presence
of large representations does not spoil the UV fixed point
as they only contribute to logarithmic running, which is
overpowered by the bulk power-law running. As an ex-
ample, in Fig. 3 we show a case with mKK = 1015 GeV.
The mixing between the third generation and the light
ones, however, is forbidden by the U(1) gauge symme-
try, and it requires additional localised fields, see supple-
mentary material.
In the second case ii), one can add two copies of the fol-

lowing set of superfields on the SU(6)L ⇥ SU(2)R bound-
ary:
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The above fields match the bulk field components con-
taining the third generation, hence the three generations
share similar localised couplings. The localised Yukawas
are written in terms of the following 3⇥ 3 matrices
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j
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270 |(1̄5,1) ,
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where i = 3 corresponds to the bulk fields and the second
term gives mass to the unwanted components. As the
above couplings have the same structure of the bulk ones,
the baryon number in Eq. (17) remains conserved and the
mKK scale can be lowered compared to case i). In this
model, it can be as low as the lowest scale allowed by PS
to be around 2000 TeV, which is obtained by using the
current limit on Br (KL ! µ

±e⌥) < 4.7 ⇥ 10�12[45](see
also e.g. [46–48]).

In conclusion, in this letter we presented a new aGUT
based on a supersymmetric exceptional E6 gauge sym-
metry. Its uniqueness stands in the presence of a single
UV fixed point for gauge and Yukawa couplings of the
third generation. The number of SM generations is pre-
dicted by gauge anomaly cancellation. We highlighted
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FIG. 3. Schematic running of the SM gauge couplings and
third generation Yukawa couplings for two values of mKK,
where the Yukawa values correspond to tan� = 40. The

couplings are rescaled to match the E6 unification: ↵x = 2
y2
x

4⇡

for Yukawas and ↵1 = 5
3↵

0 for hypercharge, where ↵R comes
from the usual PS matching.

fields:

QB =
1

4
QB-L +

1

6
Q27 +

1

12
Q �

1

3
Q270 , (17)

where the global charges are normalised to unity. On the
SM fields, this charge matches baryon number. Being
respected by all bulk interactions, it protects the proton
from decaying. As in the minimal SU(5) aGUT model
[22], the components of the bulk fields with opposite pari-
ties on the two boundaries, shown by the black symbols in
Fig. 2, have unusual QB assignments, hence the lightest
state among them is stable. All zero modes have stan-
dard baryon number assignments, including the non-SM
states. A detailed description of the components is pre-
sented in the supplementary material.

Another feature of the bulk model is the presence of 4D
anomalies at the level of the gauge symmetry PS⇥U(1) ,
which can only stem from the matter fields as the 78 is
real. As shown in Fig. 2, however, the zero modes of
the 27 and 270 form e↵ectively complete representations
of SO(10) � PS, namely 161 + 102 + 1�4. Hence, the
PS gauge symmetry is anomaly-free. For instance, the
161 is formed by the (4,2,1)1 zero mode in �27 and the
(4̄,1,2)1 in �c

270 . The 4D anomalies, therefore, only in-
volve the U(1) charges, where the coe�cients respect
A(161) = A(102+1�4). The U(1) gauge anomalies can
only be cancelled by adding fields on the SO(10) bound-
ary. This leads to two possible models:

i) Two 16�1 multiplets, whose components match the
two SM light generations. Hence, the total number
of SM generations is predicted to be three by gauge
anomaly cancellation. However, baryon number is
violated by the localised gauge and Yukawa inter-
actions.

ii) Two 10�2 + 14, corresponding to massive states,
while the light generations are localised on the
other boundary.

In the first case i), the two localised superfields �i
16�1

allow for the following couplings to the bulk field con-
taining the Higgs doublets:

y
ij �i

16�1
�j

16�1
�c

27|102
. (18)

