





# Silk damping in induced gravitational waves: a novel probe for new physics

Yan-Heng Yu (俞彦恒) yhyu@ihep.ac.cn

Institute of High Energy Physics, Chinese Academy of Sciences

2025.4.21 @ HIAS-UCAS

Based on: YHY and Sai Wang: Sci.China Phys.Mech.Astron. 68 (2025) 210412, arXiv: 2405.02960

# Two breakthroughs in 21st century



### Higgs bosons (2012)

additional symmetry breakings?



#### Gravitational waves (2016)

GW astronomy & GW cosmology

**GWs provide new opportunities to detect fundamental particle physics!** 



# GWs in the early Universe

- Primordial GWs
- Preheating GWs
- GWs from first-order phase transition
- GWs from cosmological topological defects
- Induced GWs
- •

### **Evidence for GWB**

#### **PTA experiments**



ApJL 951 (2023) L8: NANOGrav A&A 678 (2023) A50: EPTA, InPTA ApJL 951 (2023) L6: PPTA RAA 23 (2023) 075024: CPTA

#### 

**PPTA** 



**EPTA** 



**CPTA** 



### Induced GWs



Figure 2. Bayes factors for the model comparisons between the new-physics interpretations of the signal considered in this work and the interpretation in terms of SMBHBs alone. Blue points are for the new physics alone, and red points are for the new physics in combination with the SMBHB signal. We also plot the error bars of all Bayes factors, which we obtain following the bootstrapping method outlined in Section 3.2. In most cases, however, these error bars are small and not visible.

ApJL 951 (2023) 1, L11: NANOGrav

### Induced GWs

• Spacetime metric: 
$$ds^2 = a^2 \left\{ -(1+2\phi^{(1)}) d\tau^2 + \left[ (1-2\phi^{(1)})\delta_{ij} + \frac{1}{2}h_{ij}^{(2)} \right] dx^i dx^j \right\}$$

• Induced GWs: 
$$h_{\lambda,\mathbf{k}}'' + 2\mathcal{H}h_{\lambda,\mathbf{k}}' - \nabla^2 h_{\lambda,\mathbf{k}} = 4\mathcal{S}_{\lambda,\mathbf{k}}$$
  $h^{(2)} \sim \phi^{(1)}\phi^{(1)}$ 

$$\mathcal{S}_{\lambda,\mathbf{k}} = \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3/2}} \,\epsilon_{\mathbf{q},ij}^{\lambda} q^{i} q^{j} \left\{ 2\phi_{\mathbf{k}-\mathbf{q}}\phi_{\mathbf{q}} + \frac{4}{3(1+w)\mathcal{H}^{2}} \left[\phi_{\mathbf{k}-\mathbf{q}}' + \mathcal{H}\phi_{\mathbf{k}-\mathbf{q}}\right] \left[\phi_{\mathbf{q}}' + \mathcal{H}\phi_{\mathbf{q}}\right] \right\}$$

classical evolution after inflation

primordial curvature perturbations

# Induced GWs

 $h\!\sim\!\zeta$ 

### cosmic fluid

PRD 75 (2007) 123518; K.N. Ananda, C. Clarkson, D. Wands PRD 76 (2007) 084019: D. Baumann, P.J. Steinhardt, K. Takahashi, K. Ichiki JCAP 09 (2018) 012: J.R. Espinosa, D. Racco, A. Riotto PRD 97 (2018) 123532: K. Kohri, T. Terada

### Silk damping

#### **Cosmic fluid**



perturbation scale  $k^{-1} \ll$  diffusion scale  $k_D^{-1}$ 

Diffusion erases perturbations !

# Silk damping in the CMB

Photon-baryon plasma



#### CMB anisotropy power spectrum



perturbation scale  $k^{-1} \ll$  diffusion scale  $k_D^{-1}$ 

Diffusion erases perturbations !

"Silk damping"

Nature 215 (1967) 5106: J. Silk







 $G = \alpha/M^2$ 



specific BSM models can be considered



#### • Microscopic origin:

particle interaction in cosmic fluid

#### • Within the SM:

dominated by neutrinos

#### • Beyond the SM:

dominated by weakest-interacting particles

#### At particle decoupling:

Silk damping scale ~ horizon scale

#### important for induced GWs

## Silk damping in induced GWs

SCPMA 68 (2025) 210412: YHY and S. Wang











### **Observation (within the SM)**



### **Observation (beyond the SM)**



### **Future detection**

SCPMA 68 (2025) 210412: YHY and S. Wang



### **Future detection**

SCPMA 68 (2025) 210412: YHY and S. Wang



### Conclusion





#### We find a basic relation

$$\left(\frac{f}{1\,\mathrm{Hz}}\right) \sim \mathrm{few} \times 10^{-13} \left(\frac{M'}{1\,\mathrm{GeV}}\right)^{4/3}$$

#### **GW observation**





**Dissipation in cosmic fluid** 



Silk damping



Induced GWs



## Conclusion

- Silk damping is an essential yet unexplored effect for GW observations.
- Silk damping notably suppresses the spectrum of induced GWs at the frequencies related to the decoupling of weakly-interacting particles.
- Within the SM, Silk damping caused by neutrinos will help to determine the origin of the GWB reported by PTA.
- Beyond the SM, Silk damping in induced GWs opens a new road to detect new physics, especially for those at extremely high energy scales.

. Thanks!