Enhancing Phase Transition Calculations through Polynomial Fitting and Neural Network Approximation

GUTPC 2025

Yang Zhang, Henan Normal University

张阳, 河南师范大学理论物理中心

In collaboration with Ligong Bian, Hongxin Wang, Yang Xiao, Ji-Chong Yang, Jin Min Yang

Introduction

Yang Zhang (张阳)

Transition parameters

► Bubble nucleation rate

$$\frac{\Gamma}{V} = A(T)e^{-S_E(T)/T}[1 + \mathcal{O}(\hbar)]$$

Nucleation temperature

$$N(T) = \int_{T_{\text{nuc}}}^{T_{\text{tra}}} \frac{\mathrm{d}T}{T} \frac{\Gamma(T)}{H(T)^4} = 1$$

Percolation temperature

$$P(T_{\text{per}}) = \exp\left[-\frac{64\pi}{3}\xi^4 \int_{T_{\text{per}}}^{T_{\text{tra}}} dT' \frac{\Gamma(T')}{T'^6} \left(\frac{1}{T_{\text{per}}} - \frac{1}{T'}\right)^3\right] = 70\%$$

Inverse duration of the phase transition

$$\beta(T) = \frac{d}{dt} \left[\frac{S_E(T)}{T} \right] = TH(T) \frac{d}{dT} \left[\frac{S_E(T)}{T} \right]$$

► Ratio of latent heat to radiation density

$$\alpha = \frac{D\theta}{\pi^2 g_* T_*^4 / 30} = \frac{1}{\pi^2 g_* T_*^4 / 30} \left(V(\phi) - \frac{T}{4} \frac{\partial V(\phi, T)}{\partial T} \right) \Big|_{\phi_t}^{\phi_f}$$

Yang Zhang (张阳)

Transition parameters

► Bubble nucleation rate

$$\frac{\Gamma}{V} = A(T)e^{-S_E(T)/T}[1 + \mathcal{O}(\hbar)]$$

Nucleation temperature

$$N(T) = \int_{T_{\text{nuc}}}^{T_{\text{tra}}} \frac{\mathrm{d}T}{T} \frac{\Gamma(T)}{H(T)^4} = 1$$

Percolation temperature

$$P(T_{\text{per}}) = \exp\left[-\frac{64\pi}{3}\xi^4 \int_{T_{\text{per}}}^{T_{\text{tra}}} dT' \frac{\Gamma(T')}{T'^6} \left(\frac{1}{T_{\text{per}}} - \frac{1}{T'}\right)^3\right] = 70\%$$

Inverse duration of the phase transition

$$\beta(T) = \frac{d}{dt} \left[\frac{S_E(T)}{T} \right] = TH(T) \frac{d}{dT} \left[\frac{S_E(T)}{T} \right]$$

Ratio of latent heat to radiation density

$$\alpha = \frac{D\theta}{\pi^2 g_* T_*^4 / 30} = \frac{1}{\pi^2 g_* T_*^4 / 30} \left(V(\phi) - \frac{T}{4} \frac{\partial V(\phi, T)}{\partial T} \right) \Big|_{\phi_t}^{\phi_f}$$

Yang Zhang (张阳)

Bounce action

► Bounce action

$$S_E = \mathcal{S}_{d-1} \int_0^\infty \rho^{d-1} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) \right)$$

where ϕ satisfies

$$\frac{\mathrm{d}^2 \phi(\rho)}{\mathrm{d}\rho^2} + \frac{\alpha}{\rho} \frac{\mathrm{d}\phi(\rho)}{\mathrm{d}\rho} = \Delta V(\phi)$$

with boundary conditions

$$\frac{\mathrm{d}\phi(\rho)}{\mathrm{d}\rho} \bigg|_{\rho=0} = 0, \quad \frac{\mathrm{d}\phi(\rho)}{\mathrm{d}\rho} \bigg|_{\rho=\infty} = 0 \qquad \stackrel{1.25}{\underset{0.75}{\$}} \\ \phi(\rho \to \infty) = \phi_f \qquad 0.00$$

Yang Zhang (张阳)

 1.75°

1.50

The under/over-shooting method

Enhancing PT Calculations through Fitting and NN Approximation

3
35
73
09
58
531
49
892
713

Bounce action

Tools for calculating bounce action

 CosmoTransitions 	තු 10 ⁶
• PhaseTracer2	10 ⁻³
• BSMPT3	10^{-6} 10^{0}
 AnyBubble 	difference 10^{-2}
 BubbleProfiler 	Relative P-01
 FindBounce 	10^{-6} 10^{1}
SimpleBounce	() B B B B
	·Ħ 10 ⁻³