This term, and the SO(10) gauge interactions of the lo-
calised fields, violate baryon and lepton numbers, as in
traditional GUT models, via couplings with the first KK
resonances. For flat extra dimensions, this would lead to
a direct bound mKK & 1016 GeV [43]. We remark that
warping the extra space can lead to a mild suppression
of these coupling [44], hence it would be feasible to lower
the KK scale by one or two orders of magnitude. Fur-
thermore, additional localised superfields can be added in
order to explain the di↵erent values of the Yukawa cou-
plings, as done in minimal SO(10) GUTs [8]: the presence
of large representations does not spoil the UV fixed point
as they only contribute to logarithmic running, which is
overpowered by the bulk power-law running. As an ex-
ample, in Fig. 3 we show a case with mKK = 1015 GeV.
The mixing between the third generation and the light
ones, however, is forbidden by the U(1) gauge symme-
try, and it requires additional localised fields, see supple-
mentary material.
In the second case ii), one can add two copies of the fol-

lowing set of superfields on the SU(6)L ⇥ SU(2)R bound-
ary:

�j
(15,1) , �

j
(6̄,2) , �

j
(20,2) , j = 1, 2 . (19)

The above fields match the bulk field components con-
taining the third generation, hence the three generations
share similar localised couplings. The localised Yukawas
are written in terms of the following 3⇥ 3 matrices

y
ij �i

(15,1)�
i
(20,2) �

c
27|(6,2) + �

ij �i
(6̄,2)�

j
(20,2) �

c
270 |(1̄5,1) ,

(20)
where i = 3 corresponds to the bulk fields and the second
term gives mass to the unwanted components. As the
above couplings have the same structure of the bulk ones,
the baryon number in Eq. (17) remains conserved and the
mKK scale can be lowered compared to case i). In this
model, it can be as low as the lowest scale allowed by PS
to be around 2000 TeV, which is obtained by using the
current limit on Br (KL ! µ

±e⌥) < 4.7 ⇥ 10�12[45](see
also e.g. [46–48]).

In conclusion, in this letter we presented a new aGUT
based on a supersymmetric exceptional E6 gauge sym-
metry. Its uniqueness stands in the presence of a single
UV fixed point for gauge and Yukawa couplings of the
third generation. The number of SM generations is pre-
dicted by gauge anomaly cancellation. We highlighted
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FIG. 1. Illustration of the E6 aGUT with 5D E6 hypermul-
tiplets in the bulk and SO(10) N = 1 supermultiplets on the
x5 = 0 boundary, as required by gauge anomaly cancellation.

The model, therefore, consists of a supersymmetric E6

gauge theory in five dimensions (5D) with matter fields in
the fundamental 27. The fifth dimension is compactified
on the orbifold S

1
/Z2 ⇥ Z0

2. From the four-dimensional
(4D) point of view, this theory hasN = 2 supersymmetry
[30], hence the gauge and matter superfields consist of

Gauge : ) W
↵
78 + �78 , (1)

Matter : ) �27 + �c
27 , (2)

where W↵ is the vector superfield, while � are the chiral
superfields, with �c

27 having conjugate quantum num-
bers as compared to �27. The model Lagrangian can be
constructed in terms of these components [30–32]. The
orbifold projection, encoded in the two parities Z2 and
Z0
2 centred on the two endpoints of the interval, break

both the N = 2 supersymmetry to N = 1 in 4D and the
gauge symmetry. For the latter, there are three possible
patterns [33]:

A: E6 ! SO(10)⇥U(1) ,

B: E6 ! SU(6)L ⇥ SU(2)R , (3)

C: E6 ! SU(6)R ⇥ SU(2)L ,

where the subscript “L” and “R” refer to the custodial
symmetry in the SM. Choosing any pair of the above
patterns for the two orbifold projections leads to a 4D
gauge theory based on Pati-Salam (PS) [34] times an
additional abelian U(1) symmetry: SU(4) ⇥ SU(2)L ⇥

SU(2)R⇥U(1) . However, only one choice is phenomeno-
logically viable. For the combination B-C, it is not pos-
sible to obtain chiral zero modes for the SM fermions,
while for A-C the zero mode spectrum does not allow for
the breaking of the PS symmetry. Hence, the only viable
model is based on A-B as illustrated in Fig. 1. The field
content is summarised in Fig. 2, where we highlight the
decomposition with respect to the various subgroups of
E6, and we include two matter fields in the fundamental
representation, 27 and 270, with di↵erent orbifold pari-
ties. As we will see below this is the minimal and unique
embedding of one SM generation in the bulk.

