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PRELUDE
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N The main topic of this talk is cosmological inflation in string

theory. After introducing key concepts, I will discuss:

• Moduli stabilization

• Inflation in large volume compactifications

N Inflation and Moduli Fields in String Theory

In string theory, inflation can be driven by special scalar fields

called moduli fields, which arise from the compactification of

extra dimensions.

N The Need for Moduli Stabilization

For low-energy effective models to match observations, these

moduli must be stabilized. Otherwise, fundamental parameters,

such as gauge couplings and masses, would remain undetermined.

N Key Challenges To clarify why this is a critical issue, I will first

provide some essential background in the following slides.
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Key Facts About Cosmology and de Sitter Vacua

N Major Observational Discovery (Late 1990s)

The universe’s expansion is accelerating!

This phenomenon is best explained by the existence of Dark

Energy - a dominant component of the universe’s energy density.

N General Relativity Interpretation

Dark Energy enters Einstein’s equations as a positive cosmological

constant Λ:

Λ ≈ 10−122 (inM4
Planck units)

Physical Meaning:

Represents vacuum energy

Exerts negative pressure, driving cosmic acceleration
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N From the Effective Field Theory point of view:

N ∃ a simple description in terms of:

Potential Energy V (φ) of a scalar field, φ

L

V(f)

f

N V (φ) exhibits a (possibly metastable ) positive minimum

corresponding to a so called:

N de Sitter vacuum N
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NN Scalar Potential & Inflation: With a few additional

conditions, the scalar potential V (φ) can support cosmological

inflation.

N Many effective field theory (EFT) models already satisfy these

constraints

NN The Key Challenge: Successfully embedding inflation in a

consistent string theory framework.
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N String theory naturally provides scalar fields (moduli) which

arise from compactifications. These fields offer a pathway to model

inflation and other phenomena.

However, string compactifications introduce new complications:

• They typically produce a large number of massless moduli in the

effective 4D theory.

• These moduli correspond to geometric deformations of the

compact space

N Why is this problematic?

At the EFT level:

• Massless scalars can mediate long-range fifth forces (ruled out by

experiments).

• They can also lead to cosmological inconsistencies (e.g.,

unobserved light particles, moduli overproduction).
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N Tasks N

N Generate a potential and assure positive mass-squared

for all moduli fields, a project usually refer to as:

⇒ Moduli Stabilisation ⇐

NN Look for possible Inflaton candidates among the moduli
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I will present viable scenarios for

⋆ moduli stabilisation and inflation ⋆

in Large Volume Compactifications

within Type-IIB String Theory framework
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NN Some Moduli in Type IIB String Theory

1. N Dilaton eφ = 1
gs
, (gs : string coupling)

Controls the worldsheet perturbative expansion of the theory

2. N p-potentials

Cp: p-form potentials which define the field strengths:

Fp+1 = dCp,

N Scalars C0, φ → combined to axio-dilaton modulus:

S = C0 + i eφ → C0 + igs
−1

3. U i, Complex Structure (CS) moduli· · · related to shape →
... analogous to the complex structure τ of the 2-torus T 2

4. T i : Kähler (size) moduli analogous to the overall size of T 2.

Tk = ck − iτk



–11–

The Potentials

N Low energy dynamics can be captured by a holomorphic

superpotential W ,

W0 =

∫

G3 ∧ Ω(Ua), (G3 := F3 − SH3) (1)

and a real Kähler potential K

K0 = − log[−i(S − S̄)]− 2 log (V(τk))− log[−i

∫

Ω ∧ Ω̄] (2)

N The F-term contributions to the scalar potential of 4D N = 1

from the type IIB are encoded in

V = eK(KAB(DAW )(D
B
W )− 3|W |2)

,
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⋆ Large Volume Scenarios (LVS) ⋆

in Type-IIB String Theory

↓↓

Volume of compactified dimensions defined through Kähler moduli:

V =
1

3!
kijkt

itktk, tk = −ImT k

LVS lowers the string scale since the following relation holds:

M2
s =

g2sM
2
Pl

V
(in string units ℓs = 2π

√
α′). For example, if

V ∼ 105, then Ms ∼ 1016GeV

V ∼ 1015, then Ms ∼ 1010GeV
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Moduli Stabilisation

Moduli stabilisation in 4D type IIB effective supergravity

models follows a two-step procedure.

N First, one fixes the CS moduli Ua and the axio-dilaton S by the

leading order W0 ≡ Wflux induced by the 3-form fluxes (F3, H3)

N W-Flatness conditions:

DUa
W = 0, DSW = 0 :

⇒ Ua and S stabilised⇐
but!