 $V(\chi) = \frac{-4\alpha + 3}{2}\chi^2 - \chi^3 + \alpha\chi^4$

From Bubbleprofiler

Enhancing PT Calculations through Fitting and NN Approximation

Bounce action

Tools for calculating bounce action

 CosmoTransitions 	10^{6} S 10^{3}
• PhaseTracer2	10 ⁻³
• BSMPT3	10^{-6} 10^{0}
 AnyBubble 	difference 10^{-2}
 BubbleProfiler 	Relative 10-4
 FindBounce 	10^{-6} . 10^{1} .
 SimpleBounce 	$\underbrace{\mathbf{s}}_{\mathrm{eq}} 10^{-1}$
	·Ħ 10 ⁻³

We are not adding a new tool here.

 $V(\chi) = \frac{-4\alpha + 3}{2}\chi^2 - \chi^3 + \alpha\chi^4$

From Bubbleprofiler

Enhancing PT Calculations through Fitting and NN Approximation

Transition parameters

► Bubble nucleation rate

$$\frac{\Gamma}{V} = A(T)e^{-S_E/T}[1 + \mathcal{O}(\hbar)]$$

Nucleation temperature

$$N(T) = \int_{T_{\text{nuc}}}^{T_{\text{tra}}} \frac{\mathrm{d}T}{T} \frac{\Gamma(T)}{H(T)^4} = 1$$

Percolation temperature

$$P(T_{\rm per}) = \exp\left[-\frac{64\pi}{3}\xi^4 \int_{T_{\rm per}}^{T_{\rm tra}} dT' \frac{\Gamma(T')}{T'^6} \left(\frac{1}{T_{\rm per}} - \frac{1}{T'}\right)^3\right]$$

Inverse duration of the phase transition

$$\beta(T) = \frac{d}{dt} \left(\frac{S_E}{T}\right) = TH(T) \frac{d}{dT} \left(\frac{S_E}{T}\right)$$

Ratio of latent heat to radiation density

$$\alpha = \frac{D\theta}{\pi^2 g_* T_*^4 / 30} = \frac{1}{\pi^2 g_* T_*^4 / 30} \left(V(\phi) - \frac{T}{4} \frac{\partial V(\phi, T)}{\partial T} \right) \Big|_{\phi_t}^{\phi_f}$$

Yang Zhang (张阳)

SSM, BP1

Enhancing PT Calculations through Fitting and NN Approximation

Yang Zhang (张阳)

- > Can we find a function to model the action curve?
- > If achievable, this would enable us to:
 - Precisely calculate the β parameter
 - Perform rapid computations of the T_{per}
- Using machine learning?
- Polynomial fitting is enough.

••••

neglect the viscous damping term in the bounce equation:

$$\frac{\mathrm{d}^2 \phi}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}\phi}{\mathrm{d}r} = \frac{\partial V_{\mathrm{eff}}(\phi;T)}{\partial \phi} \quad \rightarrow \quad \frac{\mathrm{d}^2 \phi}{\mathrm{d}r^2} = \frac{\partial V_{\mathrm{eff}}(\phi;T)}{\partial \phi} \quad \rightarrow \quad \frac{\mathrm{d}\phi}{\mathrm{d}r} = \sqrt{2V_{\mathrm{eff}}(\phi;T)} \,.$$

Define the surface tension of the bubble

$$\sigma = \int_0^\infty dr \left[\frac{1}{2} \left(\frac{d\phi}{dr} \right)^2 + V_{\text{eff}}(\phi; T) \right] = \int_{\phi_t}^{\phi_f} d\phi \sqrt{2V_{\text{eff}}(\phi; T)},$$
$$S_E = 4\pi \int_0^{+\infty} r^2 dr \left[\frac{1}{2} \left(\frac{\partial\phi}{\partial r} \right)^2 + V_{\text{eff}}(\phi; T) \right] = 4\pi R^2 \sigma - \frac{4}{3}\pi R^3 \epsilon.$$

$$\begin{aligned} \epsilon &= V_{\text{eff}}(\phi_f; T) - V_{\text{eff}}(\phi_t; T) = \left(\frac{\partial V_{\text{eff}}(\phi_f; T)}{\partial T} \bigg|_{T=T_c} - \frac{\partial V_{\text{eff}}(\phi_t; T)}{\partial T} \bigg|_{T=T_c} \right) \left(T - T_c \right) \\ S_E &= \frac{16\pi\sigma^3}{3\epsilon^2} \propto \frac{1}{(T - T_c)^2} \end{aligned}$$