A similar set-up was first proposed as a string-inspired
standard GUT [29]. Our proposal di↵ers in two crucial
features: a) the unification is driven asymptotically by
the UV fixed point; b) all non-SM zero mode fields receive
mass without the need for additional bulk fields. The
second feature is crucial to maintain the UV fixed point
of the theory.
The UV fixed point emerges from the power law cor-

rections to the renormalisation group evolution of the
e↵ective 4D gauge coupling [12]. The beta function can
be expressed as an e↵ective 5D ’t Hooft coupling [21],
defined in terms of the 4D coupling ↵ = g

2
/4⇡ as

↵̃(µ) = ↵(µ)
µ

mKK
, (4)

where µ is the renormalisation scale and mKK is the mass
of the first Kaluza-Klein (KK) state. At one loop, the
beta function for ↵̃ reads

d↵̃

d lnµ
= ↵̃�

b5

2⇡
↵̃
2
, (5)

which is valid for µ � mKK and has a UV zero at ↵̃⇤
UV =

2⇡/b5 for b5 > 0. For our model, we find [35]

b5 =
⇡

2

 
C(G)�

X

i

Ti(Ri)

!
= 3⇡ , (6)

where C(G) = 12 and T (27) = 3 for E6 [36]. Hence, only
one more fundamental can be added in the bulk before
the UV fixed point disappears. As a consequence, the
model in Ref.[29] does not have such UV fixed point. In
our model, instead, the UV fixed point remains perturba-
tive, hence endorsing the model with enhanced calcula-
bility. We remark that this behaviour remains the same
for both flat and warped extra dimensions [37].
From the 4D point of view, the theory is invariant

under PS⇥U(1) , which we use to classify the relevant
states. At the zero mode level, besides the gauge super-
fields in W

↵
78, the chiral superfields contain the following

states:

�78 � (4̄,1,2)�3 + (4,1,2)3 , (7)

�27 � (4,2,1)1 , (8)

�c
27 � (1,2,2)2 , (9)

�270 � (4̄,1,2)1 , (10)

�c
270 � (6,1,1)2 + (1,1,1)�4 , (11)

shown as coloured symbols in Fig. 2. We can already
see that the 27 contains the left-handed SM fermions
(4,2,1)1 and two Higgs doublets in (1,2,2)2. The PS
Yukawa couplings stem from the gauge interactions of the
27 with the �78 component of the gauge supermultiplet
[38, 39], leading to:

g �c
27�78�27 �

g
p
2
(1,2,2)2 (4̄,1,2)�3 (4,2,1)1 , (12)
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[30], hence the gauge and matter superfields consist of
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↵
78 + �78 , (1)

Matter : ) �27 + �c
27 , (2)

where W↵ is the vector superfield, while � are the chiral
superfields, with �c

27 having conjugate quantum num-
bers as compared to �27. The model Lagrangian can be
constructed in terms of these components [30–32]. The
orbifold projection, encoded in the two parities Z2 and
Z0
2 centred on the two endpoints of the interval, break

both the N = 2 supersymmetry to N = 1 in 4D and the
gauge symmetry. For the latter, there are three possible
patterns [33]:

A: E6 ! SO(10)⇥U(1) ,

B: E6 ! SU(6)L ⇥ SU(2)R , (3)

C: E6 ! SU(6)R ⇥ SU(2)L ,

where the subscript “L” and “R” refer to the custodial
symmetry in the SM. Choosing any pair of the above
patterns for the two orbifold projections leads to a 4D
gauge theory based on Pati-Salam (PS) [34] times an
additional abelian U(1) symmetry: SU(4) ⇥ SU(2)L ⇥

SU(2)R⇥U(1) . However, only one choice is phenomeno-
logically viable. For the combination B-C, it is not pos-
sible to obtain chiral zero modes for the SM fermions,
while for A-C the zero mode spectrum does not allow for
the breaking of the PS symmetry. Hence, the only viable
model is based on A-B as illustrated in Fig. 1. The field
content is summarised in Fig. 2, where we highlight the
decomposition with respect to the various subgroups of
E6, and we include two matter fields in the fundamental
representation, 27 and 270, with di↵erent orbifold pari-
ties. As we will see below this is the minimal and unique
embedding of one SM generation in the bulk.

