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Example: SU(2) versus SO(3) gauge theory

➢ They have the same Lie algebra

➢ But they are not exactly the same:                                  , 

where                         is the center of the group

➢ The consequence of the quotient:

SO(3) only has the integer representations of the Lie algebra 

SU(2) has both the integer and half integer representations of the Lie algebra

➢ In general,                   has the same Lie algebra as    , 

where H is a subgroup of the center.  

The Lie algebra representation R is a representation of G  ⇔ H on R trivial.
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Example: SU(2) versus SO(3) gauge theory

➢ Suppose we have already discovered in the low energy experiment the gauge 

bosons and a Dirac fermion in the adjoint representation of the Lie algebra. 

Can we say the gauge group is SU(2)? 

➢ No, it is either SU(2) or SO(3).

➢ Or, 

➢ When it’s SO(3),               should act trivially in the full theory, i.e. only heavy 

fields of integer representations can present.

➢ Distinguish SU(2) and SO(3) needs the discovery of at least one heavy particle 

of half integer representation.
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The Standard Model
➢ Naively, the gauge group would be

➢ However there is a         subgroups

➢ In the Standard Model this generator acts as

➢ Therefore       trivial indicates that

➢ One can verify all SM matter fields satisfy this constraint

and

# of box in Young diagram mod N for SU(N)



  

Which Standard Model
➢ There are four Standard Model

➢ Here Z
2
 and Z

3
 are the two non-trivial subgroup of Z

6
, which are generated 

by α3 and α2 respectively. They act trivially when

➢ This tells different      have different constraints on the representation of the 

heavy particles, which may indicates different correlations on the Wilson 

coefficients in the low energy EFT.  

[Group Structure of Gauge Theories O’Raifeartaigh, 1986]
[D. Tong 1705.01853]



  

Heavy Particles and SMEFT
➢ We call the particles that are non-trivial under Z

6
 as Z

6
 exotics, if they have 

the decoupling limit, they can be integrated out and generate Wilson 
coefficients in the SMEFT



  

Heavy Particles and SMEFT
➢ We call the particles that are non-trivial under Z

6
 as Z

6
 exotics, if they have 

the decoupling limit, they can be integrated out and generate Wilson 
coefficients in the SMEFT

➢ Z
6
 exotics cannot trigger the electroweak symmetry breaking

– It must be color singlet since color is not broken: 

–              to have charge zero component
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Heavy Particles and SMEFT
➢ We call the particles that are non-trivial under Z

6
 as Z

6
 exotics, if they have 

the decoupling limit, they can be integrated out and generate Wilson 
coefficients in the SMEFT

➢ It is easy to see that no SMEFT operator can be generated at tree level

Therefore loop generation must be considered

SM, trivial under Z
6

non-trivial under Z
6

Z
6
 is the subgroup of gauge 

group → vertex cannot be 
gauge invariant



  

Heavy Particles and SMEFT

➢ Benchmark minimal model: adding one complex scalar:

➢ Integrate out the heavy complex scalar gives:



  

Heavy Particles and SMEFT

➢ From these relations one can solve for the quantum numbers

Group theoretical data Measurable Wilson coefficients



  

Heavy Particles and SMEFT

➢ If the U(1) hypercharge          is measured to be fractional, then neither of 
below constraint can be satisfied, thus          , and resulting in stable 
fractionally charged particle

➢ μ(R)/d(R), discrete values, can be used to falsify this minimal model, but 
does not say anything conclusive on the global structure of gauge groups.



  

Heavy Particle Phenomenology

➢ Searching for fractionally charged particle at collider, based on unique dE/dx

➢ Cosmology constraint on relic density → constraint on 

[S. Koren, A. Martin 2406.178503]

[CMS, 2402.09932]

Dirac Fermions
Bounds on 
Complex scalar are 
weaker than Dirac 
fermion by ~ 20%

Stable fractionally charged particle → Z
6
 non-trivial



  

SM Gauge Group and UV

➢ Different SM gauge group corresponds to different UV embedding

➢ Fractionally charged particle help to classify UV embedding 

Pati-Salam

Trinification
[C.Cordova, S. Hong, L.-T. Wang 2309.05636]

[Y. Choi, M. Forslund, H.Tam S.-H. Shao 2309.03937]

Non-trivial Z
6

Non-trivial Z
3,6

 allow Trinification

Non-trivial Z
2,6

 allow Pati-Salam



  

Summary

➢ Global structure of the Standard Model gauge group is unknown

➢ Global structure of the Standard Model can be used to determine the UV 

embedding of the gauge group

➢ Discovering new particle and determine its quantum number helps discern 

different Standard Model gauge groups.

➢ If new particle is heavy correlation between SMEFT Wilson coefficients can 

be used to infer the gauge quantum number of Z6 exotics.

➢ Strong motivation to study the phenomenology of fractionally charged 

particle.



  

Some example of the Z6 exotics

(fund, fund, 0), allowed Γ=1 forbidden Γ Z
2,3,6

(fund, fund, 2/3), allowed Γ=1 or Z
3
, forbidden Γ=Z

2,6

(fund,fund, ½), allowed Γ=1 or Z
2
, forbidden Γ=Z

3,6



  

➢ All particles are invariant under Z6, Γ remains undetermined as in the 
SM. 

➢ At least one heavy particle is not invariant under Z3 but invariant under 
Z2 (hence not invariant under Z6), Γ can be either 1 or Z3.

➢ At least one heavy particle is not invariant under Z2 but invariant under 
Z3 (hence not invariant under Z6), Γ can be either 1 or Z2.

➢ At least one heavy particle is invariant under neither Z2 nor Z3 (hence 
not invariant under Z6), Γ is uniquely determined to be 1.



  

Relation to 1-form symmetry

➢ Free Maxwell theory with no matter: 
the Gauss law is understood as electric 1-form symmetry

➢ Pure gauge theory with no matter: 
the center of the gauge group measures the N-ality of a Wilson line, which is 
understood as electric 1-form symmetry

➢ Adding matter fields breaks the electric 1-form symmetry 
explicitly, i.e. Wilson lines can be screened/trivialized by particles.

➢ Nevertheless, the notions of electric 1-form symmetry and Wilson lines are 
still valid below the mass scale of the heavy particles that screen the Wilson 
lines. As such, the 1-form symmetry is viewed as accidental at low energy.



  

Singlet in SU(2) and 
SU(3), charged under U(1)

Exclude by 
collider

Exclude 
requiring 
relic density 
< Ω

B
/5

Exclude
d by Z 
invisible 
width