N Kähler moduli /∈ W0 ⇒ remain unfixed! N

⋆ No-scale structure protects the Kähler moduli Tα → remain

massless at tree-level.
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Quantum Corrections

NN At a second step the Kähler moduli, Tα , can be stabilised by

non-perturbative corrections in W and α′ and string-loop (gs)

corrections in K:

W = W0 +Wnp(S, Tα),

K = Kcs − ln
[
− i (S − S̄)

]
− 2 lnU , (U = U(V, α′, · · · )) (3)

U is a function of V , α′ and string-loop corrections.
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The GVW superpotential:

W0 =

∫

G3 ∧ Ω(Ua) , (4)

W0 is corrected by non-perturbative (NP) contributions.

N NP contributions can be generated by divisorsa,which are stable

under perturbations and have fixed complex structures, i.e., rigid

ones, such as del Pezzo (dP) divisors. Generically

W = W0 +
∑

k

Ake
−akTk (5)

generated by D-brane instantons and gaugino condensation.

The coefficients Ak may depend on complex structure moduli,

which are already fixed at the first step.
ai.e. special types of submanifolds, associated with moduli, where D7 branes

can be wrapped
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The Kähler potential:

Mainly two types of corrections:

A) Leading α′3 corrections in the Kähler potential depend on Euler

Characteristic χ: (Becker et al, hep-th/0204254 )

ξ = − ζ(3)

4(2π)3
χ

The α′3 corrections are incorporated into the Kähler potential

through the shift (Einstein frame):

V̂ → U = V̂ +
ξ

2

1

gs3/2
.

Then, the α′ corrected Kähler potential acquires the form:

Kα′ = − log(−i(S − S̄))− 2 log(U)− log(−i

∫

Ω ∧ Ω̄), (6)
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B) multigraviton scattering

generates higher derivative couplings in curvature ∝ R4 in 10-d

string IIB action.

Upon compactification, R4 leads to a new localised Einstein

Hilbert (EH) term in the bulk,

R4 → REH

In the presence of D7-brane stacks they contribute to the Kähler

potential (Antoniadis, Chen, GKL: JHEP 01 (2020) 149)

K = −2 log (V + ξ/2 + γ logV)

γ calculable coefficient:

γ = −1

2
gsT0ξ (7)
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N The Inflaton in String Compactifications

N 1. Candidate Inflaton Fields

In string theory, the inflaton can be identified with various moduli

fields:

• Volume modulus (controls overall compactification size)

• Kähler moduli (govern complex structure deformations)

• Complex Structure (CS) moduli

• Axionic partners (natural candidates for slow-roll inflation)
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⋆ ⋆

↓

FIBRE INFLATION (FI)

N Two basic approaches will be analyzed:

Non Perturbative

&

Perturbative
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⋆ A ⋆

↓

Short description of:

Non-Perturbative Moduli Stabilisation

& Slow Roll Inflation



–21–

⋆ LVS dominant models are based on the following type of

volume:

V = f 3

2

(τi)−
Ns∑

j=1

λjτj
3/2

A simple example with three Kähler moduli h1,1 = 3

(see e.g. 1801.05434, Cicoli, Ciupke, Mayrhofer, Shukla)

In suitable divisor basis D̂b, D̂f , D̂s, the internal volume is:

V = λ1τb
√
τf − λjτs

3/2

N Assume only α′3 corrections in Kähler potential and

W = W0 +Ase
−iasTs ,
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Step 1:The overall Volume V, and the volume of the small

blow-up divisor τs are stabilised by corrections described above.

Then ∃ h1,1 − 2 = 1 direction remains flat which means that there

is a unique inflaton candidate!

Step 2: Subleading O(gs) corrections due to KK exchange and

winding modes fix the remaining d.o.f.

⋆ The potential for leftover modulus τf is flatter ⋆

and thus

⋆ suitable for slow roll inflation. ⋆
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Kähler Cone Constraints

⋆ The Kähler moduli space must be such that ensures a positive

definite Kähler form: ⋆
∫

Ci

J > 0, (J ∼ tiD̂i)

This Kähler Cone Condition (KCC) concerns all topologically

non-trivial effective curves Ci in the internal manifold (Mori Cone).

⋆ Thus, whilst at leading order the would be inflaton τf remains

flat, fixing of V and τs puts bounds on the field range of τf .

however, there is an issue here:

For the canonical field ϕ ∼
√
2/3 log(τf ), these bounds imply:

ϕ . 2.5

Notice however, that for a successful slow roll inflation we need

ϕ ∼ O(10)MPl
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⋆ B ⋆

↓

PERT URBAT IVE FIBRE INFLAT ION
in collaboration with

S. Bera, D. Chakraborty, P. Shukla,

Phys.Rev.D 110 (2024) 10, 106009, 2406.01694
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The perturbative Large Volume Scenario (LVS) [Antoniadis, Chen,

GKL, JHEP 01 (2020) 149] provides a new framework for

implementing Fibre Inflation without invoking non-perturbative

effects - a significant departure from conventional approaches.