A similar set-up was first proposed as a string-inspired
standard GUT [29]. Our proposal di↵ers in two crucial
features: a) the unification is driven asymptotically by
the UV fixed point; b) all non-SM zero mode fields receive
mass without the need for additional bulk fields. The
second feature is crucial to maintain the UV fixed point
of the theory.
The UV fixed point emerges from the power law cor-

rections to the renormalisation group evolution of the
e↵ective 4D gauge coupling [12]. The beta function can
be expressed as an e↵ective 5D ’t Hooft coupling [21],
defined in terms of the 4D coupling ↵ = g

2
/4⇡ as

↵̃(µ) = ↵(µ)
µ

mKK
, (4)

where µ is the renormalisation scale and mKK is the mass
of the first Kaluza-Klein (KK) state. At one loop, the
beta function for ↵̃ reads

d↵̃

d lnµ
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, (5)

which is valid for µ � mKK and has a UV zero at ↵̃⇤
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2⇡/b5 for b5 > 0. For our model, we find [35]
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where C(G) = 12 and T (27) = 3 for E6 [36]. Hence, only
one more fundamental can be added in the bulk before
the UV fixed point disappears. As a consequence, the
model in Ref.[29] does not have such UV fixed point. In
our model, instead, the UV fixed point remains perturba-
tive, hence endorsing the model with enhanced calcula-
bility. We remark that this behaviour remains the same
for both flat and warped extra dimensions [37].
From the 4D point of view, the theory is invariant

under PS⇥U(1) , which we use to classify the relevant
states. At the zero mode level, besides the gauge super-
fields in W
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see that the 27 contains the left-handed SM fermions
(4,2,1)1 and two Higgs doublets in (1,2,2)2. The PS
Yukawa couplings stem from the gauge interactions of the
27 with the �78 component of the gauge supermultiplet
[38, 39], leading to:
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2. From the four-dimensional
(4D) point of view, this theory hasN = 2 supersymmetry
[30], hence the gauge and matter superfields consist of

Gauge : ) W
↵
78 + �78 , (1)

Matter : ) �27 + �c
27 , (2)

where W↵ is the vector superfield, while � are the chiral
superfields, with �c

27 having conjugate quantum num-
bers as compared to �27. The model Lagrangian can be
constructed in terms of these components [30–32]. The
orbifold projection, encoded in the two parities Z2 and
Z0
2 centred on the two endpoints of the interval, break

both the N = 2 supersymmetry to N = 1 in 4D and the
gauge symmetry. For the latter, there are three possible
patterns [33]:

A: E6 ! SO(10)⇥U(1) ,

B: E6 ! SU(6)L ⇥ SU(2)R , (3)

C: E6 ! SU(6)R ⇥ SU(2)L ,

where the subscript “L” and “R” refer to the custodial
symmetry in the SM. Choosing any pair of the above
patterns for the two orbifold projections leads to a 4D
gauge theory based on Pati-Salam (PS) [34] times an
additional abelian U(1) symmetry: SU(4) ⇥ SU(2)L ⇥

SU(2)R⇥U(1) . However, only one choice is phenomeno-
logically viable. For the combination B-C, it is not pos-
sible to obtain chiral zero modes for the SM fermions,
while for A-C the zero mode spectrum does not allow for
the breaking of the PS symmetry. Hence, the only viable
model is based on A-B as illustrated in Fig. 1. The field
content is summarised in Fig. 2, where we highlight the
decomposition with respect to the various subgroups of
E6, and we include two matter fields in the fundamental
representation, 27 and 270, with di↵erent orbifold pari-
ties. As we will see below this is the minimal and unique
embedding of one SM generation in the bulk.

A similar set-up was first proposed as a string-inspired
standard GUT [29]. Our proposal di↵ers in two crucial
features: a) the unification is driven asymptotically by
the UV fixed point; b) all non-SM zero mode fields receive
mass without the need for additional bulk fields. The
second feature is crucial to maintain the UV fixed point
of the theory.
The UV fixed point emerges from the power law cor-

rections to the renormalisation group evolution of the
e↵ective 4D gauge coupling [12]. The beta function can
be expressed as an e↵ective 5D ’t Hooft coupling [21],
defined in terms of the 4D coupling ↵ = g
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/4⇡ as