Enhancing PT Calculations through Fitting and NN Approximation

Yang Zhang (张阳)

> In the thin-wall approximation, the potential difference $\epsilon = V_{\text{eff}}(\phi_f; T) - V_{\text{eff}}(\phi_f; T)$ is much smaller than the height of the barrier, so we

where R is the radius of the critical bubble and can be calculated by minimization of S_E , $R = \frac{2\sigma}{\epsilon}$. As

C

> Therefore, it is reasonable to use the polynomial fitting formula

$$S_E = \frac{\prod_{i=0}^{n_{\text{order}}} q_i T^i}{(T - T_c)^2}$$

And one can get the expression for the inverse phase transition duration time

$$\frac{\beta}{H} = \frac{\sum_{i=1}^{n_{\text{order}}} q_i i T^i (T - T_c) - \sum_{i=0}^{n_{\text{order}}} q_i T^i (3T - T_c)}{T(T - T_c)^3}$$

Yang Zhang (张阳)

Enhancing PT Calculations through Fitting and NN Approximation

Action curve for one-dimensional toy model

To validate the polynomial fitting approach, we utilize a 1D toy model in which the action can be accurately computed.

$$V_{\rm eff}(\phi;T) = (cT^2$$

> It mimics a simple model that includes high- temperature corrections.

Yang Zhang (张阳)

$$(-m^2)\phi^2 + \kappa\phi^3 + \lambda\phi^4$$

Enhancing PT Calculations through Fitting and NN Approximation

Action curve for one-dimensional toy model

- The fitting results align very well with the raw data.
- > We utilize the mean square error (MSE) to quantify the degree of agreement,

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{S_E(T_i)}{T_i} - \frac{\hat{S}_E(T_i)}{T_i} - \frac{\hat{T}_E(T_i)}{T_i} \right)$$

> With the factor of $(T - T_C)^2$, the MSE drops quickly with the increasing of n_{order} .

Action curve for one-dimensional toy model

Enhancing PT Calculations through Fitting and NN Approximation

► A random scan in $c \in [0,2], m^2 \in [0,200],$ $\lambda \in [0,2], \kappa \in [-30,0].$ > The majority of samples exhibit an MSE below 1, with a maximum value of 4.2.

 $S_E/T_{\rm nuc} \simeq 140$ The MSE exceeds 1 only for $\Delta T < 2 \text{ GeV}$

wildly used in instructional studies of phase transition:

$$V_{0}(h,s) = -\frac{\mu_{H}^{2}}{2}h^{2} + \frac{\lambda_{H}}{4}h^{4} - \frac{\mu_{S}^{2}}{2}s^{2} + \frac{\lambda_{S}}{4}s^{4} + \frac{\lambda_{HS}}{4}h^{2}s^{2}$$

$$V_{0}(h,s) + V_{CW}(h,s) + V_{CT}(h,s) + V_{1T}(h,s;T) + V_{ring}(h,s;T)$$

$$V_{0}(h,s) = -\frac{\mu_{H}^{2}}{2}h^{2} + \frac{\lambda_{H}}{4}h^{4} - \frac{\mu_{S}^{2}}{2}s^{2} + \frac{\lambda_{S}}{4}s^{4} + \frac{\lambda_{HS}}{4}h^{2}s^{2}$$
$$V_{\text{eff}}(h,s;T) = V_{0}(h,s) + V_{\text{CW}}(h,s) + V_{\text{CT}}(h,s) + V_{1\text{T}}(h,s;T) + V_{\text{ring}}(h,s;T)$$

We choose the OS-like scheme, the Landau gauge and the Parwani method:

$$V_{\rm CW}(h,s) + V_{\rm CT}(h,s) = \sum_{i} (-1)^{s_i} \frac{g_i}{64\pi^2} \left\{ m_i^4(h,s) \left[\log \frac{m_i^2(h,s)}{m_i^2(v_h,v_s)} - \frac{3}{2} \right] + 2m_i^2(h,s)m_i^2(v_h,v_s) \right\}$$
$$V_{\rm 1T}(h,s) = \frac{T^4}{2\pi^2} \left[\sum_{B} g_B J_B \left(\frac{m_B(h,s)}{T} \right) + \sum_{F} g_F J_F \left(\frac{m_F(h,s)}{T} \right) \right]$$