N Key Theoretical Advancements

• Circumvents the need for rigid divisors (namely τs associated

with NP-corrections), and thus:

• Removes associated constraints on moduli stabilization

• The inflaton field range is no longer strongly bounded by

geometric conditions

• Enables larger field excursions critical for sustained inflation
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Global Model :

We consider a CY3 with h1,1 = 3

(polytope Id: 249 in the CY database of KS/hep-th 0002240)

N Hodge numbers (h2,1, h1,1) = (115, 3),

N Euler number χ = −224.

N In the divisor basis {D̂1, D̂2, D̂3}, the Kähler form is

J = t1D̂1 + t2D̂2 + t3D̂3

N The only non-zero intersection is k123 = 2 leading to

V = 2 t1 t2 t3 =
1√
2

√
τ1 τ2 τ3

N The Kähler cone conditions are:

KCC: t1 > 0, t2 > 0, t3 > 0. (8)
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Global Model: Subleading Corrections

N Geometry of internal space.

Assuming a configuration of:3×D7 brane-stacks, each one spans 4

compact dimensions while localised at the remaining 2-d.

D7s
Minkowski Compact Dimensions

0 1 2 3 4 5 6 7 8 9

D7a ∗ ∗ ∗ ∗ ∗ ∗ ∗ . .

D7b ∗ ∗ ∗ ∗ ∗ . . ∗ ∗
D7c ∗ ∗ ∗ . . ∗ ∗ ∗ ∗
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Among other things, the divisor intersection analysis shows

• N The three D7-brane stacks which intersect at T2

• N Because D7-brane stacks intersect on non-shrinkable

two-torii ⇒
∃ string-loop effects of the winding-type:

V W
gs = −κ|W |2

V3

∑

a

Cw
a

ta

• N The model does not induce KK-type string-loop corrections

to the Kähler potential.
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All contributions give rise to the following scalar potential:

Veff ≈ Vup +
C1
V3

(

ξ̂ − 4 η̂ + 2 η̂ lnV
)

(9)

+
C2
V4

(

Cw1
τ1 + Cw2

τ2 + Cw3
τ3 +

Cw4
τ1τ2

2(τ1 + τ2)
(10)

+
Cw5

τ2τ3
2(τ2 + τ3)

+
Cw6

τ3τ1
2(τ3 + τ1)

)

+
C3
V3

(
1

τ1
+

1

τ2
+

1

τ3

)

(11)

• Part (9) fixes the volume V.

• Parts (10) and (11) fix one more modulus τk.

Hence:

• two τi are integrated out, and Veff only depends on one

modulus, Veff = V (τf ) ⇒ τf drives inflation
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N Uplifting Methods in Type IIB: From AdS to dS N

In Type IIB flux compactifications, the scalar potential typically

stabilizes moduli in an AdS vacuum. To achieve a dS vacuum the

following uplifting mechanisms could be employed:

N Anti-D3-Branes (KKLT Scenario arXiv:hep-th/0301240)

Introduces D3-branes at the tip of a warped throat.

• Breaks SUSY explicitly.

• Requires tuning to avoid runaway decompactification.

N Non-Perturbative Effects (Kähler Uplifting)

N D-Term Uplifting: Uses anomalous U(1) gauge symmetries with

Fayet-Iliopoulos (FI) terms.
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In the present geometric setup: D-Terms are utilised,

related to universal U(1)’s of D7-stacks:

V D =
g2D7i

2



Qi∂Ti
K +

∑

j

qj |Φj |2




2

,
1

gD7i
2
= ReTi + · · ·

Sketch of Veff vs V (volume) for values of an uplift parameter

ϱ = -0.00695

ϱ = -0.00678 ϱ = -0.00669 > ϱmax

15000 20000 25000


5

10

15

Veff
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Inflationary dynamics:

Define the canonically normalized fields,

ϕα =
1√
2
ln τα, α ∈ {1, 2, 3}, so that

V ∝ e
1√
2
(ϕ1+ϕ2+ϕ3)

The scalar potential takes the form (ϕ → 〈ϕ〉+ φ)

V = C0
(

Cup +R0e
−γφ − e−

γ
2
φ +R1e

γ
2
φ +R2e

γφ
)

, (12)

• The size of up-lift required for dS vacuum is

Cup = 1−R0 −R1 −R2

• D7-brane or T -uplift (1512.04558) can be implemented.
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To examine the predictions for inflation we compute the quantities:

ǫ =
1

2

(
V ′

V

)2

, η =

(
V ′′

V

)

2, ξ =

(
V ′V ′′′

V

)

These determine the following observables:

N density fluctuations

N exponential expansion for cosmological curvature and anisotropy

N spectral tilt of the microwave background anisotropy spectrum

N ratio of the amplitudes of tensor and scalar perturbations

which should be in accordance with experimental values at the

pivot scale, k∗ = 0.05Mpc−1 (setting MP = 1 ):

ns = 1− 6ǫ∗ + 2η∗ = 0.9649± 0.004, r ≈ 6ǫ∗ ≤ 0.034, As =
V∗

24πǫ∗
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A benchmark model:

C0 ∼ 4× 10−10, R1 ∼ 10−6, R2 ∼ ×10−7

which correspond to string parameters:

|W0| = 6, gs = 0.28, 〈V〉 = 6× 103
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Efolds, scalar perturbation amplitude, spectral index:

Ne
∗ = 58, Ps = 2.1× 10−9, ns

∗ = 0.966
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0.00
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1=0.0001

1=0.0005

Figure 1: Plot of spectral index ns vs tensor-to scalar ratio r.
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CONCLUSIONS
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In this talk, I have presented :

N Fibre (Kähler) Inflation

N in Large Volume Compactifications

N with Perturbative Corrections ( PLVS)

• It was shown that Kähler Cone Conditions are milder and easy to

satisfy in PLVS.

• This was instrumental for a string scenario with Fibre Inflation

N The model has Global Embedding within simple CYs having:

• Minimal number of Kähler moduli to accommodate inflation
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N We explicitly demonstrated this mechanism in a well-controlled

compactification:

• Manifold Type: Smooth K3-fibred Calabi-Yau orientifold

• Volume Form: Toroidal-like structure with specific fibration

properties

V =
√
τ1τ2τ3

N Key Features:

• Maintains perturbative control throughout inflationary trajectory

• Preserves consistent effective field theory description

Further investigations:

NPLVS beyond toroidal volume

N Multifield inflation for CY3s with h1,1 > 3
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T HANK YOU FOR YOUR AT T ENT ION
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APPENDIX
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Non-Perturbative approach String Loop Effects

(hep-th/0507131,...,0704.0737)

String-loop effects known as KK and winding types generate new

V KK
gs + V W

gs subleading potential terms for τf .

Scalar potential to leading order in minimal FI model:

VLVS ≈ |W0|2
V2

(
β1

τf 2
− β2

V√τf
+

β3τf
V2

)

+ Vup

• Vup uplift term required to achieve dS minimum.

Such a term is possible by virtue of the presence of suitable

D-branes.
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LogarithmicCorrections

In String Theory:

multigraviton scattering generates higher derivative

couplings in curvature ( see Green et al, hep-th/9704145;

Antoniadis, et al hep-th/9707013, Kiritsis, et al hep-th/9707018)

Type II 10-d effective action with EH & R4 terms:

S ⊃ c

l8s

∫

M10

e−2φR(10) +
d

l2s

∫

M10

(−2ζ(3)e−2φ + 4ζ(2))R4 ∧ e2

Leading correction term in type II-B action:

∝ R4
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Reduction on M4 ×X 6, (with M4 4-d Minkowski) induces:

⇒ c

l8s

∫

M4×X6

e−2φR(10) + 2d
χ

l2s

∫

M4

(ζ(2)− ζ(3)e−2φ)R(4)

︸ ︷︷ ︸

induced EH term

,

localised Einstein Hilbert (EH) term ∝ Euler characteristic

1

3!(2π)3
χ =

∫

R ∧R ∧R

NN this EH term possible in 4-dimensions only!

⇓
χ 6= 0 ⇒ localised graviton kinetic terms: · · · (V + βχ)R · · ·⇒
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NN Introducing 7-branes NN

Localised vertices can emit gravitons and KK-excitations in 6d

⇒ KK-exchange between graviton vertices and D7-branes

k

kz

z

z

k k

k
k

1,0
1,0

1

2,0

2,02

3,n 3,n

3 X

X

X

X

D7

>

y=0 y=ya

A

worldsheet

Figure: non-zero contribution from 1-loop; 3-graviton scattering

amplitude 2 massless 1 KK Graviton scattering 〈V 2
(0,0)V(−1,−1)〉 &

KK-propagating in 2-d towards D7
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Corrections

Final result:

————————————————————————————-

1

(2π)3

∫

M4×X6

e−2φR(10) +
4ζ(2)χ

(2π)3

∫

M4

(1 +
∑

i=1,2,3

e2φTilog(R
i
⊥)R(4) ,

————————————————————————————-