↵̃(µ) = ↵(µ)
µ

mKK
, (4)

where µ is the renormalisation scale and mKK is the mass
of the first Kaluza-Klein (KK) state. At one loop, the
beta function for ↵̃ reads
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2⇡/b5 for b5 > 0. For our model, we find [35]
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where C(G) = 12 and T (27) = 3 for E6 [36]. Hence, only
one more fundamental can be added in the bulk before
the UV fixed point disappears. As a consequence, the
model in Ref.[29] does not have such UV fixed point. In
our model, instead, the UV fixed point remains perturba-
tive, hence endorsing the model with enhanced calcula-
bility. We remark that this behaviour remains the same
for both flat and warped extra dimensions [37].
From the 4D point of view, the theory is invariant

under PS⇥U(1) , which we use to classify the relevant
states. At the zero mode level, besides the gauge super-
fields in W

↵
78, the chiral superfields contain the following

states:

�78 � (4̄,1,2)�3 + (4,1,2)3 , (7)

�27 � (4,2,1)1 , (8)

�c
27 � (1,2,2)2 , (9)

�270 � (4̄,1,2)1 , (10)

�c
270 � (6,1,1)2 + (1,1,1)�4 , (11)

shown as coloured symbols in Fig. 2. We can already
see that the 27 contains the left-handed SM fermions
(4,2,1)1 and two Higgs doublets in (1,2,2)2. The PS
Yukawa couplings stem from the gauge interactions of the
27 with the �78 component of the gauge supermultiplet
[38, 39], leading to:

g �c
27�78�27 �

g
p
2
(1,2,2)2 (4̄,1,2)�3 (4,2,1)1 , (12)

↵̃UV =
2⇡

b5
b5 > 0

↵̃UV =
2

3

5.5 Field content and PS⇥U(1) breaking

Appropriate parities are assigned to the bulk fields in order to obtain the SM zero modes as in
Eq. (60). The results are summarised in Tables 6, 7 and 8. If we focus on the zero modes, besides
the PS⇥U(1) gauge superfields (being N=1 supersymmetric in 4D), we have the following chiral
superfield zero modes:

�78 � (4̄,1,2)�3 ⌘ (bc
R, tcR, ⌧cR, ⌫cR) + (4,1,2)3 (64)

�27 � (4,2,1)1 ⌘ (qL, lL) (65)

�c

27 � (1,2,2)2 ⌘ ('h1,'
⇤
h2) (66)

�27X � (4̄,1,2)1 (67)

�c

27X � (6,1,1)2 + (1,1,1)�4 ⌘ ' (68)

The gauge interactions contain the following terms involving �78 components, which correspond
to e↵ective Yukawa couplings for the zero modes (froming a superpotential in 4D):

g �c

27�78�27 )
1
p
2
g (1,2,2)2 (4̄,1,2)�3 (4,2,1)1 (69)

g �c

27X�78�27X ) �
1
p
2
g (1,1,1)�4 (4,1,2)3 (4̄,1,2)1 +

1
p
2
g (6,1,1)2 (4̄,1,2)�3 (4̄,1,2)1 (70)

where the group theory factors have been extracted from [0006017]. The first coupling corresponds
to the SM Yukawa couplings in PS. The second term gives mass to the additional SU(2)R doublets
(the primed fields) via the U(1) breaking VEV. The third term connects the B fields with the
right-handed SM fields: if PS breaking is due to the (4̄,1,2)1 in �27X , then a mixing between B
and bR is generated here. Note that massless states remain here, with the quantum numbers of the
bottom, as no mass term is generated for the fields in (6,1,1)2. A mass for B could be generated
by SUSY breaking terms, or by localised interactions, as we discuss below.

We also recall that g = 1p
24
g.

5.5.1 Matching of gauge and Yukawa couplings

The matching between E6 and PS goes as follows:

g4 = gL = gR ⌘ gE6 , g =
1
p
2
gE6 , yup = ydown =

1
p
2
gE6 , (71)

where yup = yt = y⌫ and ydown = yb = y⌧ .
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FIG. 3. Schematic running of the SM gauge couplings and
third generation Yukawa couplings for two values of mKK,
where the Yukawa values correspond to tan� = 40. The

couplings are rescaled to match the E6 unification: ↵x = 2
y2
x

4⇡

for Yukawas and ↵1 = 5
3↵

0 for hypercharge, where ↵R comes
from the usual PS matching.

fields:

QB =
1

4
QB-L +

1

6
Q27 +

1

12
Q �

1

3
Q270 , (17)

where the global charges are normalised to unity. On the
SM fields, this charge matches baryon number. Being
respected by all bulk interactions, it protects the proton
from decaying. As in the minimal SU(5) aGUT model
[22], the components of the bulk fields with opposite pari-
ties on the two boundaries, shown by the black symbols in
Fig. 2, have unusual QB assignments, hence the lightest
state among them is stable. All zero modes have stan-
dard baryon number assignments, including the non-SM
states. A detailed description of the components is pre-
sented in the supplementary material.