Enhancing PT Calculations through Fitting and NN Approximation

Yang Zhang (张阳)

> Now we turn to a physical model, the singlet scalar extensions of the Standard Model, which is

wildly used in instructional studies of phase transition:

Yang Zhang (张阳)

> Now we turn to a physical model, the singlet scalar extensions of the Standard Model, which is

Enhancing PT Calculations through Fitting and NN Approximation

17

Yang Zhang (张阳)

- The fitting results also align very well with the raw data for most of the samples.
- The samples of large MSE are attributed to incorrect S_{E} .
- After excluding these erroneous S_E , we can achieve good agreement.
- As this serves as an auxiliary approach, users retain the flexibility to revert to traditional methods when necessary.

Yang Zhang (张阳)

- The fitting results also align very well with the raw data for most of the samples.
- The samples of large MSE are attributed to incorrect S_F .
- After excluding these erroneous S_E , we can achieve good agreement.
- As this serves as an auxiliary approach, users retain the flexibility to revert to traditional methods when necessary.

Yang Zhang (张阳)

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \frac{f(x+h) - f(x-h)}{2h}$$

Yang Zhang (张阳)

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \frac{f(x+h) - f(x-h)}{2h}$$

Enhancing PT Calculations through Fitting and NN Approximation

21

Yang Zhang (张阳)

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \frac{f(x+h) - f(x-h)}{2h}$$

Calculate one β/H for 10 times with different *h*

	<i>h</i> = 1	<i>h</i> = 0.1	<i>h</i> = 0.01	<i>h</i> = 0.001	Fititng
1	1621.95	1573.90	1530.38	1461.57	1500.25
2	1622.96	1534.27	1915.43	901.45	1500.24
3	1622.34	1533.25	1505.82	991.253	1499.92
4	1618.56	1503.12	1278.73	-1502.6	1500.33
5	1621.08	1466.95	1202.39	5570.78	1500.12
6	1579.43	1503.90	1635.98	845.765	1500.00
7	1622.35	1506.99	1691.52	1728.72	1499.98
8	1623.08	1517.53	1077.92	2533.38	1500.44
9	1620.85	1503.17	1171.85	-380.135	1500.08
10	1622.14	1523.33	1812.96	1863.13	1500.13
Mean	1617.47	1516.64	1482.30	1401.33	1500.15
Uncertainty	12.74	26.46	273.30	1769.83	0.15

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \frac{f(x+h) - f(x-h)}{2h}$$

Yang Zhang (张阳)

- ► It is doable to model the action curve using polynomial fitting.
- For one benchmark point, we only need to calculate action about 30 times, then we can
 - Precisely calculate the β
 - Rapidly calculate the $T_{\rm nuc}$ and $T_{\rm per}$.
 - And one more thing.

23

Yang Zhang (张阳)

> This allows them to be predicted via neural network approximation.

Enhancing PT Calculations through Fitting and NN Approximation

> The transition parameters changes smoothly with the Lagrangian Parameters.

Yang Zhang (张阳)

Yang Zhang (张阳)

Yang Zhang (张阳)

Enhancing PT Calculations through Fitting and NN Approximation

> We can verify the action curve by sampling several points along the line.

This ensures that the predicted result is 100% accurate.

27

> Step 1: Distinguish the parameter space that has valid action curve

Enhancing PT Calculations through Fitting and NN Approximation

Yang Zhang (张阳)

> Step 3: Predict the polynomial coefficients

samples and validated on 51k samples.

> Approximately 71.48% of the cases have a relative error of less than 30%.

Yang Zhang (张阳)

Enhancing PT Calculations through Fitting and NN Approximation

> A fast KAN network with architecture 13 - 64 - 64 - 64 - 64 - 64 - 1, trained on 350k

Summary

- > We find that the sixth-order polynomial fitting can provide an excellent for accurately calculating transition temperatures and gravitational wave spectra.
- > We can use neural networks to predict action curves directly from model accuracy
- curves in CosmoTransitions and PhaseTracer2 are almost ready.

approximation for the groomed action curves. This approach offers advantages

Lagrangian parameters. This method enables efficient validation of estimation

> The paper is in preparation, but the codes of our polynomial fitting for action

Thank you!

Yang Zhang, Henan Normal University