Another feature of the bulk model is the presence of 4D
anomalies at the level of the gauge symmetry PS⇥U(1) ,
which can only stem from the matter fields as the 78 is
real. As shown in Fig. 2, however, the zero modes of
the 27 and 270 form e↵ectively complete representations
of SO(10) � PS, namely 161 + 102 + 1�4. Hence, the
PS gauge symmetry is anomaly-free. For instance, the
161 is formed by the (4,2,1)1 zero mode in �27 and the
(4̄,1,2)1 in �c

270 . The 4D anomalies, therefore, only in-
volve the U(1) charges, where the coe�cients respect
A(161) = A(102+1�4). The U(1) gauge anomalies can
only be cancelled by adding fields on the SO(10) bound-
ary. This leads to two possible models:

i) Two 16�1 multiplets, whose components match the
two SM light generations. Hence, the total number
of SM generations is predicted to be three by gauge
anomaly cancellation. However, baryon number is
violated by the localised gauge and Yukawa inter-
actions.

ii) Two 10�2 + 14, corresponding to massive states,
while the light generations are localised on the
other boundary.

In the first case i), the two localised superfields �i
16�1

allow for the following couplings to the bulk field con-
taining the Higgs doublets:

y
ij �i

16�1
�j

16�1
�c

27|102
. (18)

This term, and the SO(10) gauge interactions of the lo-
calised fields, violate baryon and lepton numbers, as in
traditional GUT models, via couplings with the first KK
resonances. For flat extra dimensions, this would lead to
a direct bound mKK & 1016 GeV [43]. We remark that
warping the extra space can lead to a mild suppression
of these coupling [44], hence it would be feasible to lower
the KK scale by one or two orders of magnitude. Fur-
thermore, additional localised superfields can be added in
order to explain the di↵erent values of the Yukawa cou-
plings, as done in minimal SO(10) GUTs [8]: the presence
of large representations does not spoil the UV fixed point
as they only contribute to logarithmic running, which is
overpowered by the bulk power-law running. As an ex-
ample, in Fig. 3 we show a case with mKK = 1015 GeV.
The mixing between the third generation and the light
ones, however, is forbidden by the U(1) gauge symme-
try, and it requires additional localised fields, see supple-
mentary material.
In the second case ii), one can add two copies of the fol-

lowing set of superfields on the SU(6)L ⇥ SU(2)R bound-
ary:

�j
(15,1) , �

j
(6̄,2) , �

j
(20,2) , j = 1, 2 . (19)

The above fields match the bulk field components con-
taining the third generation, hence the three generations
share similar localised couplings. The localised Yukawas
are written in terms of the following 3⇥ 3 matrices

y
ij �i

(15,1)�
i
(20,2) �

c
27|(6,2) + �

ij �i
(6̄,2)�

j
(20,2) �

c
270 |(1̄5,1) ,

(20)
where i = 3 corresponds to the bulk fields and the second
term gives mass to the unwanted components. As the
above couplings have the same structure of the bulk ones,
the baryon number in Eq. (17) remains conserved and the
mKK scale can be lowered compared to case i). In this
model, it can be as low as the lowest scale allowed by PS
to be around 2000 TeV, which is obtained by using the
current limit on Br (KL ! µ

±e⌥) < 4.7 ⇥ 10�12[45](see
also e.g. [46–48]).

In conclusion, in this letter we presented a new aGUT
based on a supersymmetric exceptional E6 gauge sym-
metry. Its uniqueness stands in the presence of a single
UV fixed point for gauge and Yukawa couplings of the
third generation. The number of SM generations is pre-
dicted by gauge anomaly cancellation. We highlighted
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FIG. 2. Illustration of the three bulk fields in terms of PS⇥U components of the E6 representations. The position on the
grid indicates the quantum numbers under SU(2)L ⇥ SU(2)R, while the symbols represent SU(4) representations. The SO(10)
components are linked by dashed lines and labelled. Finally, the colours indicate the presence of a zero mode: red for the W↵

78

component and blue for the �78, green for the matter � and orange for the �c. The black symbols correspond to components
without a zero mode.

thus the right-handed SM fermions must be the
(4̄,1,2)�3 component of the gauge �78. The gauge inter-
actions of the 270 contain the following zero-mode terms:

g �c
270�78�270 � �

g
p
2
(1,1,1)�4 (4,1,2)3 (4̄,1,2)1

+
g
p
2
(6,1,1)2 (4̄,1,2)�3 (4̄,1,2)1 . (13)

The importance of the couplings above is related to the
breaking of the PS⇥U(1) gauge group down to the SM
one. In fact, the (1,1,1)�4 from the 270 can e↵ectively
break U(1) and also give a mass to the (4,1,2)3 gaug-
inos. Moreover, the presence of a (4,1,2)3 state in the
gauge multiplet allows for the breaking of the PS symme-
try via the Scherk-Schwarz mechanism [40]. The break-
ing of the gauge symmetry down to the SM, therefore,
does not require additional states in this theory. The zero
modes in the (6,1,1)2 component, which behave like a
vector-like bottom quark singlet, can only receive a mass
via a superpotential localised on the SO(10) boundary
with parity A [41].

At the UV fixed point, the matching between E6 and
the PS⇥U(1) couplings reads:

g4 = gL = gR ⌘ g , g =
g
p
2
. (14)

For the SM Yukawa couplings in Eq. (12), we have

y" = y# ⌘
g
p
2
, (15)

where y" = yt = y⌫⌧ is the Yukawa of up-type fermions,
while y# = yb = y⌧ for down-type ones. The identifi-
cation of up and down-type Yukawas occurs at the PS-
breaking scale, which is typically close to mKK, while the
relation between top and bottom mass also depends on

the ratio of Higgs vacuum expectation values, as typical
in supersymmetric models [42]. This ratio, expressed in
terms of tan�, requires

tan� =
hHdi

hHui
=

mt(mKK)

mb(mKK)
⇠ 40 , (16)

where the masses are evaluated at the KK scale. In
Fig. 3 we show a schematic plot of the renormalisation
group evolution of the SM couplings in the E6 model.
For simplicity, we identify the PS and U(1) breaking
scales to mKK, and fix the supersymmetry breaking scale
to 10 TeV, above which the minimal supersymmetric SM
(MSSM) is a good description. The couplings correspond
to the usual 4D ones up to the scale mKK, above which
they are replaced by the corresponding 5D ’t Hooft cou-
plings, defined in Eq. (4). Also, we plot the couplings
rescaled to the E6 values, as in Eqs. (14) and (15), while
the usual PS matching is applied above mKK. This plot
clearly demonstrates that the gauge and Yukawa cou-
plings of the third generation do unify to a single value
thanks to the UV fixed point, independently on the value
of mKK. However, due to the constrained bulk structure,
the light generations must be localised on one of the two
boundaries. Before addressing this issue, there are two
related features of the bulk interactions: baryon number
conservation and the cancellation of 4D gauge anomalies.
Regarding the former, we recall that the theory, at

the level of the SM gauge invariance, features five U(1)
symmetries. Besides the three gauged ones, U(1)B-L �

SU(4), U(1)R � SU(2)R and U(1) , there are two
global charges associated to the matter fields, U(1)27 and
U(1)270 . Among the first three, the SM hypercharge is de-
fined as usual in PS models as 2QY = QB-L+QR. There
is a single global charge that remains after the breaking
of PS and U(1) , and that is not carried by the Higgs

✦  PS breaking:  
     due to a gauge-scalar 

✦  U(1) breaking by singlet in 27’ 

✦  SUSY breaking - to be studied
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Summary

✦  aGUT is a novel paradigm, avoiding shortcomings of traditional GUTs 

✦  5D models are very constrained and successful cases can be classified 

✦  A new aGUT based on a SUSY E6 gauge theory is proposed  

✦  It features a single UV fixed point for gauge and Yukawa couplings of 
    the third generation  

✦  The number of SM generations is predicted by gauge anomaly cancellation 
    (Model I) 

✦  A second option (Model II) preserves baryon number and allows to lower 
    the compactification scale  

✦  The model has far reaching implications both for low energy 
    phenomenology (e.g. in the flavour sector) and at high energies, via new 
    UV model building opportunities


